
Logic & Constraint Prog.

Syntax and semantics of Prolog
programms

IENAC S Sept. 2015



Basic syntactical constructs

atom: a name used to name relations and data objects; it can be
• a sequence of letters, digits that starts with a lowercase letter,

and can also contain the underscore “_”
• a sequence of characters enclosed between two single quotes

Examples: laysan albatross dark21 ’The Blues Brothers’
variable: string of letters, digits, “_” that starts with an uppercase

letter, or with “_”
Examples: X1 Toto12 urt cur4 123urc

numerical constants: usual representations for (signed) integers and
floating point numbers

term: an expression that represents a data object:
atoms, numerical constants, variables
+ compound terms of the form f (t1, . . . , tn)
where f is an atom and t1, . . . , tn are terms
(Lists are a special kind of compound terms.)

goal: expression that can be true of false;
has the form p(t1, . . . , tn)
where p is an atom and t1, . . . , tn are terms.



Logical constructs

formula: goals assembled with connectives
∧ (conjunction), ∨ (disjunction), ¬ (negation).

rule: G︸︷︷︸ ← ϕ︸︷︷︸ .
head body

where G is a goal and ϕ is a formula.
fact: rule with ϕ = > (always true); writtten G.
clause: rule of the form G← L1 ∧ . . . ∧ Lm

where L1, . . .Lm are literals,
that is, goals and negated goals. (Thus a Prolog clause does not
contain any disjunction.)



Logical constructs : Quantification

directed(D,A)← director(D,M) ∧ cast(M,A,R). is read:
“for all D,A, D has directed A if there exists some M , the director of
which is D, and in which A played”
In logic, we would write:
∀D,A(directed(D,A)← ∃M(director(D,M) ∧ cast(M,A,R)))

• the variables that appear in the head of a rule have an implicit
universal quantification / meaning
it is understood that the rule is true for all possible values of these
variables

• the variables that appear only in the body of a rule have an im-
plicit existential quantification/meaning within the body of the
rule
it is understood that the head of the rule is true if there is at least
one value for each of these variables for which the body of the
rule is true



Logical constructs : Negation as failure

Procedural meaning given to negation:
In order to prove ¬ϕ, try to prove that ϕ cannot be proved.

Consider the movie database excerpt above, and a predicate defining
movies in which played actors who were never directed by John Lan-
dis:
p(M)← cast(M,A,R) ∧ ¬directed(’John Landis’, A).
Draw the search tree for the query p(’Soul Kitchen’)?.



Logical constructs : Negation as failure

Procedural meaning given to negation:
In order to prove ¬ϕ, try to prove that ϕ cannot be proved.

Consider the movie database excerpt above, and a predicate defining
movies in which played actors who were never directed by John Lan-
dis:
p(M)← cast(M,A,R) ∧ ¬directed(’John Landis’, A).
Draw the search tree for the query p(’Soul Kitchen’)?.
Negation as failure is not logical negation !
The above definition is logically equivalent to:
p(M)← ¬directed(’John Landis’, A) ∧ cast(M,A,R).

But if we submit the query p(’Soul Kitchen’)?. . .



Predicates and programs

predicate (or relation): characterized by it name and its arity (num-
ber of arguments);
the predicate of name p and arity n, denoted p/n, is defined by a
set of rules / facts of the form:
p(t1, . . . , tn)← ϕ or p(t1, . . . , tn).
Predicates are to Prolog what functions / procedures are to more
conventional programming languages.



Predicates and programs

predicate (or relation): characterized by it name and its arity (num-
ber of arguments);
the predicate of name p and arity n, denoted p/n, is defined by a
set of rules / facts of the form:
p(t1, . . . , tn)← ϕ or p(t1, . . . , tn).
Predicates are to Prolog what functions / procedures are to more
conventional programming languages.

Remark Any rule is equivalent to as set of clauses
because of properties of ¬, ∧, ∨ (Boolean algebra), and because:

ψ ← ϕ1 ∨ ϕ2 is equivalent to

ψ ← ϕ1

ψ ← ϕ2


and

ψ ← ¬ϕ is equivalent to

ψ ← ¬q(Y )
q(Y )← ϕ


where q is a “new” predicate, and Y is the (sequence of) vari-
able(s) that appear in ϕ and not in ψ



Predicates and programs

logic program: a set of definitions of predicates.

Remark Clauses or rules that define a predicate p/n must not be
interleaved with rules or clauses that define other predicates.
(If the definition of predicate p is scattered at different places in
a file, Prolog considers that they are successive definitions of the
predicate p, each definition canceling the previous one.)

query: a formula.

Given a logic program P and a query ϕ, let U be the vector of
all the variables that appear in ϕ and that are not only within the
scope of a negation:
we want to know what are the values of U for which P ` ϕ.
(But ` is not exactly logical deduction.)


