
The GNU Prolog finite domain
constraints solver

IENAC S � Sept.-Nov. 2017

The Sudoku 4× 4 in Prolog

sudoku4(L)← generate(L) ∧ test(L).
generate(L)← all_member(L,[1,2,3,4]).

2
1

4
1

(3) test(X11, X12, X13, X14, X21, X22, . . . , X42, X43, X44)←
∧ all_di�([X11, X12, X13, X14]) ∧ all_di�([X21, X22, X23, X24])
∧ all_di�([X31, X32, X33, X34]) ∧ all_di�([X41, X42, X43, X44])
∧ all_di�([X11, X21, X31, X41]) ∧ all_di�([X14, X24, X34, X44])
∧ all_di�([X12, X22, X32, X42]) ∧ all_di�([X13, X23, X33, X43])
∧ all_di�([X11, X12, X21, X22]) ∧ all_di�([X13, X14, X23, X24])
∧ all_di�([X31, X32, X41, X42]) ∧ all_di�([X33, X34, X43, X44]).

(4) all_member(L,D)←
L = [] ∨ L = [V |R] ∧ member(V ,D) ∧ all_member(R,D).

(5) all_di�(L)← L = [] ∨ L = [V |R] ∧ ¬member(V , R) ∧ all_di�(R).
Query:
sudoku4([X11,2,X13,X14,1,X22,X23,X24,X31,X32,X33,4,X41,X42,1,X44]).

The Sudoku 4× 4 in Prolog : The basic “Generate & test” solution

The search tree has 412 ≈ 17 million leaves !!

The Sudoku 4× 4 in Prolog : A more efficient version

Generate only valide lines
(somehow, the “generate” and “test” parts are interleaved).
sudoku4(L)← generate(L) ∧ test(L).
generate(X11,X12,X13,...,X42,X43,X44)←

all_member_di�([X11,X12,X13,X14])∧all_member_di�([X21,X22,X23,X24])
∧all_member_di�([X31,X32,X33,X34])∧all_member_di�([X41,X42,X43,X44]).

test(X11,X12,X13,...,X42,X43,X44)←
all_di�([X11,X21,X31,X41]) ∧ all_di�([X14,X24,X34,X44])
∧ all_di�([X12,X22,X32,X42]) ∧ all_di�([X13,X23,X33,X43])
∧ all_di�([X11,X12,X21,X22]) ∧ all_di�([X13,X14,X23,X24])
∧ all_di�([X31,X32,X41,X42]) ∧ all_di�([X33,X34,X43,X44]).

all_member_di�(L,D)← L = [] ∨
L = [V |R] ∧ select(V ,D,S) ∧ all_member_di�(R,S).
all_di�(L)← L = [] ∨ L = [V |R] ∧ ¬member(V ,R) ∧ all_di�(R).

Remark. select(V ,D, RD) is true if V ∈ D and RD = D\V .

The Sudoku 4× 4 in Prolog : With the constraint solver

sudoku4_fd(L)← L = [X11,X12,X13,...,X42,X43,X44]
∧ fd_domain(L,[1,2,3,4])
∧ fd_all_di�([X11,X12,X13,X14]) ∧ fd_all_di�([X21,X22,X23,X24])
∧ fd_all_di�([X31,X32,X33,X34]) ∧ fd_all_di�([X41,X42,X43,X44])
∧ fd_all_di�([X11,X21,X31,X41]) ∧ fd_all_di�([X14,X24,X34,X44])
∧ fd_all_di�([X12,X22,X32,X42]) ∧ fd_all_di�([X13,X23,X33,X43])
∧ fd_all_di�([X11,X12,X21,X22]) ∧ fd_all_di�([X13,X14,X23,X24])
∧ fd_all_di�([X31,X32,X41,X42]) ∧ fd_all_di�([X33,X34,X43,X44])
∧ fd_labeling(L).

The Sudoku 4× 4 in Prolog : Comparison of the 3 versions

• first version: implemented without thinking about how prolog eval-
uates the queries, too slow.
• second version: faster, but the programmer had to think more about

prolog’s evaluation mechanism – this is not the aim with logic pro-
gramming.
• third version: even faster, and written without thinking about how

constraints are solved.
It uses an external constraint solver.

A quick overview of the constraint solver

1. each variable receives an initial domain;
(above: the call fd_domain(L, [1, 2, 3, 4]) associates the domain
{1, 2, 3, 4} to all variables in L)

A quick overview of the constraint solver : The basic mechanism

1. each variable receives an initial domain;
(above: the call fd_domain(L, [1, 2, 3, 4]) associates the domain
{1, 2, 3, 4} to all variables in L)

2. every encountered constraint is stored

A quick overview of the constraint solver : The basic mechanism

1. each variable receives an initial domain;
(above: the call fd_domain(L, [1, 2, 3, 4]) associates the domain
{1, 2, 3, 4} to all variables in L)

2. every encountered constraint is stored
with domain reduction based on local consistency conditions if pos-
sible; above:
• X12 instanciated to 2
• constraint fd_all_di�([X11, X12, X13, X14])
⇒ the value 2 is removed from the domains of X11, X13, X14

3. the call fd_labeling triggers the external constraint solver.

A quick overview of the constraint solver : Domains

A domain DX is associated with each variable X that appears in a
constraint.
Initially: DX = [0, . . . , fd_max_integer] ⊆ N+

| ?- X = Y.

Y = X

yes

| ?- X #= Y.

X = _#0(0..268435455)

Y = _#0(0..268435455)

yes

A quick overview of the constraint solver : Domains

A domain DX is associated with each variable X that appears in a
constraint.
Initially: DX = [0, . . . , fd_max_integer] ⊆ N+

| ?- X = Y.

Y = X

yes

| ?- X #= Y.

X = _#0(0..268435455)

Y = _#0(0..268435455)

yes

| ?- X\=Y.

no

| ?- X\==Y.

yes

| ?- X #\= Y.

X = _#2(0..268435455)

Y = _#20(0..268435455)

yes

A quick overview of the constraint solver : Domains

The first effect of a constraint is to reduce the domain of the variables:

| ?- X + Y #= 5.

X = _#21(0..5)

Y = _#39(0..5)

yes

A quick overview of the constraint solver : Domains

The first effect of a constraint is to reduce the domain of the variables:

| ?- X + Y #= 5.

X = _#21(0..5)

Y = _#39(0..5)

yes

| ?- X #< 3.

X = _#2(0..2)

yes

A quick overview of the constraint solver : Domains

The first effect of a constraint is to reduce the domain of the variables:

| ?- X + Y #= 5.

X = _#21(0..5)

Y = _#39(0..5)

yes

| ?- X #< 3.

X = _#2(0..2)

yes

| ?- X #< 3 , X+Y #= 6.

X = _#2(0..2) Y = _#41(4..6)

yes

A quick overview of the constraint solver : Domains

| ?- X #< 3 , write(X) , nl , write(Y)

, X + Y #= 6.

_#2(0..2)

_22

X = _#2(0..2) Y = _#41(4..6)

yes

A quick overview of the constraint solver : Domains

| ?- X #< 3 , write(X) , nl , write(Y)

, X + Y #= 6.

_#2(0..2)

_22

X = _#2(0..2) Y = _#41(4..6)

yes

| ?- X #< 2 , Y #< 2 , Z #< 2

, X #\= Y , X #\= Z , Y #\= Z.

X = _#2(0..1) Y = _#22(0..1) Z = _#42(0..1)

yes

A quick overview of the constraint solver : Domains

Remarks:
• the predicates #=, #>, . . . do not completely solve the constraints.
• the evaluation of each constraint C only eliminates from the do-

mains of the variables values that do not appear in any solution of
C :
it ensure local consistency
(it is local to one constraint)

A quick overview of the constraint solver : Invoking the solver

The predicate fd_labeling solves all the constraints that have been
posted :

| ?- X #< 3 , X + Y #= 6 , fd_labeling([X,Y]).

X = 0 Y = 6 ? ;

X = 1 Y = 5 ? ;

X = 2 Y = 4

yes

A quick overview of the constraint solver : Invoking the solver

| ?- X #< 2 , Y #< 2 , Z #< 2 , X #\= Y , X #\= Z , Y #\= Z

, fd_labeling([X,Y,Z]).

no

The actual constraint solving algorithm will not be studied here. . .
Remark: all constraints are simultaneously solved, not only the ones
that involve the variables that appear in the parameter of fd_labeling:

| ?- X #< 2 , Y #< 2 , Z #< 2 , X #\= Y , X #\= Z , Y #\= Z

, fd_labeling([X,Y]).

no

A quick overview of the constraint solver : Other predicates

fd_domain(X, L): removes from the domain of X values that are not in
L.

fd_domain_bool(L): removes from the domain of each variable in L val-
ues that are not in {0, 1}.

fd_all_di�erent(L): constraints all variables in the list L to have different
values.
fd_all_different([X,Y,Z]) is equivalent to:
X #\= Y , X #\= Z , Y #\= Z

A quick overview of the constraint solver : Other predicates

| ?- fd_domain_bool([X,Y,Z]) , fd_all_different([X,Y,Z]).

X = _#0(0..1) Y = _#18(0..1) Z = _#36(0..1)

yes

| ?- fd_domain_bool([X,Y,Z]) , fd_all_different([X,Y,Z])

, fd_labeling([X,Y,Z]).

no

fd_atmost(N, L, V): imposes that at most N variables from the list L
have value V .
There is also fd_atleast and fd_exactly.

A quick overview of the constraint solver

Constraint solving and backtracking The following program and query
show that constraints posted in different branches of the evaluation tree
are solved independently from one another:

p(X,Y,Z) :- fd_domain([X,Y,Z],1,2) , Y #\= Z

, q(X,Y,Z) , fd_labeling([X,Y,Z]).

q(X,Y,Z) :- member([U,V],[[X,Y],[X,Z]])

, U #\= V , fail.

q(_,_,_).

Then:

| ?- p(X,Y,Z).

X = 1 Y = 1 Z = 2 ? ;

X = 1 Y = 2 Z = 1 ? ...

yes

A quick overview of the constraint solver : Optimisation

The predicate fd_minimize returns the minimum value allowed for a
variable X among those possible when constraints are solved with
fd_labeling:

| ?- X + Y #= 10 , Y #< 3 , fd_minimize(fd_labeling([X,Y]),X).

X = 8 Y = 2

yes

How it works:
• each time fd_labeling([X, Y]) gives a solution X = n, the search is

started again with a new constraint X #< n;
• when a failure occurs (either because there are no remaining choice-

points for Goal or because the added constraint is inconsistent with
the rest of the store) the last solution is recomputed since it is op-
timal.

There is also fd_maximize.

A quick overview of the constraint solver : Optimisation

Example : graph coloring

| ?- X #\= Y , X #\= Z , X #< Max , Y #< Max , Z #< Max

, fd_minimize(fd_labeling([X,Y,Z]), Max).

Exercises

Exercise 1. A factory has four workers w1,w2,w3,w4 and four products
p1,p2,p3,p4. The problem is to assign workers to products so that each
worker is assigned to one product, each product is assigned to one
worker, and the profit maximized. The profit made by each worker
working on each product is given in the matrix:

p1 p2 p3 p4
w1 7 1 3 4
w2 8 2 5 1
w3 4 3 7 2
w4 3 1 6 3

Exercises

Exercise 2. Four roommates are subscribing to four newspapers. The
table gives the amounts of time each person spends on each newspaper.
Akiko gets up at 7:00, Bobby gets up at 7:15, Chloé gets up at 7:15,
and Dola gets up at 8:00.

The Guardian Le Monde El Pais Die Taz
Albert 60 30 2 5
Bobby 75 3 15 10
Chloé 5 15 10 30
Dola 90 1 1 1

Nobody can read more than one newspaper at a time and at any time
a newspaper can be read by only one person. The goal is to schedule
the newspapers such that the four persons finish the newspapers at an
earliest possible time.
Question 2.1. Describe a model of the problem using constraints. How
many variables and how many constraints are they? What is the ob-

Exercises

jective?
(Hint: use a variable that represents the latest finishing time.)
Question 2.2. Write a program to solve it using the constraint solver.

Exercises

Exercise 3. On an 8x8 chessboard, we want to put eight queens so that
no two queens threaten each other. A queen threatens every other piece
that is on the same column, row, or diagonal.
Question 3.1. A solution can be defined as a permutation of the list
[1, . . . , 8]. How?
Question 3.2. Write a small program using the constraint solver to solve
the problem when there are 4 queens to place on a 4× 4 chessboard.
Question 3.3. Assuming an encoding as suggested with the previous
question, how do you write, in the language of the constraint solver, the
constraints between two queens represented by variables Qi and Qi+δ ,
at positions i and i+ δ in the list above?
Question 3.4. Write a predicate constraints/2 that recursively posts all
constraints between a queen Qi and the list of all queens with indices i+
1, . . . , n: constraints(Qi, [Qi+1, . . . , Qn]) is always true, and its execution
must post all necessary constraints.

Exercises

Question 3.5. Finish the program with a recursive predicate that makes
the necessary calls to constraints/2.

Exercises

Solution: A program that solves the N-queen problem:
(1) consraints(Q, L)← consraints(Q, L, 1).
(2) consraints(Q1, L, δ)← L = []
∨ L = [Q2|R]∧Q1 #\=# Q2 ∧ δ #\=# Q1−Q2 ∧ δ #\=# Q2−Q1
∧ δ1 is δ + 1 ∧ consraints(Q1, R, δ1).

(3) safe(L)← L = [] ∨ L = [Q|R] ∧ consraints(Q,R) ∧ safe(R).
(4) eightqueens(N, L)← length(L,N) ∧ fd_domain(L, 1, N)
∧ safe(L) ∧ fd_labeling(L).

Exercises

Exercise 4. Graph coloring is an important combinatorial optimization
problem. In this exercise, we assume that a graph is described by a
predicate edge/2. We want to write a program, using the constraint
solver, that computes a coloring of the graph with a minimum number of
colors.
You can test your predicates on a small graph that you define yourself.
Two bigger graphs are described in the files �at20_3_0.pland jean.pl,
that you can download at the address www.irit.fr/~Jerome.Mengin/prolog/

Question 4.1. Write two predicates that create the lists of edges and of
vertices of the graph. For instance, listVertices(L) must be called with
an uninstantiated variable, and must then instantiate this variable with
the list of all vertices of the graph described by edge/2.
Question 4.2. Write a predicate that generates an association list of
pairs [V , XV], one for each vertex X , where XV is a newly created vari-
able that will be eventually instanciated with the color assigned to X .
Question 4.3. Extend the preceding predicate so that it also returns the

Exercises

list of the XV ’s (without the associated vertices).
Question 4.4. Write a predicate that posts all constraints - one for each
edge in the graph.
Question 4.5. Finish your program with a predicate that finds the mini-
mum number of colors necessary to color the graph.

