Exemple On veut calculer une approximation de $\sqrt{3}$, en utilisant uniquement les 4 opérations arithmétiques élémentaires.

Question 0.1 Calculer « à tâtons » une approximation de $\sqrt{3}$ à 10^{-3} près. (Que veut dire « à 10^{-3} près » ?)

La méthode de la bissectrice consiste à partir de deux valeurs a et b qui encadrent $\sqrt{3}$: on coupe l'intervalle en deux, et on regarde de quel côté est la solution ; on itère jusqu'à avoir une précision suffisante.

Question 0.2 Appliquer la méthode de la bissectrice pour calculer une approximation de $\sqrt{3}$ à 10^{-3} près, en partant de 1 et 2. Combien faut-il d'itérations pour calculer $\sqrt{3}$ avec cette méthode avec une précision de 10^{-n} pour un entier n quelconque ?

Une autre méthode consiste, pour calculer \sqrt{a} pour a quelconque, à construire une suite $(r_k)_{k\in\mathbb{N}}$ définie par $r_{k+1}=r_k/2+a/2r_k$. (On verra plus loin la justification de la méthode.)

Question 0.3 Calculer une approximation de $\sqrt{3}$ à 10^{-3} près avec cette dernière méthode, en partant de r_0 =2. (Que veut dire « à 10^{-3} près » avec cette méthode ?)

3 méthodes de résolution itérative d'équations On a une fonction $f: \mathbf{R} \longrightarrow \mathbf{R}$, supposée continue sur [a,b], et telle que f(a)f(b)<0: il existe $r\in [a,b]$ tel que f(r)=0, on cherche à calculer la valeur d'un tel r.

Méthodes itératives : si on ne connaît pas d'expression analytique de la solution de f(x)=0, il existe différentes méthodes pour construire une suite $(r_n)_{n\geq 0}$ qui converge « en général » vers une solution.

Méthode de la bissectrice : on coupe l'intervalle en deux, et on regarde de quel côté est la solution ; on itère jusqu'à avoir une précision suffisante. \Rightarrow 3 suites $(a_n)_{n>0}$, $(b_n)_{n>0}$, $(r_n)_{>0}$ en partant de $a_0=a$, $b_0=b$:

 $r_n = (a_n + b_n)/2$, puis

si $f(r_n) \times f(a_n)$:	$a_{n+1}=$	$b_{n+1}=$
=0	STOP	
<0	inchangé	r_n
>0	r_n	inchangé

Convergence : toujours, mais lentement, $\overline{|r_n-r|=|b-a|}/2^n$

⇒ on gagne une décimale toutes les 3 itérations!

Méthode de Newton-Raphson : on part d'un r_0 supposé proche de la solution, on prend r_1 à l'intersection de l'axe des x et de la tangente à la courbe de f en r_0 ; on itère...: $r_{n+1} = r_n - f(r_n)/f'(r_n)$

Convergence: garantie si $f'(r) \neq 0$ et r_0 « suffisamment proche » de r, alors $|r_{n+1} - r| \leq K |r_n - r|^2$ (cf. dével^t de Taylor d'ordre 2 en x_n pour f(r)) \Rightarrow on double le nombre de décimales correctes à chaque itération!

Méthode de la sécante : on remplace, dans la méthode de Newton, $f'(r_n)$ par $\frac{f(r_n)-f(r_{n-1})}{r_n-r_{n-1}}$

$$r_{n+1} {=} r_n {-} f(r_n) \frac{r_n {-} r_{n-1}}{f(r_n) {-} f(r_{n-1})}$$

Conditions d'arrêt : pour une précision ϵ voulue,

erreur absolue $|r_{n+1}-r_n| \le \epsilon$;

erreur relative $|r_{n+1}-r_n|/|r_n| \leq \epsilon$.