
Logic & Constraint Prog.

Lists and recursion

IENAC S Sept. 2015

Lists

• Many algorithms (like sorting) need some memory space and
data structure to work on

• Conventional iterative programming languages use arrays
• Functional/logic programming languages use linked lists

A list can store any number of data objects
(if there is enough memory space of course !)

Lists

• Many algorithms (like sorting) need some memory space and
data structure to work on

• Conventional iterative programming languages use arrays
• Functional/logic programming languages use linked lists

A list can store any number of data objects
(if there is enough memory space of course !)

Examples of prolog lists: [1, 2, 3, [−1, a, []], ’movie bd’] [] [, X, Y, 1]

• A list is enclosed in squared brackets
• The elements are separated by commas “,”
• Elements of all types can be put in a list
• A list can contain other lists
• Character strings are lists:

Prolog interprets ”abcd”as the list of ASCII codes [97, 98, 99, 100].

Lists : Data abstraction

An example Consider a database for the timetable of a faculty:
• it could containt facts of the form

slot(Start,End,Course,Group,Teacher)

where Start and End give the start and end times of the slot
• most predicats and queries do not need to know how time points

are represented
⇒ these could be represented by [H,M], or [H,M,S]

or the number N of sec. elapsed since Jan. 1st, 1970.

Remark [and] are special constructors, reserved for lists in Prolog
It is possible to use other constructors to use other structures,
but, in principle, lists are sufficient.

Lists : Pattern Matching and Filtering

An example Consider a program that deals with colors, and that is
able to use to systems: RGB and CMYK:
• RGB: colors can be represented by lists with three numbers
• CMYK: colors can be represented by lists with four numbers
• clauses for a predicate darken, that computes a color darker than

a given one could have clause like:
darken([R,G,B],New)← . . . calculation for a color defined byR,G,B
darken([C,M, Y,K],New)← . . . calculation for a color defined by C,M, Y,K

• for the goal darken([123, 255, 27], N) prolog will not try the second
rule, which expects a list with 4 elements as first parameter

Lists : Recursive structure

A list: d •c •b •a •

Prolog representation: [a | [b | [c | d | []]]]

• [] represents the empty list;
• [X|L] represents a list, the first element of which is X, whereas

the tail is a list L;
• the “,” is a convenient shortcut to enumerate elements at the be-

ginning of a list.
For instance, [1, 2, 3, 4] = [1, 2, 3| [4]] = [1| [2| [3| [4| []]]]].
(But [1, 2, 3, 4] 6= [[1, 2] | [3, 4]]. Why ?)
A list is a compound term, we could use an atom “list” to build lists:
• [X | L] would be written list(X,L)
• [a, b, c, d] would be written list(a, list(b, list(c, list(d, empty))))
(where “empty” would be another atom to denote the empty list).

Lists : Recursive structure

Examples of filtering with the recursive form of lists:
• isFirstElmtOf(X,L): true if X is the first element of the list L⇒

isFirstElmtOf(X,L)← L = [X|R].

or simply
isFirstElmtOf(X, [X|R]).

• isSecondElmtOf(X,L) . . .

Recursive programming

We wish to retrieve the last element of a list: isLastElmtOf(X,L) must
be true if X is the last element of L
• the linked list must be scanned until its last element is reached
• we do not know in advance how many steps will be needed
⇒ recursive programming:

Recursive programming : The classical example

We wish to retrieve the last element of a list: isLastElmtOf(X,L) must
be true if X is the last element of L
• the linked list must be scanned until its last element is reached
• we do not know in advance how many steps will be needed
⇒ recursive programming:

X is last element of [Y | R] if and only if X is last element of R
Termination: X is the last element of [X]

In prolog:
isLastElmtOf(X,L)← L = [X] ∨ (L = [Y |R] ∧ isLastElmtOf(X,R)).

Example Write a definition for a predicate member/2, such that
member(X,L) is true if X is element of list L.

