
No d'ordre : 1808
THESEpr�esent�eepour obtenir le titre deDOCTEUR DE L'INSTITUT NATIONAL POLYTECHNIQUEDE TOULOUSESPECIALITE: Informatique et T�el�ecommunicationsparM. Iulian Sorin OBER

Sp�eci�cation et Validation des Syst�emes Temporis�esavec des Langages de Description Formelle:�etude et mise en �uvre
Soutenue le 21 septembre 2001 devant le jury compos�e de :M. Zoubir Mammeri Pr�esidentM. Roland Groz RapporteurM. Joseph Sifakis RapporteurM. Bernard Coulette Directeur des travaux de rechercheMme. Susanne Graf ExaminateurM. Alain Kerbrat Examinateur

Remerciements
Je remercie Bernard Coulette d'avoir accept�e d'encadrer cette th�ese, ainsi que pour sonsoutien pendant ces ann�ees.Je remercie Alain Kerbrat d'avoir initi�e ces travaux, ainsi que pour l'encadrement soutenuet pour nos discussions souvent contradictoires mais toujours enrichissantes.Je remercie M. Roland Groz et M. Joseph Sifakis d'avoir accept�e d'être rapporteurs de cetteth�ese. L'int�erêt avec lequel ils ont lu et comment�e mon manuscrit me fait honneur.Je remercie M. Zoubir Mammeri de m'avoir fait l'honneur de pr�esider ce jury.Je dois un grand merci �a l'�equipe du laboratoire Verimag avec qui j'ai collabor�e pendant ladur�ee de cette th�ese. Merci �a Marius Bozga, Susanne Graf et Laurent Mounier pour les discus-sions tr�es actives, et pour avoir accompagn�e mes premiers pas dans l'univers de la v�eri�cationformelle. Je remercie �egalement Stavros Tripakis pour la patience avec laquelle il a r�epondu �ames questions. En�n, je remercie Susanne Graf d'avoir accept�e de juger ce travail.Je remercie la Compagnie des Signaux et la Soci�et�e Telelogic d'avoir rendu tout cela possibleen m'accueillant dans leur centre toulousain. J'ai trouv�e l�a une �equipe merveilleuse sur le planhumain, et impressionnante sur le plan technique. En particulier, je tiens �a remercier Jean-LucRoux pour son soutien constant pendant la r�edaction de cette th�ese. Merci �a tous les autrescoll�egues, une liste serait trop longue.Je tiens �a remercier Dan Chiorean pour m'avoir donn�e l'occasion de faire mes premiers pasen recherche dans un excellent environnement. Je le remercie pour son soutien amical, maisaussi pour les leons spontan�ees d'esprit critique.En�n, je suis reconnaissant envers ma famille et mes amis pour avoir �et�e �a mes côt�es pendantces ann�ees. Merci Ileana.

R�esum�e: Ce travail porte sur les techniques de description et de validation d'une cat�egorie de syst�emestemps-r�eel, dont le comportement est contrôl�e ou conditionn�e par le temps (syst�emes temporis�es). La vali-dation de ces syst�emes n�ecessite la prise en compte simultan�ee des aspects temporels et comportementaux.Pour cette raison, nous nous int�eressons �a l'extension des formalismes de description du comportementavec des informations temporelles, et �a la mise en oeuvre des techniques d'analyse associ�ees.Le langage cible choisi est LDS, dont l'usage est tr�es r�epandu dans l'industrie, et qui pr�esente d'autresavantages: il est standardis�e, il a une s�emantique formelle, et il b�en�e�cie d'outils avanc�es de validationpar simulation ou v�eri�cation. Pour int�egrer les extensions temporelles, nous avons pris comme mod�eleet base s�emantique les automates temporis�es.Nous proposons un ensemble d'extensions du langage LDS, qui permet de d�ecrire le comportementd�ependant du temps ainsi que les hypoth�eses temporelles sous lesquelles le syst�eme fonctionne. Les exten-sions sont formalis�ees en ASM, en compl�ement de la s�emantique normalis�ee de LDS. Nous �etablissons lelien entre LDS et le mod�ele des automates temporis�es, ce qui nous permet ensuite d'adapter des m�ethodesd'analyse sp�eci�ques.Nous �etudions �egalement deux langages utilis�es pour la description des propri�et�es des mod�eles LDS: MSCet GOAL. Dans le cas de GOAL, des extensions sont introduites pour exprimer des propri�et�es temporellesquantitatives. Dans le cas de MSC, nous proposons une s�emantique pour les aspects temporels de MSC-2000. Pour les deux langages, nous �etudions des m�ethodes de v�eri�cation par model-checking.Nous pr�esentons la mise en oeuvre des techniques �etudi�es dans un outil de simulation et v�eri�cation, quia permis de montrer l'int�erêt mais aussi les limites d'utilisation des ces techniques sur un ensemble decas d'�etude.Mots cl�e : syst�emes temporis�es, SDL, MSC, Automates Temporis�es, ASM, s�emantique op�erationnelle,v�eri�cation par model checkingAbstract: This work deals with the description and validation of a category of real-time systems, whosebehaviour is controlled or conditioned by time (timed systems). The validation of this kind of systemsmust take into account both behavioural and timing aspects. For this reason, we are interested inextending the behavioural description formalisms with timing information, and in subsequently applyingtiming analysis techniques.The study focuses on the SDL language, because it is widespread in the real-time systems industryand presents several other advantages: it is standardised, it has a formal semantics, and bene�ts fromadvanced validation tools. We integrate constructs for capturing timing information, as well as timinganalysis methods in the framework of SDL, by taking timed automata as model and semantic basis.We propose a set of extensions of SDL, which allow the description of time-dependent behaviour and oftiming hypotheses under which a system works. The extensions are given a formal semantics in ASM,which complements the standard SDL semantics. We also describe the link between SDL and the timedautomata model, which allows timed automata analysis techniques to be adapted to SDL.In this framework, we use two additional languages for expressing quantitative temporal properties relatedto SDL models: MSC and GOAL. For GOAL, we propose a set of extensions that allow modelinginformation about time. For MSC, we discuss a timed semantics that encompasses the new timingconstructs of MSC-2000. For both languages we examine the problem of property veri�cation by modelchecking.The thesis ends with the description of a simulation and veri�cation tool built in the context of this work,and presents some case studies used to validate the proposed concepts and techniques.Keywords : timed systems, SDL, MSC, Timed Automata, ASM, operational semantics, model checking

Contents
1 R�esum�e 111.1 Introduction . 111.1.1 Contributions de la th�ese . 121.1.2 Organisation du document . 131.2 Pr�esentation de l'existant . 141.2.1 Sp�eci�cation des syst�emes temporis�es en LDS 141.2.2 Sp�eci�cation de propri�et�es en MSC et GOAL 161.2.3 Sp�eci�cation et v�eri�cation avec des automates temporis�es 171.3 Extensions des langages et m�ethodes de validation 191.3.1 Extensions de LDS . 191.3.2 Description et v�eri�cation des propri�et�es temporis�ees avec MSC et GOAL 211.3.3 Simulation et v�eri�cation temporelles de LDS 221.4 Application et conclusion . 242 Introduction 252.1 Speci�cation and validation of timed systems . 252.2 The approach and contribution of the thesis . 272.3 Organization of the document . 29I Languages and Models for Real-Time Systems 313 SDL 333.1 Scope and paradigm . 343.2 Language concepts . 363.2.1 Language de�nition artifacts . 363.2.2 Architecture and communication . 373.2.3 Behavior . 413.2.4 Data . 473.3 Semantics . 483.3.1 Static semantics . 493.3.2 Abstract State Machines . 503.3.3 Dynamic semantics . 543.4 Tools . 583.5 Discussion . 597

4 MSC and GOAL 614.1 MSC . 614.1.1 Basic MSC . 634.1.2 Structuring concepts . 654.1.3 Semantics and decidability . 664.1.4 Tools . 694.1.5 Specifying timing information . 704.2 GOAL . 714.2.1 Language concepts . 724.2.2 Observer execution . 734.2.3 Specifying timing properties . 744.3 Expressivity of MSC and GOAL . 744.3.1 Observation and other language facilities 744.3.2 Semantic model and satisfaction relationship 754.3.3 Conclusion . 755 Timed automata 775.1 Reasoning about time . 775.2 Labeled transition systems . 795.3 The timed automata model . 825.4 Analysis techniques and decidable problems . 875.5 Discussion . 89II Language Extensions, Validation Techniques and Tools 916 SDL extensions for timed behavior description 936.1 Overview of problems . 936.1.1 Classi�cation of problems and solutions 946.1.2 Expressivity problems . 956.1.3 Usability problems . 966.2 Extensions for representing timing information 976.2.1 Clocks, guards and transition urgency . 976.2.2 Action execution durations . 996.2.3 Channel behavior speci�cation . 1016.2.4 Example of extended speci�cation . 1026.3 Impact of extensions on the ASM semantics of SDL 1046.3.1 Explicit clocks . 1056.3.2 Execution and communication delays. Timers 1066.3.3 Controlled time . 1116.4 Impact of extensions on the LTS-based semantics of SDL 1166.5 Discussion . 1207 Timed property description and veri�cation using MSC and GOAL 1237.1 Timed Property Automata . 1247.1.1 Property speci�cation languages . 1247.1.2 TPA de�nition . 1257.1.3 TPA model checking . 1288

7.2 MSC . 1307.2.1 A timed automata semantics for MSC . 1317.2.2 MSC satisfaction . 1337.2.3 Timed MSC model checking . 1357.3 GOAL . 1367.3.1 Extensions for speci�cation of timing constraints 1367.3.2 Semantics and model checking of timed observers 1387.4 Discussion . 1398 Timed SDL simulation and veri�cation 1418.1 Tool architecture and functioning . 1418.2 The timed simulation graph . 1438.2.1 Representation of states . 1448.2.2 Transition steps . 1458.2.3 MSC and GOAL speci�cations . 1518.3 User-level features . 151III Applications, Conclusions and Perspectives 1559 Case studies 1579.1 The SpaceWire protocol . 1579.2 SDL modeling and expressivity problems . 1619.3 Veri�cation . 1669.4 Conclusions . 17210 Conclusions and perspectives 173A List of abbreviations 189B Proofs 191

9

10

Chapter 1R�esum�e1.1 IntroductionCette th�ese porte sur les techniques de description et de validation du comportement d'unecat�egorie de syst�emes temps-r�eel, que nous appelons syst�emes temporis�es. Conform�ement �aune d�e�nition g�en�eralement accept�ee, les syst�emes temps-r�eel sont des syst�emes dont le fonc-tionnement correct d�epend de la satisfaction de certaines contraintes temporelles. Parmi cessyst�emes, nous d�esignons comme temporis�es ceux dont le comportement est contrôl�e ouconditionn�e par le temps, �a la di��erence des syst�emes o�u le temps apparat seulement parl'interm�ediaire des facteurs de performance.Une m�ethode de validation des syst�emes temps-r�eel doit tenir compte �a la fois des con-traintes fonctionnelles et des contraintes temporelles appliqu�ees au syst�eme. N�eanmoins, pourla majorit�e des syst�emes temps-r�eel, les deux aspects peuvent être trait�es s�epar�ement, par ex-emple en utilisant des mod�eles sp�eci�ques pour chacun d'eux. Plusieurs classes de mod�eles etde m�ethodes d'analyse, portant sur un aspect particulier du syst�eme mod�elis�e, sont habituelle-ment utilis�ees dans l'ing�enierie des syst�emes temps-r�eel. Nous mentionnerons en particulier lesmod�eles d'ordonnancement et les mod�eles de performance. Les mod�eles d'ordonnancement (voirla monographie [KRPO93]) visent �a �etudier les aspects de comp�etition pour les ressources (ycompris le temps de calcul), et peuvent fournir une base pour la validation du comportementtemporel d'un syst�eme. Cependant, ils ne sont pas applicables aux syst�emes complexes dont lefonctionnement d�epend du temps (tels que les syst�emes temporis�es). Les mod�eles de perfor-mance visent �a d�ecrire les syst�emes d'un point de vue probabiliste, et peuvent être utilis�es pourla validation des contraintes de performance; cependant, leur capacit�e �a d�ecrire le comportementdu syst�eme reste limit�ee.Dans le cas des syst�emes temporis�es, examin�es dans cette th�ese, les aspects comportemen-taux et les aspects temporels d'un syst�eme ne peuvent être s�epar�es, et une m�ethode de validationdoit porter sur un mod�ele hybride incluant les deux. Pour cette raison, nous nous int�eressonsaux mod�eles fonctionnels (comportementaux) d'un syst�eme, et �a leur extension avec des con-structions pour exprimer les informations temporelles. Plus pr�ecis�ement, nous �etudions lesm�ethodes formelles de description et de validation, s'appuyant sur des langages formalis�es telsque LDS [IT99b], et sur des m�ethodes de validation telles que la simulation ou la v�eri�cationpar model-checking [QS82, CES86].Le point de d�epart de cette th�ese est l'�ecart que nous avons constat�e entre l'�etat de l'artet l'�etat de la pratique industrielle dans le domaine de la sp�eci�cation et de la v�eri�cation dessyst�emes temporis�es. D'une part, plusieurs langages de mod�elisation, tels que LDS [IT99b],11

12 Chapter 1. R�esum�eHRT-HOOD [BW95], ROOM [SGW94] ou UML avec des extensions temps-r�eel [Dou99, Dou98,SR98], sont utilis�es dans l'industrie. Les concepts de mod�elisation utilis�es dans ces langages ontbeaucoup �evolu�e, mais les m�ethodes d'analyse employ�ees dans les outils industriels ne couvrentpas les derni�eres avanc�ees de la recherche. Du côt�e de la recherche, il y a beaucoup de mod�elesabstraits, tels que les automates temporis�es [ACD93, AD94], les extensions temporis�ees desr�eseaux de Petri [MF76, Sif77, Ram74] ou encore les extensions des alg�ebres des processus[NS91], qui ont �et�e d�evelopp�es en parall�ele avec des m�ethodes d'analyse telles que la simulation,le model-checking, et la r�e�ecriture. Cependant, l'acceptation des mod�eles, des m�ethodes et desoutils acad�emiques par l'industrie se fait lentement, �a cause de leur complexit�e et du supportlimit�e qu'ils o�rent pour la conception des syst�emes complexes.En partant de ce constat, l'objectif de la th�ese est d'int�egrer dans le langage LDS les tech-niques de mod�elisation et d'analyse r�ecemment d�evelopp�ees dans le domaine des automatestemporis�es, et d'�etendre les outils associ�es. Nous avons choisi LDS car c'est un langage large-ment r�epandu dans l'industrie temps-r�eel. Les autres avantages de LDS sont le fait qu'il soitstandardis�e, qu'il b�en�e�cie d'une s�emantique formelle, et que les outils de validation bas�es surLDS sont plus proches de l'�etat de l'art dans le domaine. Le choix des automates temporis�escomme base th�eorique pour les extensions temporelles de LDS se justi�e par le fait que denombreux travaux de recherche r�ecents ont concern�e ce mod�ele, et par cons�equent beaucoup deprobl�emes th�eoriques (li�ees �a la d�ecidabilit�e du mod�ele, aux extensions possibles, aux probl�emesde model-checking, etc.) ont �et�e �etudi�es.1.1.1 Contributions de la th�eseLes r�esultats de cette th�ese peuvent être situ�es sur trois niveaux:{ Au niveau du langage LDS, avec des propositions d'extension et une s�emantique du tempsadapt�ee aux besoins de l'analyse temporis�ee,{ Au niveau des langages d'expression de propri�et�es, compl�ementaires �a LDS,{ Au niveau des m�ethodes et des outils de simulation et de v�eri�cation.Nous pr�esentons les r�esultats plus en d�etail dans la suite de cette section.Extensions du langage LDSNous commenons cette th�ese avec une description de l'existant, et en particulier nous analysons lafaon dont LDS couvre la description des informations temporelles agissant sur le comportementdes syst�emes mod�elis�es. Nous identi�ons ainsi certaines lacunes dans la d�e�nition de LDS,vis-�a-vis des aspects temporels mentionn�es.Ce probl�eme de mod�elisation est abord�e dans le Chapitre 6, o�u nous proposons une s�eried'extensions du langage, capables de repr�esenter l'information descriptive sur le temps. Lesextensions propos�ees permettent de d�ecrire un comportement d�ependant du temps, ainsi que leshypoth�eses temporelles sous lesquelles le syst�eme fonctionne, ceci directement dans LDS. Cesinformations peuvent ensuite être utilis�ees par des outils d'analyse temporelle, tels que ceuxd�evelopp�es dans le cadre de ce travail (pr�esent�es plus loin).Les r�esultats que nous pr�esentons ici ont �et�e d�ecrits dans nos papiers r�ecents [BGK+00,BGM+01]. Avec un group de partenaires industriels et universitaires, nous sommes en train deraÆner et consolider l'ensemble des extensions de LDS pour le soumettre �a l'ITU en vue de leurnormalisation.

1.1. Introduction 13S�emantique du temps en LDSLa d�e�nition standard de LDS comporte une s�emantique formelle [IT99c], qui fournit une cor-respondance entre l'ensemble des sp�eci�cations LDS et un ensemble d'objets math�ematiques,ainsi qu'une interpr�etation math�ematique de la notion d'ex�ecution d'un syst�eme LDS. Dansla deuxi�eme partie du Chapitre 6, nous pr�esentons la s�emantique des extensions du langage,ainsi qu'une s�emantique appropri�ee de la notion de temps, dans le même formalisme ASM que[IT99c]. Cette s�emantique pr�ecise la d�e�nition des extensions et fait la liaison avec les m�ethodesd'analyse utilis�ees ensuite sur des sp�eci�cations �etendues.Sp�eci�cation des propri�et�es temporelles quantitativesL'application des m�ethodes de validation choisies dans ce travail n�ecessite un formalisme dedescription des propri�et�es temporelles quantitatives. Nous avons consid�er�e pour ce rôle deuxlangages, couramment utilis�es avec LDS: GOAL et MSC.GOAL [ALH95] est un langage d'observation d�e�ni par rapport �a LDS et impl�ement�e parl'outil ObjectGEODE [TEL00a]. Dans le Chapitre 7 nous nous int�eressons �a la description despropri�et�es temporelles quantitatives avec GOAL, et nous d�ecrivons un ensemble d'extensions deGOAL �a cet e�et.Dans le cas de MSC, certaines constructions pour exprimer des contraintes temporelles ex-istent dans la derni�ere version du langage, MSC-2000 [IT99a], mais ces constructions n'ont pasencore une s�emantique formelle. Nous proposons une s�emantique temporis�ee pour un sous-ensemble de MSC-2000, bas�ee sur les automates temporis�es. Nous analysons �egalement leprobl�eme de la satisfaction d'une propri�et�e MSC par une sp�eci�cation LDS.Les deux langages mentionn�es ci-dessus sont des langages orient�es �ev�enement. Pour validerdes propri�et�es d�ecrites avec ces deux langages, il faut d'abord leur donner une base formelle; nousd�e�nissons donc un formalisme abstrait orient�e �ev�enement, bas�e sur les automates temporis�es,que nous appelons automate de propri�et�es temporelles (TPA). Dans le Chapitre 7 nous �etudions�egalement les probl�emes de v�eri�cation (model-checking) pos�es par l'introduction des TPA.M�ethodes et outils de simulation et de v�eri�cationLa derni�ere partie du travail pr�esent�e dans cette th�ese concerne les m�ethodes de simulation et dev�eri�cation de sp�eci�cations LDS �etendues et des propri�et�es exprim�ees en GOAL et MSC. Cettepartie a abouti �a la r�ealisation d'un outil, d�eriv�e d'un produit industriel (ObjectGEODE). Dupoint de vue th�eorique, la partie importante de l'outil est l'algorithme d'exploration symboliquede l'espace d'�etats d'un syst�eme LDS �etendu (et des propri�et�es annexes). Nous d�e�nissonsl'algorithme par les formules de calcul des successeurs d'un �etat symbolique. Un algorithmesimilaire �a �et�e pr�esent�e ant�erieurement dans [Boz99]; cependant, �a notre connaissance, c'est lapremi�ere fois que l'ensemble de formules de calcul des successeurs est caract�eris�e formellementet accompagn�e d'une preuve math�ematique.1.1.2 Organisation du documentLa premi�ere partie pr�esente l'�etat de l'art dans le domaine de la sp�eci�cation et de la validationdes syst�emes temporis�es. Nous d�ecrivons le langage LDS (Chapitre 3), les langages MSC etGOAL (Chapitre 4), et le mod�ele des automates temporis�es (Chapitre 5).

14 Chapter 1. R�esum�eLa deuxi�eme partie pr�esente les extensions temporis�ees des langages, les m�ethodes d'analyseet les outils d�evelopp�es dans le cadre de ce travail. Le Chapitre 6 pr�esente les extensions apport�ees�a LDS, et �etudie leur impact sur la s�emantique formelle de LDS. Le Chapitre 7 introduit leformalisme des TPA's, puis les extensions et la s�emantique des langages GOAL et MSC. LeChapitre 8 porte sur les m�ethodes d'analyse des sp�eci�cations LDS, MSC et GOAL, et sur led�eveloppement des outils support.La partie �nale du document contient une �etude de cas (Chapitre 9) et les conclusions tir�esde ce travail (Chapitre 10).1.2 Pr�esentation de l'existant1.2.1 Sp�eci�cation des syst�emes temporis�es en LDSCe travail d�ebute par une �etude de LDS, du point de vue des constructions du langage, et dupoint de vue de la s�emantique. Cette �etude s'appuie sur la version '2000 du langage [IT99b], etsur la s�emantique formelle de LDS d�ecrite en ASM [IT99c]. L'�etude r�ealis�ee couvre la majorit�edes concepts de LDS-2000 (relatifs �a l'architecture, �a la communication, �a la description ducomportement, et aux donn�ees), ainsi que le formalisme ASM et la s�emantique statique etdynamique du langage. Dans la suite du paragraphe, nous allons pr�esenter les conclusions decette �etude concernant l'expression du comportement temporis�e, et la s�emantique du temps, quisont essentielles pour le reste du travail r�ealis�e dans cette th�ese.Description du comportement temporis�e en LDS-2000LDS d�e�nit des constructions qui permettent la description du comportement temporis�e. Ilexiste deux types de donn�ees relatifs au temps dans LDS: Time et Duration. Les valeurs dutype Time repr�esentent des moments sur une �echelle de temps depuis l'initialisation du syst�eme,tandis que les valeurs du type Duration repr�esentent des distances relatives (di��erences) entremoments sur l'�echelle absolue. Des op�erateurs sp�eci�ques sur les valeurs de ces types (additionde temps et de dur�ees, multiplication de dur�ees, etc.) sont pr�ed�e�nis dans le langage.Le temps pr�esent (i.e. �ecoul�e depuis l'initialisation du syst�eme) est consultable parl'interm�ediaire de l'op�erateur pr�ed�e�ni now. La mani�ere dont le temps s'�ecoule n'est pas d�e�niedans LDS: la seule hypoth�ese qui est faite sur les valeurs de now, est que leur �evaluation suc-cessive donne toujours des valeurs croissantes.Ainsi le comportement d�ependant du temps peut être d�ecrit des deux mani�eres: soit enutilisant la valeur de now dans des tests ou des expressions de tirage de transitions, soit enutilisant des temporisations.Les temporisations sont des objets sp�eciaux du langage LDS, qui ont des attributs sp�eci�quescomme les donn�ees (e.g. �etat d'activit�e), mais aussi un comportement pr�ed�e�ni (ind�ependantdu comportement des agents du syst�eme LDS). Une temporisation peut être d�e�nie par unagent LDS (avec le mot cl�e timer); l'agent peut ensuite armer la temporisation avec une dated'�ech�eance (par l'op�eration set), la d�esarmer (par l'op�eration reset), ou consulter son �etat (parl'op�eration active). Le comportement d'une temporisation est le suivant: la temporisation estinactive tant qu'elle n'a pas �et�e arm�ee. Une fois que la temporisation est arm�ee, elle devientactive et attend l'arriv�ee de son �ech�eance. Quand l'�ech�eance arrive, la temporisation expire etun signal est d�epos�e dans la �le d'attente de son agent propri�etaire. Si la temporisation est

1.2. Pr�esentation de l'existant 15d�esarm�ee avant que l'�ech�eance n'arrive ou avant que le signal correspondant ne soit consomm�e,elle redevient inactive et tout signal correspondant est e�ac�e de la �le d'attente.Il est important de noter le fait que l'expiration d'une temporisation produit un signalasynchrone, qui passe toujours par la �le d'attente de son agent propri�etaire. Par cons�equent,quand un signal issu d'une temporisation est consomm�e, la seule hypoth�ese garantie par las�emantique de LDS est que l'�ech�eance de la temporisation a eu lieu. En principe, on ne peutrien supposer �a propos du temps pass�e depuis l'�ech�eance. Cette hypoth�ese minimale est correctedu point de vue des impl�ementations d'un syst�eme LDS, mais pr�esente un certain nombred'inconv�enients quand la sp�eci�cation LDS est utilis�ee �a des �ns de simulation ou de v�eri�cation.Description vs. sp�eci�cationComme d�ecrit dans l'introduction de la norme Z.100 [IT99b], LDS vise �a la fois la sp�eci�cationde haut niveau, et la programmation (description) des syst�emes. Les deux objectifs du langagesont parfois con
ictuels, et le côt�e programmation a �et�e prioritaire dans sa d�e�nition. Pour cetteraison, LDS est un langage de conception assez complet, mais il manque certaines constructionspour la mod�elisation de haut niveau, n�ecessaires dans les phases initiales de sp�eci�cation d'unsyst�eme. Certaines des extensions propos�ees dans cette th�ese permettent donc la sp�eci�cationabstraite:{ du comportement des canaux, avec des attributs tels que le taux de perte, les d�elaisminimaux/maximaux, etc.{ des temps d'ex�ecution,{ du comportement (temporis�e) de l'environnement du syst�eme.Les constructions propos�ees seront pr�esent�ees plus en d�etail dans la suite du r�esum�e.S�emantique et raisonnement sur le tempsLa s�emantique du temps dans LDS est pr�esent�ee en termes formels dans la th�ese. Nous dressonsici un r�esum�e des caract�eristiques principales de cette s�emantique:{ Les actions individuelles LDS (a�ectation, envoi de signal, etc.) sont atomiques et prennentun temps nul pour s'ex�ecuter. La granularit�e de l'atomicit�e des actions compos�ees et destransitions est l'action individuelle.{ L'�evaluation des expressions n'est pas atomique. Par cons�equent, la valeur de now peutvarier pendant l'�evaluation d'une expression, ce qui peut in
uencer sur le r�esultat del'expression.{ En g�en�eral, une quantit�e non-d�etermin�ee de temps peut s'�ecouler entre l'ex�ecution de deuxactions ou de deux transitions{ Une cons�equence directe du point ant�erieur est qu'un message correspondant �a une tem-porisation peut ne pas être pris en compte pendant une certaine dur�ee (non-d�etermin�ee)apr�es son envoi.Avec ces hypoth�eses minimalistes, il est diÆcile de garantir une propri�et�e sur le comporte-ment d'un syst�eme dans le temps. D'autre part, beaucoup de comportements peu r�ealistes sont

16 Chapter 1. R�esum�econsid�er�es comme acceptables par la s�emantique. Ce probl�eme a d�ej�a �et�e signal�e par d'autres au-teurs [Boz99, MGHS96] et il est examin�e en d�etail dans nos travaux r�ecents [BGK+00, BGM+01].Le probl�eme signal�e ici pose de s�erieuses diÆcult�es aux outils de simulation et de v�eri�cationbas�es sur LDS. Une solution souvent employ�ee par les outils est de consid�erer une s�emantiquedu temps compl�etement di��erente de celle de la norme, bas�ee sur des suppositions r�eductrices,telles que: chaque action prend un temps nul, le temps est contrôl�e et s'�ecoule seulement quandle syst�eme n'a rien �a ex�ecuter, etc. Cette solution tombe dans l'autre extrême, et peut cacherdes sc�enarios d'ex�ecution r�ealistes du syst�eme.En compl�ement des extensions du LDS pr�esent�ees auparavant, nous proposons aussi unes�emantique alternative du temps, qui r�esout les probl�emes mentionn�es ci-dessus. L'id�ee decette s�emantique est d'inclure des informations sur le progr�es du temps, inspir�ees du mod�eledes automates temporis�es, dans la sp�eci�cation LDS, et de les utiliser ensuite pour contrôler leprogr�es du temps dans la simulation ou la v�eri�cation.1.2.2 Sp�eci�cation de propri�et�es en MSC et GOALUn aspect central de la technique de validation bas�ee sur les mod�eles consid�er�ee dans cette th�eseest la sp�eci�cation des contraintes et des propri�et�es sur le mod�ele LDS. Nous avons choisi deuxlangages couramment utilis�es avec LDS pour la sp�eci�cation de propri�et�es: MSC et GOAL. Cesdeux langages sont d�ecrits en d�etail dans le m�emoire; nous faisons ici une br�eve pr�esentationdes deux langages, et donnons des conclusions concernant leur utilisation pour la sp�eci�cationde contraintes temporelles.MSCMSC est un langage normalis�e par l'ITU (norme Z.120, [IT99a]), utilis�e pour repr�esenter destraces d'ex�ecution des syst�emes distribu�es en termes de messages �echang�es entre les entit�es dusyst�eme ou avec l'environnement. Les composantes principales d'une sp�eci�cation MSC sontles instances (repr�esentant des entit�es ou des groupes d'entit�es d'un syst�eme) et les messages(qui peuvent repr�esenter diverses modalit�es de communication, d�ependant du syst�eme consid�er�e).D'autres types d'�ev�enements peuvent être sp�eci��es dans les traces MSC, tels que des �ev�enementsconcernant les temporisations (set, reset, timeout), des actions ou des conditions (informelles).Le langage a aussi des constructions pour structurer (composer) les sp�eci�cations. Les typesde composition possibles sont: l'alternative entre plusieurs MSC, la composition parall�ele (parentrelacement d'�ev�enements) de plusieurs MSC, la r�ep�etition ou l'ex�ecution optionnelle d'uneMSC.La derni�ere version du langage (MSC-2000) propose plusieurs constructions pour exprimerdes conditions sur le temps. On peut essentiellement exprimer des contraintes relatives, quisp�eci�ent la dur�ee pass�ee entre deux �ev�enements, et des contraintes absolues qui sp�eci�ent lemoment auquel un �ev�enement peut survenir. Les deux types de contraintes sont sp�eci��es aumoyen d'une limite inf�erieure et d'une limite sup�erieure, qui sont soit des valeurs constantes detemps, soit des expressions plus complexes du type Time. Dans le deuxi�eme cas, les expressionspeuvent porter sur des r�esultats de mesures de temps. On peut mesurer en e�et, par desconstructions sp�eci�ques de MSC-2000, soit le temps auquel un �ev�enement survient soit le d�elairelatif entre deux �ev�enements.Dans notre travail, nous avons jug�e suÆsantes les constructions propos�ees dans MSC-2000pour exprimer des contraintes temporelles. Il existe n�eanmoins plusieurs raisons pour lesquelles

1.2. Pr�esentation de l'existant 17la notation MSC-2000 ne peut, en l'�etat actuel, être utilis�ee pour la sp�eci�cation et la v�eri�cationdes propri�et�es temporelles des syst�emes LDS:{ La s�emantique de MSC-2000 n'est pas formellement d�e�nie dans la norme.{ Il n'y a pas de relation de conformit�e formellement d�e�nie entre des sp�eci�cations LDS etdes sp�eci�cations MSC. Cette relation a �et�e juge en dehors de l'objet de la norme Z.120.{ Certaines des constructions de MSC-2000 (notamment les mesures de temps) sont tropexpressives et il n'y a pas de m�ethode de v�eri�cation qui puisse les prendre en compte.Dans la th�ese, nous nous sommes int�eress�es �a ces probl�emes, et nous avons propos�e dessolutions qui sont pr�esent�ees plus loin.GOALGOAL [ALH95] est un langage d'observation support�e par l'outil ObjectGEODE [TEL00a].Pour plus de d�etail sur les langages d'observation le lecteur peut consulter les travaux de [Gro89].Par d�e�nition, GOAL a un domaine d'applicabilit�e plus limit�e que les MSC, n'�etant pas unlangage de haut niveau pour sp�eci�er des propri�et�es abstraites. Le langage est utilis�e pour ex-primer et v�eri�er des propri�et�es comportementales d'un syst�eme LDS, et pour guider le processusde simulation et de v�eri�cation.GOAL est un langage orient�e �ev�enements, et bas�e sur des automates. La sp�eci�cationd'un observateur GOAL ressemble �a une machine �a �etats d'un agent LDS. Les transitions del'observateur sont tir�ees par des �ev�enements se produisant dans la sp�eci�cation LDS associ�ee,qui peuvent être des �echanges de messages, la cr�eation ou l'arrêt des agents, le tir de certainestransitions, etc. Les �etats d'un observateur peuvent être de trois types: succ�es, �echec ou or-dinaire, et correspondent �a la satisfaction ou �a la non-satisfaction de la propri�et�e sp�eci��ee parl'observateur.Dans la th�ese, nous avons mis en �evidence deux probl�emes relatifs �a l'utilisation de GOALcomme langage de repr�esentation/validation de propri�et�es temporelles quantitatives:{ L'absence de constructions permettant l'expression des conditions sur le temps.{ L'absence d'une s�emantique temporis�ee.Les solutions propos�ees dans la th�ese pour r�esoudre ces probl�emes sont pr�esent�ees plus loin.1.2.3 Sp�eci�cation et v�eri�cation avec des automates temporis�esPour compenser les points faibles de LDS, MSC et GOAL, en termes de s�emantique temporis�eeet de m�ethodes d'analyse, nous nous int�eressons �a l'application des techniques d'automatestemporis�es en conjonction avec ces langages.Le mod�ele des automates temporis�es est un mod�ele de machines �a �etats �etendu avec desconstructions pour la sp�eci�cation des contraintes temporelles. Les �el�ements essentiels d'unautomate temporis�e sont des �etats discrets, des transitions, et des horloges qui mesurent le temps.Pour faciliter la sp�eci�cation des contraintes complexes, un automate peut utiliser plusieurshorloges qui avancent toutes �a la même vitesse, mais qui peuvent être remises �a z�ero ou consult�eess�epar�ement.Le comportement d�ependant du temps est sp�eci��e en imposant aux transitions des gardesqui portent sur les valeurs d'horloges. Le mod�ele limite les formes accept�ees dans ces gardes,

18 Chapter 1. R�esum�epour pr�eserver la d�ecidabilit�e du mod�ele: seules les comparaisons d'horloges avec des constantes(enti�eres) ou les comparaisons de di��erences de deux horloges avec des constantes sont valides.La s�emantique d'un automate temporis�e est donn�ee par un graphe s�emantique en tempscontinu: l'�etat dynamique d'un automate comprend un �etat discret (partie de la sp�eci�cation del'automate), et une valeur r�eelle pour chaque horloge du syst�eme. Dynamiquement, un automatepeut ex�ecuter deux types de transitions: des transitions discr�etes (voir la sp�eci�cation d'unautomate), et des transitions temporelles qui signi�ent le progr�es du temps. Les transitionstemporelles ne servent qu'�a avancer le temps, i.e. �a augmenter (uniform�ement) la valeur detoutes les horloges. En revanche le temps ne progresse pas durant les transitions discr�etes, i.e.la valeur de chaque horloge reste la même ou est remise �a z�ero (dans le cas d'un reset sp�eci��esur la transition).Une ex�ecution d'un automate temporis�e est donc une succession (�nie ou in�nie) de transi-tions temporelles et de transitions discr�etes en alternance. Pour pouvoir mod�eliser des actions(transitions) qui arrivent �a un moment pr�ecis, le progr�es du temps durant l'ex�ecution est pard�e�nition reli�e �a l'ex�ecution de l'automate, au moyen des conditions de progr�es du temps. Cesconditions d�ependent de la valeur d'un attribut de chaque transition de l'automate, appel�e ur-gence . L'urgence de chaque transition peut avoir les valeurs suivantes: eager , delayable, lazy.Bri�evement, la signi�cation des valeurs d'urgence est la suivante:{ D�es qu'une transition eager est tirable, le temps ne peut pas progresser. La transitioneager ou toute autre transition discr�ete tirable doit alors être tir�ee.{ Quand une transition delayable est tirable, elle empêche le temps de progresser au-del�a dela borne sup�erieure de sa garde. Les conditions de progr�es du temps sont compos�ees, defaon que la condition la plus restrictive s'applique.{ Les transitions lazy n'imposent aucune condition sur le progr�es du temps.M�ethodes d'analyse et probl�emes d�ecidablesPlusieurs probl�emes importants pour la validation du comportement sont d�ecidables sur lemod�ele d'automates temporis�es, et des m�ethodes d'analyse eÆcaces sont disponibles. On peutpar exemple d�ecider de l'atteignabilit�e d'un �etat de l'automate, ce qui implique la d�ecidabilit�ede la v�eri�cation des diverses propri�et�es d'invariance ou de sûret�e. Les probl�emes de satisfac-tion des propri�et�es sp�eci��ees dans diverses extensions de logiques temporelles (ou dans d'autresformalismes tels que les automates temporis�es avec des conditions d'acceptation de B�uchi) sontaussi d�ecidables, et il existe des m�ethodes de v�eri�cation concr�etes pour ces probl�emes.L'analyse des automates temporis�es utilise des abstractions, notamment des repr�esentationssymboliques du graphe s�emantique d'un automate, pour pallier au fait que le graphe s�emantiqueest habituellement in�ni et non-d�enombrable. Dans le m�emoire de th�ese, nous pr�esentons deuxabstractions, le graphe de r�egions et le graphe de simulation qui seront ensuite appliqu�ees �al'analyse du langage LDS �etendu.Le mod�ele des automates temporis�es que nous avons choisi pour notre travail impose desrestrictions de mod�elisation, cependant il donne une limite sup�erieure de complexit�e des mod�elestemporis�es analysables, dans le sens o�u plusieurs extensions de ce mod�ele ont �et�e �etudi�ees avec desr�esultats essentiellement n�egatifs concernant la d�ecidabilit�e et les m�ethodes d'analyse applicables(voir dans le m�emoire de th�ese). Pour cette raison, nous consid�erons que les restrictions dumod�ele, qui vont se re
�eter plus tard au niveau du langage LDS �etendu, sont in�evitables pourpr�eserver l'analysabilit�e des sp�eci�cations LDS.

1.3. Extensions des langages et m�ethodes de validation 19Id�ees sur les extensions temporelles et la s�emantique de LDSCompar�e avec LDS, les automates temporis�es apportent plusieurs id�ees qui facilitent lasp�eci�cation du comportement temporis�e et le raisonnement temporis�e bas�e sur le mod�ele:{ Les horloges et les gardes donnent un moyen
exible d'exprimer des contraintes temporellescomplexes. Elles peuvent être introduites comme un compl�ement aux constructions exis-tantes de LDS (now, temporisations).{ Les conditions de progr�es du temps limitent les comportements possibles d'un mod�ele,et permettent de sp�eci�er quels sont les comportements raisonnables du point de vuetemporel. Les urgences peuvent être utilis�ees pour sp�eci�er des actions qui sont ex�ecut�ees�a un moment pr�ecis ou dans un intervalle pr�ecis de temps, ce qui n'est pas possible enLDS standard.{ Les conditions sur le temps (i.e. sur les valeurs d'horloges) ont des formes restreintes, cequi permet l'analyse et la v�eri�cation automatique des propri�et�es. En revanche, en LDSstandard la complexit�e des conditions sur now n'est pas contrainte, et il n'existe pas dem�ethodes d'analyse applicables dans le cas g�en�eral.1.3 Extensions des langages et m�ethodes de validation1.3.1 Extensions de LDSNotre travail sur l'extension de LDS comporte principalement deux parties: les extensions desconstructions du langage pour d�ecrire des informations temporelles, et l'extension /modi�cationde la s�emantique formelle.Extensions pour la repr�esentation des informations temporellesLes extensions que nous proposons pour LDS sont en partie des constructions inspir�ees directe-ment du mod�ele des automates temporis�es, et en partie des extensions de plus haut niveaupour la sp�eci�cation des informations tels que le temps d'ex�ecution des actions, le temps detransmission des signaux, etc.Horloges, gardes, urgences. Nous proposons une d�e�nition des horloges en tant quem�ecanisme de base pour mesurer et contraindre la progression du temps. Techniquement,les horloges sont introduites en LDS par l'interm�ediaire d'un type de donn�ees (Clock). Lesop�erations habituelles (cr�eation, reset, comparaison avec un entier, di��erence de deux Clocks)sont d�e�nies sur les valeurs de ce type.Les comparaisons de Clocks ou de di��erences de deux Clocks avec un entier peuvent êtreutilis�ees dans la sp�eci�cation de la garde d'un transition LDS (la notion de garde existe d�ej�adans LDS, avec le mot cl�e provided). De plus, cette extension de LDS permet la sp�eci�cationd'une urgence (eager, delayable ou lazy) pour chaque transition.Dur�ees d'ex�ecution des actions. Cette extension permet la sp�eci�cation de dur�eesd'ex�ecution des actions au moyen d'une borne inf�erieure et d'une borne sup�erieure. Commedans le mod�ele des automates temporis�es, les actions LDS s'ex�ecutent dans un temps nul, maisles actions qui prennent du temps sont simul�ees par un �etat implicite symbolisant l'action encours d'ex�ecution, et par une transition delayable symbolisant la �n de l'ex�ecution.

20 Chapter 1. R�esum�eLa sp�eci�cation des canaux. Les canaux LDS standards ne perdent jamais de signaux,et les d�elais appliqu�es aux signaux transf�er�es sont soit nuls, soit non-sp�eci��es. Pour valider lecomportement d'un sp�eci�cation LDS standard avec des hypoth�eses pr�ecises sur le comportementdes canaux, l'utilisateur doit modi�er le mod�ele LDS et fournir une description imp�erative descanaux comme agents, avec tous les inconv�enients inh�erents, qui sont pr�esent�es dans la th�ese.De plus, �a cause de la s�emantique non-contrainte du temps dans LDS, le comportement pr�ecisdes canaux ne peut être garanti.L'extension propos�ee dans la th�ese permet de sp�eci�er un taux de perte et des bornes mini-males et maximales pour les d�elais appliqu�es aux signaux transmis sur un canal. On d�e�nit deuxtypes de d�elais pour les canaux: cumulatifs et non-cumulatifs. Dans le cas de d�elais cumulatifs,les temps d'arriv�ee des signaux qui pr�ec�edent un signal sont rajout�es au temps d'arriv�ee dusignal concern�e. Dans le cas de d�elais non-cumulatifs, le temps d'arriv�ee d'un signal est comprisstrictement entre les bornes sp�eci��ees sur le canal, et il est contraint par les signaux pr�ec�edentsseulement par le fait que les canaux sont FIFO. Les canaux non-cumulatifs correspondent auxliaisons qui font un traitement en parall�ele (ou en chane) des signaux, tandis que les canauxcumulatifs correspondent aux liaisons o�u les signaux sont transmis un par un.Le m�emoire de th�ese illustre ces concepts sur un exemple r�eel, le protocole SpaceWire[sWG00] d�evelopp�e par l'Agence Spatiale Europ�eenne, sp�eci��e en LDS avec les extensionsd�ecrites ci-dessus.S�emantique des extensions et du tempsLa s�emantique des extensions et une nouvelle s�emantique du temps sont d�ecrites dans la th�ese,en utilisant le formalisme ASM. Les d�e�nitions introduites compl�etent la s�emantique standard deLDS [IT99c]. Nous ne reprenons pas ici ces d�e�nition, mais nous soulignons les points diÆcileset les choix qui ont �et�e faits.La s�emantique des canaux et des temporisations dans LDS (standard) utilise le concept deschedule, qui sert pour retarder l'arriv�ee d'un signal (e.g. un signal correspondant �a une tempori-sation) �a son agent de destination. Nous avons �etudi�e deux faons de traiter les temporisations etles canaux �a d�elai (born�e) dans LDS �etendu: soit en utilisant les schedules , soit en utilisant deshorloges implicites. La deuxi�eme alternative s'av�ere pr�ef�erable, car elle ne s'appuie pas sur unenotion de temps absolu (comme c'est le cas dans les schedules) mais sur des mesures relatives,ce qui permet l'application des techniques d'analyse d'automates temporis�es.Un point important de la s�emantique du temps que nous proposons est la contrôlabilit�e.En e�et, le temps dans la s�emantique standard de LDS est consid�er�e comme un param�etreext�erieur au syst�eme. Cela se re
�ete dans le fait que now est une fonction ditemonitored dansla s�emantique ASM standard. Pour pouvoir introduire des conditions de progr�es du tempscomme dans les automates temporis�es, le temps doit être un param�etre contrôl�e par le syst�emeen fonction des transitions tirables et de leur urgence.Modi�er de cette faon le statut du temps implique des nombreuses transformations dansla s�emantique associ�ee. Nous avons introduit un nouvel agent responsable de l'avancement dutemps et des valeurs d'horloges, et nous avons d�ecrit les conditions de progr�es du temps enASM, en fonction de l'�etat des tous les agents LDS et de l'�etat des canaux �a d�elai. Par lefait qu'une condition de progr�es du temps est une condition globale qui porte sur l'�etat destoutes les composantes d'un syst�eme, nous avons �et�e oblig�es d'introduire des synchronisationssuppl�ementaires entre les agents ASM d�e�nis par la s�emantique, qui sinon sont enti�erementasynchrones.

1.3. Extensions des langages et m�ethodes de validation 21Correspondance avec les automates temporis�esLes outils de simulation et de v�eri�cation existants bas�es sur LDS n'utilisent pas la s�emantiqueASM, mais construisent directement un graphe d'�etats global du syst�eme en utilisant des sim-pli�cations pour des raisons d'eÆcacit�e. Cette notion de graphe d'�etats est en fait assez prochedu mod�ele s�emantique des automates temporis�es, et nous pouvons l'�etendre pour y inclure lesextensions propos�es pour LDS (notamment les horloges). Le r�esultat est un graphe d'�etats entemps continu qui ressemble beaucoup �a celui des automates temporis�es, et sur lequel nouspouvons appliquer des techniques d'analyse sp�eci�ques. Les composantes { �etats et types detransitions { de ce graphe sont d�ecrites dans le Chapitre 6 du m�emoire.1.3.2 Description et v�eri�cation des propri�et�es temporis�ees avec MSC etGOALNous nous sommes int�eress�es aux probl�emes d�ecrits dans la section 1.2.2, qui empêchentl'utilisation de MSC et de GOAL en tant que langages de propri�et�es temporis�ees pour lessyst�emes LDS. Les travaux que nous avons r�ealis�es concernent trois niveaux: les constructionsintroduites dans les langages, leur s�emantique, et les m�ethodes de v�eri�cation automatique.Automates de Propri�et�es Temporis�esPour donner une base s�emantique solide aux deux langages, nous avons d�e�ni un mod�ele abstraitde description de propri�et�es, calqu�e sur les automates temporis�es, que nous appelons Automatesde Propri�et�es Temporis�es (TPA).Un TPA est un automate temporis�e �equip�e d'une condition d'acceptation de type B�uchi. Ladi��erence entre les TPA et les variantes d'automates temporis�es de B�uchi (TBA) propos�es dans[Alu91, Tri98] est que le mod�ele des TPA est orient�e �ev�enement et non pas orient�e �etat. Celasigni�e qu'une propri�et�e TPA porte sur les �ev�enements qui on lieu dans le mod�ele associ�e, etnon pas sur les �etats du mod�ele. Cette di��erence est importante, dans la mesure o�u MSC etGOAL sont tous les deux des langages orient�es �ev�enement.Dans le m�emoire nous d�ecrivons formellement le mod�ele des TPA, et la relation de satisfactionentre un automate temporis�e et un TPA. Nous �etudions aussi le probl�eme de la v�eri�cation de lasatisfaction, et nous proposons un algorithme bas�e sur l'utilisation du graphe de simulation desautomates temporis�es. Cette m�ethode d'analyse est utilis�ee ensuite pour v�eri�er des propri�et�esMSC et GOAL sur des syst�emes LDS �etendus.MSCAu niveau des MSC, les deux probl�emes principaux sont l'absence d'une s�emantique qui prenneen compte les aspects temporels du langage, et l'absence d'une relation de satisfaction entre dessp�eci�cations LDS et des propri�et�es MSC.Nous proposons une s�emantique temporis�ee bas�ee sur les automates temporis�es, en partantde la s�emantique non-temporis�ee bas�ee sur des r�eseaux de Petri propos�ee dans [GPR93] eten l'�etendant avec des horloges et des contraintes temporelles. Nous arrivons ainsi �a traiterla plupart des contraintes exprimables en MSC-2000. Les parties du langage pour lesquellesnous ne pouvons pas donner une s�emantique concernent notamment les mesures de temps, etl'utilisation des variables ou param�etres de type Time.

22 Chapter 1. R�esum�eLa composition s�equentielle des MSC pose aussi des probl�emes de d�ecidabilit�e, d�ej�a signal�espar d'autres auteurs [MP00]. Pour pouvoir utiliser les MSC dans la v�eri�cation de propri�et�es,nous avons restreint la d�e�nition de la composition s�equentielle, de faon �a ce que le langage detraces g�en�er�e par un MSC composite soit toujours r�egulier.Nous proposons aussi des d�e�nitions possibles pour la relation de satisfaction entre dessp�eci�cations LDS et des propri�et�es MSC. En interpr�etant l'automate temporis�e qui donne las�emantique d'un MSC comme un TPA, nous avons trouv�e des correspondances entre la satis-faction des MSC et la satisfaction des TPA. Par cons�equent, nous pouvons donner une m�ethodeconcr�ete de v�eri�cation pour les propri�et�es MSC, en utilisant les mêmes techniques que dans lecas des TPA.Des travaux e�ectu�es par d'autres auteurs visent aussi �a utiliser les MSC en tant que langagedes propri�et�es, pour la v�eri�cation formelle. On notera principalement les travaux sur les LiveSequence Charts (LSC, [DH98]), mais aussi les approches propos�es par des outils industrielstels que ObjectGEODE [TEL00a]. Cependant, aucun des travaux sur le sujet ne traite �a notreconnaissance de la partie concernant le temps.GOALDans le cas de GOAL, la notion de satisfaction et la s�emantique du langage sont d�ej�a d�e�niesdans l'outil ObjectGEODE. Le langage manque cependant de constructions pour exprimer descontraintes sur le temps, et sa s�emantique doit être adapt�ee �a la nouvelle s�emantique temporis�eede LDS d�e�nie dans cette th�ese.Comme constructions temporelles, nous avons propos�e des concepts directement inspir�es desTPA: des horloges et de gardes. La s�emantique de GOAL est relativement facile �a d�e�nir entermes de TPAs, du fait qu'il y a une relation directe entre les concepts des deux mod�eles.Même si les extensions de GOAL sont tr�es l�eg�eres, les �etudes de cas que nous avons e�ectu�eesmontrent que le langage r�esultant est tr�es
exible et permet la sp�eci�cation de propri�et�es lin�eairescomplexes.1.3.3 Simulation et v�eri�cation temporelles de LDSUn des objectifs des extensions d�ecrites dans les sections pr�ec�edentes est de pouvoir valider lecomportement temporel des syst�emes LDS, par simulation ou par v�eri�cation de propri�et�es.Dans cette section nous d�ecrivons un outil que nous avons d�evelopp�e �a cette �n, qui se pr�esentecomme une extension de l'outil de simulation et de v�eri�cation de ObjectGEODE [TEL00a],dont il r�eutilise l'architecture globale et les fonctionnalit�es principales. L'avantage de r�eutiliserun environnement industriel est que l'impl�ementation des constructions des langages qui ne sontpas a�ect�ees par les extensions temporelles, est obtenue sans e�ort suppl�ementaire.Fonctionnalit�es et architecture de l'outilL'outil o�re des fonctionnalit�es pour:{ La simulation interactive ou al�eatoire. Les fonctionnalit�es o�ertes dans ce mode de fonc-tionnement ressemblent �a celles des d�ebuggeurs pour les langages de programmation:ex�ecution pas �a pas, conditions d'arrêt, inspection des donn�ees. Il existe aussi d'autresfonctions sp�eci�ques: ex�ecution invers�ee, sauvegarde des sc�enarios d'ex�ecution, stimulationautomatique des mod�eles ouverts, production des traces sous forme de MSC, analyse decouverture du mod�ele, etc.

1.3. Extensions des langages et m�ethodes de validation 23{ La v�eri�cation par exploration exhaustive de l'espace d'�etats du mod�ele. L'outil peutv�eri�er: l'absence de blocages, l'invariance de certaines conditions logiques, l'absence decertaines erreurs dynamiques (e.g. signaux non-attendus), et la satisfaction de propri�et�es�ecrites en MSC ou GOAL.Les deux modes d'utilisation sont bas�es sur la construction de l'espace d'�etats du mod�ele,mais le processus de construction et la taille de l'espace sont di��erents dans chaque cas. Lav�eri�cation d'un mod�ele est toujours e�ectu�ee �a la vol�ee, et par cons�equent l'espace d'�etats n'estenti�erement construit que dans certains cas.L'outil est form�e de deux modules principaux: un compilateur des mod�eles, et une librairieenglobant les fonctionnalit�es g�en�eriques des simulateurs. Le compilateur prend en entr�ee unmod�ele LDS et une ou plusieurs propri�et�es MSC ou GOAL; il les transforme dans un formatex�ecutable, o�u les transitions LDS, par exemple, deviennent des routines utilisant des primitivesqui impl�ementent les types d'actions d�e�nis dans LDS. Ces primitives font partie de la librairie,qui englobe aussi des structures de donn�ees standard, et des fonctionnalit�es g�en�eriques (parcoursde l'espace d'�etats, con�guration du mod�ele, etc.).Au �nal, le compilateur g�en�ere un simulateur (sous forme d'un ex�ecutable s�epar�e) pourchaque mod�ele LDS. Le simulateur construit l'espace d'�etats du mod�ele et impl�emente toutesles fonctionnalit�es de simulation et de v�eri�cation d�ecrites auparavant.La construction du graphe de simulation temporis�eL'espace d'�etats construit par l'outil est une abstraction de l'espace d'�etats en temps continud�e�ni par la s�emantique de LDS. Les �etats manipul�es par le simulateur sont des �etats symboliques(q; S), o�u q est un �etat discret global du mod�ele (n'incluant aucune information sur le tempset les horloges). S est une zone de valeurs d'horloges atteignables dans l'�etat q, qui a la formed'un poly�edre (�eventuellement non-convexe et non-born�e) dans l'espace des valeurs d'horloges(Rn , o�u n est le nombre d'horloges actives dans q).Les transitions de ce graphe de simulation correspondent uniquement aux transitionsdiscr�etes d�e�nies par la s�emantique de LDS �etendu, qui sont soit des transitions LDS explicites,soit des transitions implicites (expiration de temporisations, arriv�ee de signaux retard�es sur lescanaux). Pour plus de d�etail, le lecteur peut consulter la s�emantique d�etaill�ee dans le m�emoire.Le calcul des successeurs d'un �etat (q; S) apr�es l'ex�ecution d'une transition e se fait en deux�etapes. On calcule d'abord les �etats directement atteignables en ex�ecutant la transition e surchaque �etat explicite contenu dans l'�etat symbolique (q; S). On obtient ainsi un autre �etat sym-bolique (q0; S0). A partir de ce dernier, on calcule combien de temps on peut rester dans chaque�etat explicite contenu dans (q0; S0), et on obtient ainsi l'�etat symbolique de destination (q0; S00).Les deux �etapes d�ecrites ci-dessus sont appel�ees respectivement le calcul des successeursdiscrets et le calcul des successeurs temporels. Le calcul des successeurs est plus compliqu�e dansle cas o�u des propri�et�es GOAL ou MSC sont associ�ees au mod�ele LDS, car il faut tenir comptede l'�etat des automates repr�esentant ces propri�et�es. En particulier, il peut arriver qu'un �etat aitplusieurs successeurs di��erents par la même transition e, du fait que des conditions di��erentescontenues dans la propri�et�e soient satisfaites par des parties di��erentes d'un �etat symbolique.L'algorithme de calcul des successeurs est pr�esent�e en d�etail dans le m�emoire. Il s'appuiesur une repr�esentation de donn�ees sp�eci�que (plus particuli�erement sur la repr�esentation despoly�edres S par des matrices de di��erences born�ees { DBM [Dil89, ACD93]) et sur des formulesde calcul des successeurs temporels qui r�ealisent des op�erations �el�ementaires sur des poly�edres.

24 Chapter 1. R�esum�eUne partie essentielle du travail e�ectu�e est la preuve de la validit�e de ces formules, pr�esent�eedans l'Annexe B.1.4 Application et conclusionNous avons valid�e les concepts et les outils d�evelopp�es dans le cadre de ce travail sur un en-semble d'�etudes de cas, incluant des cas d'�ecole: un syst�eme de barri�ere de voie ferr�ee (utilis�epr�ec�edemment dans [Alu91] et [Tri98]), un protocole de contrôle de
ot (BRP, �etudi�e aussi dans[GvdP96, HS96, Mat96, DKRT97]). Ces �etudes de cas ont donn�e des bons r�esultats quant �al'expressivit�e des extensions et �a la puissance des m�ethodes d'analyse utilis�ees.Nous avons consid�er�e aussi des �etudes de cas plus complexes. Dans la th�ese, nous pr�esentonsl'exemple d'un protocole de liaison de donn�ees (SpaceWire, [sWG00]) ; l'approche est aussiexp�eriment�ee dans le cadre d'autres projets R&D en cours, sur le protocole de multicast RMTP-2 [PMR+00, WPT99] et sur un protocole de synchronisation de
ots multim�edias.Ces exemplesont montr�e tout le b�en�e�ce de l'approche retenue, mais aussi certaines limites des extensionsque nous proposons, telles que l'impossibilit�e d'utiliser des mesures de temps dans des syst�emesadaptatifs (e.g. contraintes de temps variables en fonction de l'�evolution du syst�eme).L'exemple pr�esent�e dans le Chapitre 9 du m�emoire montre en d�etail la mod�elisation descontraintes temporelles contenues dans la norme SpaceWire avec les extensions LDS que nousavons propos�ees. La validation du mod�ele du point de vue temporel est aussi discut�ee, et nousmontrons comment la simulation peut être exploit�ee pour faire des mesures de temps globalesqui seront ensuite utilis�ees pour �ecrire et v�eri�er des propri�et�es en MSC et GOAL.En conclusion, nous avons d�evelopp�e un ensemble d'extensions, des m�ethodes d'analyse etun outil support, permettant la description et la validation des syst�emes temps r�eel avec descontraintes temporelles complexes, exprimables dans le langage LDS et les langages connexesMSC et GOAL. Les �etudes de cas r�ealis�ees montrent que les extensions propos�ees sont
exibleset intuitives, et que l'expression des propri�et�es pour la v�eri�cation est ais�ee, en comparaisonavec des langages math�ematiques tels que les logiques temporelles. Les m�ethodes d'analysed�evelopp�ees permettent la d�erivation des informations temporelles pertinentes telles que lesd�elais minimaux/maximaux entre �ev�enements.Dans une perspective future, ce travail peut être continu�e par la recherche d'un ensemblede concepts de plus haut niveau �a int�egrer dans les langages de mod�elisation, �eventuellementbas�es sur les concepts s�emantiques propos�es ici, qui peuvent apparatre de trop bas niveau etcompliquer la conception des mod�eles. D'autres axes de recherche concernent l'am�elioration destechniques de v�eri�cation (e.g. par application des m�ethodes de r�eduction de l'espace d'�etats),l'application des nouvelles m�ethodes de validation (e.g. g�en�eration automatique de tests) oul'int�egration dans de nouveaux langages tels que la notation UML.

Chapter 2Introduction2.1 Speci�cation and validation of timed systemsThis thesis focuses on the techniques for describing and validating the behavior of a class ofreal-time systems, called timed systems. According to a commonly accepted de�nition [Loc98,HP88, Per90], real-time systems are systems in which correct functioning depends on meetingtime constraints. By timed systems we designate the class of real-time systems whose functioningis controlled or conditioned by time. In this way, we di�erentiate timed systems from other real-time systems in which time appears only as a performance aspect (e.g. through task deadlines,execution times, event arrival times, etc.).A validation method for real-time systems must take into account both functional require-ments and time requirements. For most real-time systems, these aspects may be handled inde-pendently, for example using di�erent models of the system (some types of models are brie
ypresented later in this section). However, in the case of timed systems the behavioral and timingaspects may not be separated, and validation methods must work on hybrid models capturingboth facets.There are several classes of models (and associated analysis techniques) used for the descrip-tion and validation of real-time systems in general, each concentrating on a di�erent aspect ofthe system under modeling. Scheduling models (see the monograph [KRPO93]) are traditionallyassociated with the domain of real-time system engineering. They concentrate on the problemof resource contention in real-time systems, disregarding behavioral aspects. Computation time,regarded as a resource, is taken into account by these models; consequently, scheduling modelscan sometimes constitute the basis for temporal correctness proofs. However, such models areusually ine�ective for complex systems whose behavior depends on time (timed systems).Another category of models used in real-time system engineering are performance models[Kan92], which give a probabilistic description of a system. Such models include informationabout the probabilities of discrete events, as well as time-related information. Performancemodels may be used for validating (statistical) performance requirements; however, as in thecase of scheduling models, they do not provide a functional view of a system, and thereforecannot be used for validating combined functional and timing requirements of timed systems.In this thesis, we concentrate on a class of models that we call behavioral models. They de-scribe a system from the functional (computational) point of view, and may additionally containinformation about timing. More precisely, we are interested in the application of formal methodsfor describing timed systems, and for validating combined functional and timing properties ofsystems. 25

26 Chapter 2. Introduction
functional

requirements

non-functional

(e.g. timing)

requirements

behavioral

model

timing &

other

annotations

design

+

abstraction,

formalisation

properties for

validation

simulation
 verification

traces,

bugs

verdict,

diagnostics
Figure 2.1: Behavioral speci�cation and validationThe classical approach for system speci�cation and validation using behavioral models isrepresented in Fig. 2.1 and brie
y outlined in the following. The starting point of this process arethe system requirements, which may be functional requirements (stating the functions the systemmust ful�ll) or non-functional requirements (stating auxiliary requirements such as throughput,quality of service, etc.). A system model is built from these speci�cations through a designprocess which usually requires human intervention, and which is normally organized accordingto a methodology.The scheme described above may apply to other types of models, not only to behavioralmodels. The speci�city of the latter is that they make a complete description of the systemfunctionality, and thus may be used for several purposes: model-based validation, code genera-tion, testing.For the model-based validation, another process takes place in parallel with the systemdesign: the formalization of the system properties. The inputs of this process are again therequirements; the outputs are the properties, which are more abstract and concise than thesystem model, and usually expressed in a speci�c language.The validation phase that follows may involve several activities; in Fig. 2.1 we have repre-sented two model-based validation methods, on which we focus throughout this thesis: simula-tion and property veri�cation. In this work we have left aside other types of validation activities,such as testing. The simulation and veri�cation approaches considered here have in commonthe fact that both are based on the construction of an abstract semantic model of the system(and of the properties). By simulation we understand a user-guided exploration of this semanticmodel, in a manner similar to program debugging. Veri�cation is the process through whichis is formally proved that the model satis�es the properties extracted from the requirements.

2.2. The approach and contribution of the thesis 27Among the veri�cation approaches that may be found in the literature, in this work we considermodel checking [QS82, CES86].Regarding the application of the above scheme in the speci�cation and validation of timedsystems, we have noticed a manifest discrepancy between the current industrial practice and thestate of the art in research. On the side of practice, there are the real-time system modelinglanguages used in the industry { SDL [IT99b], HRT-HOOD [BW95], ROOM [SGW94], real-timeextensions of UML [Dou99, Dou98, SR98], etc. { in which modeling is the primary concern.These formalisms have constantly evolved and use modern design concepts; however, the analysis(validation) techniques used in connection with them in industrial tools have not evolved at thesame pace, and do not encompass the latest advancements in research.On the research side, more abstract models (such as timed automata [ACD93, AD94], timedextensions of Petri Nets [MF76, Sif77, Ram74], timed extensions of process algebras [NS91], ortimed extensions of Hoare logic [Sha95, CHR92]) have been developed, in parallel with advancedanalysis methods based on techniques like model checking, simulation, rewriting, etc. Althoughthey provide powerful features, models and tools developed in the academia are less appealingto the industrial user because of their complexity and their limited support for modern designfeatures.Starting from these facts, the objective of this thesis is to integrate a set of modeling tech-niques and analysis methods recently developed in the �eld of timed automata, within the frame-work of SDL.The reasons for choosing these two frameworks are manifold. On one side, SDL is widespreadin the real-time systems industry; it is also a standard language, with a sound semantic basis.Finally, existing validation tools for SDL are closer to the state of the art in validation techniques,compared to the tools that work with more informal notations such as UML and ROOM. Timedautomata [ACD93, AD94], on the other side, have been the subject of consistent research inthe recent years. As a result, many problems concerning timed automata have been studiedand given a solution: there are abstractions and algorithms for solving several model checkingproblems (a recent synthesis can be found in [Tri98]), many extensions of the timed automatamodel have been studied and the decidability limits are known [HKPV98].The issues mentioned previously are treated more in-depth in the �rst part of this thesis,which discusses the state of the art in the speci�cation and validation of timed systems.2.2 The approach and contribution of the thesisThe goal of this work is to improve the support o�ered by the SDL language for the abstractmodeling of timed systems, as well as for validation of timed system speci�cations. For that,we have followed two main directions: one concerns the improvement of the SDL languagede�nition, the other concerns the application of timing analysis techniques developed within theframework of timed automata to SDL. The results of this work are outlined in the following.SDL language extensions. The SDL language de�nition [IT99b] presents the language asa formalism for both abstract speci�cation and complete description of system structure andbehavior. A closer look at the de�nition of SDL, however, shows that the programming side hasbeen given priority, to the detriment of abstract, non-programatic modeling. This makes SDLinteresting as a design language, but provides insuÆcient support for requirements capturingand abstract modeling.

28 Chapter 2. IntroductionWe approach this problem in the �rst part of Chapter 6, and propose a series of languageextensions which are necessary to capture descriptive information (notably timing information)in the initial phases of system modeling. The language primitives introduced in this part allowthe modeling of time-dependent behavior, as well as the introduction of annotations describingthe (timing) assumptions under which the system is functioning, directly in the SDL model.This information may subsequently be used by timing analysis tools, such as those built in thecontext of this work.The results obtained in this part of the thesis are presented, under a slightly di�erent form,in [BGK+00, BGM+01]. Together with a group of partners from the industry and the academia,we are currently working on a submission to the ITU{T standardization body, which proposesa set of higher-level modeling constructs based on the primitives presented in Chapter 6 to beincluded in the SDL standard.Semantics of time in SDL. The standard de�nition of SDL [IT99b] includes a formalsemantics, which maps the set of SDL system speci�cations onto a set of mathematical objects,and provides a formal interpretation for the notion of system execution. We were interestedin the impact of the extensions on the standard formal semantics of SDL, and notably in theaspects which concern the handling of time, in order to complete the de�nition of the extensionsmentioned in the previous paragraph, but also in order to make the connection with the timinganalysis techniques that we apply subsequently. The result, presented in the second part ofChapter 6, is a set of mathematical de�nitions that complement the standard formal semanticsof SDL [IT99c].Timed property speci�cation. The next step towards applying timing property validationtechniques on SDL models is the de�nition of a language for expressing combined functionaland timing properties. In this work we have considered two languages that have previously beenused for expressing functional properties in connection with SDL models: GOAL and MSC.GOAL [ALH95] is an observer language used by the ObjectGEODE simulation and veri-�cation tool [TEL00a]. A synthetic work on the use of observers for expressing and verifyingfunctional properties of systems may be found in [Gro89], where a precursor of the GOAL lan-guage is also de�ned. In Chapter 7 we discuss a set of simple extensions which allow GOALto express quantitative temporal properties of SDL models. The results of this work were alsopresented in [OK01].In the same chapter, we discuss the possibility of using MSC-2000 for expressing quantitativetemporal properties of SDL models. MSC-2000 already contains a number of constructs forcapturing timing information, but lacks a formal semantic de�nition including the timing aspects,essential for using the language in veri�cation. Moreover, many model checking problems areknown to be undecidable even on the untimed restriction of the language.The solution we propose in Chapter 7 for the problems enumerated above includes a re-striction of the MSC-2000 language, which diminishes the expressive power of the languagebut renders it decidable. For this restriction of the language, we sketch a semantics based ontimed automata, which covers the timing aspects recently added to MSC-2000. We also describesome possible alternative de�nitions of the satisfaction relationship between SDL models andMSC-2000 speci�cations, which can be used in veri�cation.Both GOAL and MSC-2000 are event-based languages, in the sense that they describe pro-perties in terms of events happening in the associated SDL model. Since timed automata-oriented property speci�cation languages (such as timed extensions of temporal logics, or timed

2.3. Organization of the document 29B�uchi automata) are state-oriented, we found it necessary to de�ne an event-oriented propertyformalism at the level of timed automata, in order to provide a sound semantic basis for MSC-2000 and GOAL as property languages. This formalism is de�ned in Chapter 7 together withtwo types of satisfaction relations. The model checking problem for these satisfaction relationsis studied thereafter.Simulation and veri�cation { methods and tools. The �nal part of this work is concernedwith the simulation and veri�cation methods applicable to the extended variant of SDL and toMSC and GOAL properties. This part of the work is materialized in a simulation and veri�cationtool, which is derived from a commercial SDL tool (ObjectGEODE, [TEL00a]).From the theoretical point of view, the important part in this tool is the symbolic statespace exploration algorithm. The algorithm uses an abstraction similar to the simulation graphof timed automata de�ned in [Tri98], and is adapted for exploring simultaneously the SDLmodel and the associated GOAL and MSC properties. An important part of the state spaceexploration algorithm consists in the steps for computing:{ the discrete successors of a state, in the presence of clock operations such as reset, assign-ment, creation and deletion.{ the temporal successors of a state, in the presence of urgency.Although a similar algorithm has been described previously in [Boz99] in the case of a formalismclose to SDL (IF, see also [BFG+99]), this is to our knowledge the �rst time when a precisecharacterization of the successors computation formulas is done for a formalism based on timedautomata with urgencies, and is accompanied by a correctness proof.2.3 Organization of the documentThis document is structured in three parts.The �rst part presents the state of the art in the speci�cation and validation of timed systems.It includes three chapters which present respectively: the language for system modeling usedin this work { SDL (Chapter 3), the requirements speci�cation languages MSC and GOAL(Chapter 4), and the timed automata model which provides the theoretical foundations for thetiming analysis methods considered in this work (Chapter 5). The chapters are relatively self-contained, and present their respective subject both through its de�nition and from the pointof view of the usage that can be made of it. In the end of each chapter, we make a synthesis ofthe similar languages/models that can be found in the literature, and we attempt to justify thechoice made in this work.The second part presents the language extensions, the analysis methods and the tools thathave been developed in the context of this work. Chapter 6 discusses the extensions proposedfor SDL, and their impact on the semantic de�nition of the language. Chapter 7 begins withthe de�nition of an abstract timed property speci�cation formalism, de�ned at the level of timedautomata, called timed property automata (TPA). The TPA model forms the semantic basisfor the de�nition of GOAL and MSC as timed property description languages, which is donein the rest of the chapter. Chapter 8 closes this part with a description of the simulation andveri�cation algorithms and tools used in connection with the extended SDL, MSC and GOALlanguages. Knowledge of the subjects presented in the �rst part is necessary for understandingthe three chapters of this second part.

30 Chapter 2. IntroductionThe �nal part of this document presents a case study (Chapter 9) on which we have validatedthe concepts proposed in this work. Chapter 10 draws the conclusions of the work carried outin this thesis, and presents further work directions.

Part ILanguages and Models forReal-Time Systems

31

Chapter 3SDLSpeci�cation and Description Language (SDL) is a formal modeling language intended for thespeci�cation and description of telecommunication systems. SDL is issued and maintained bythe International Telecommunication Union { Telecommunication Standardization Sector (ITU{T), as the Recommendation Z.100 [IT99b].The e�orts for de�ning a speci�cation and description language for telecommunication sys-tems in ITU begun in the early 1970's, as the �eld of telecommunication systems engineeringwas experiencing a paradigm shift from the age of simple electromechanical devices to the age ofcomputer-driven telecommunication devices. The language was designed in order to cope withthe multiplying number of services supported by these systems, and the increasing complexityof signaling protocols supporting these services.The �rst oÆcial version of the language was issued by the ITU{T (CCITT1 at the time) asRecommendation Z.100 in 1976. It contained several pages of standardized graphical symbolsfor representing event-action models, with only an implied background of Finite State Machines.The language was further re�ned until its de�nition reached a stable form in the 1988 versionof the Recommendation Z.100. This version included many of the features still present in thecurrent version of the language, among which: hierarchical architecture modeling concepts, asyn-chronous communication, a data type system, and extended �nite state machines for describingbehavior. The language de�nition also included a formal semantics written in META-IV [ISO96].The language is maintained on a four-year basis by the ITU{T. Major revisions were issued in1992 and 2000. The 1992 version added type-based modeling and object-oriented constructs toSDL. The 2000 version introduced several implementation-oriented constructs, with the aim ofimproving the coverage of all system development phases, from analysis down to implementation.The 2000 version also added new modeling constructs inspired from modern object-orientedmodeling languages like UML [OMG99], made some steps towards simplifying the language byremoving unused or redundant concepts, and completely rede�ned the formal semantics of thelanguage using a new underlying formalism (ASM [Gur88, Gur95, Gur97]).Several bibliographic sources provide a detailed description of SDL. The authoritative sourceconcerning the language itself is the ITU{T Recommendation Z.100 [IT99b]. The 1988 and 1996versions of the language are described in [BHS91] and respectively [EHS97], with examples andan emphasis on the speci�cation of protocol stacks. [SSR89] describes in more detail SDL-88,and includes some general modeling guidelines. This book has been revised for SDL-92 andthe sections on system engineering have been improved, resulting in a new book [OFMP+94].1Comit�e Consultatif International T�el�ephonique et T�el�egraphique33

34 Chapter 3. SDL[Mam00] is the most recent book on SDL up to date, containing references to SDL-962.The present chapter describes the main features of the SDL language, as de�ned in the latestrevision of the Recommendation Z.100, [IT99b], on which most of our subsequent work is based.However, as tools implementing SDL-2000 are not available yet, the tools we developed in thecontext of this work are based on SDL-96. For this reason, throughout this chapter we pointout the di�erences between the two language versions.In x3.1 we make some general remarks about the applicability domain and the modelingparadigm of SDL. x3.2 introduces the modeling concepts and constructs of SDL. x3.3 discussesthe semantics of SDL, with an emphasis on the time and concurrency aspects necessary forunderstanding the rest of the thesis. In x3.4 we take a look at the existing types of tools foranalyzing and exploiting SDL models. Finally, in x3.5 we outline some problematic languageissues, which constitute the starting point for a part of the work presented in this thesis.3.1 Scope and paradigmThe scope of SDL, as de�ned by the Z.100 Recommendation, is the speci�cation and descriptionof telecommunication systems. The meaning of speci�cation and description in [IT99b] is:{ the speci�cation of a system is an abstract description of its required behavior.{ the description of a system is the description of its actual behavior, that is an executablemodel.In practice, the use of SDL covers several phases from the system development cycle. Also, themodeling concepts provided by SDL can be used for modeling other types of systems besidestelecommunication systems. We paraphrase below a generic characterization of the applicabilitydomain of SDL given in [OFMP+94]. SDL is suited for the description of discrete reactivesystems, which are systems characterized by an intensive and discrete communication with theirenvironment. Both characteristics mentioned above are important:{ Reactiveness characterizes systems in which an execution is not pre-determined by some�nite amount of initial data coming from the environment. Instead, the system interactswith an evolving environment, and performs tasks in response to stimuli coming from it.The dominant part of the behavior of a reactive system deals with the interactions andnot with internal computation.The opposite of reactive systems are transformational systems. In transformational sys-tems, internal computations take up a more important part of system behavior. The ex-ample provided in [OFMP+94] for the reactive/transformational dichotomy is a telephonyswitching system versus a meteorological forecast system.A telephone switch must permanently monitor the status of the connected lines and reactto the requests initiated by phone terminals, switch operators, etc. The reactions areusually not complex from a computational point of view; the complexity of such systemsis generated by the large number of parallel components involved, the quantity of servicesthey provide, and the possible interleaving of the requests.On the other hand, a weather forecast system takes up the initial meteorological obser-vation data, and performs complex computations in order to obtain a forecast. During2SDL-96 contains only minor revisions to SDL-92; the core of the language remained unchanged between thetwo versions.

3.1. Scope and paradigm 35computation, the interaction with the environment is minimal and or not relevant com-pared to the internal system activity.SDL is appropriate for describing reactive systems, as the behavior of SDL system com-ponents is given in terms of stable states and responses to stimuli. Data types, operatorsand procedures written in an algorithmic language which is part of SDL, can be used tospecify the transformational aspects of behavior.{ Discreteness characterizes systems in which interaction between components or with theenvironment is materialized through discrete events. Such discrete events are representedin SDL by the signal concept.The opposite of discrete systems are continuous systems, in which the signals by whichsystem components interact can be modeled as (continuous) functions over a dense timedomain. On the lowest level of abstraction, most electronic devices exhibit a continuousbehavior. SDL is not suitable for representing system at this level of abstraction; otherlanguages and models exist for this purpose.SDL can capture functional information about a system both at an abstract level usingdescriptive constructs (speci�cation level, in Z.100 terminology) and at a detailed level usingimperative constructs (description level, in Z.100 terminology). As such, SDL models can beemployed in di�erent phases of system development:1. Analysis/speci�cation. In this phase, abstract SDL models focusing on the functionalityprovided by the system are built. Over-speci�cation can be avoided by using informalaction speci�cations, allowed in SDL.2. Design. SDL design models add details on the architecture of the system, and on therelation between functionality and architecture. The description of functionality can alsobe re�ned.3. Implementation. SDL provides imperative programming constructs comparable to thoseof common programming languages. Additionally, the combined use of SDL and otherprogramming languages and libraries is supported by the standard Z.100 and by mostSDL tools.Implementation in SDL follows a di�erent paradigm compared to common procedural orobject-oriented languages, by supporting parallelism and communication natively, and astimulus-response description of component behavior.4. Validation. Validation of a system model can take many forms depending on the propertiesthat need to be ensured about the system. Since SDL is used for describing functionalaspects of a system, SDL models are especially suited for the validation of functionalproperties.Veri�cation and testing are two examples of functional validation methods in which SDLmodels can be used. Veri�cation is a way of formally validating a property, by using amethod of formal reasoning about the SDL model. Veri�cation supposes the existence ofa mathematical de�nition for the models built with SDL. Such a mathematical de�nitionis given by SDL's formal semantics [IT99c].Testing is performed directly on the implementation, by checking on a set of chosen systemexecutions that the system performs as expected. The SDL model of a system may beused in this case to derive tests (manually or automatically).

36 Chapter 3. SDLValidation of timing aspects of the functioning of real-time systems modeled in SDL is thecentral theme of the present work.SDL models have also been used for validating non-functional properties of systems, suchas performance properties [DHHMC95b, MT00]. However, since a standard SDL modeldoes not contain the necessary information in order to derive performance parameters, itmust be extended with constructs speci�c to performance models. Such an approach hasthe advantage of reducing the redundancy that otherwise exists between functional modelsand performance models, but also the risk of increasing the complexity of the SDL model.5. Documentation. The SDL language provides an easily readable graphical representationwhich can be used as such for documenting the architecture and functioning of a system.The support for various development phases is not only a language issue, but also a toolissue. The types of SDL tools supporting the activities enumerated above are discussed in x3.4.3.2 Language concepts3.2.1 Language de�nition artifactsThe SDL language de�nition [IT99b, IT99c] includes the syntax, an informal semantics writtenin English, and a formal semantics. The syntax has three variants:{ an abstract syntax, which abstracts away from keywords, separators and other tokens, andonly gives the relations between language objects. For example, the abstract syntax for achannel de�nition3 is:Channel-de�nition :: Channel-name[nodelay]Channel-path-setThe de�nition speci�es that a channel is de�ned by a name, an optional nodelay attribute,and a set of channel paths. The channel paths represent the directions in which the channelconveys messages. There can be at most two Channel-path objects in a channel de�nition;this type of constraint is written in English in the abstract grammar section.The meta-language used for describing the abstract grammar is a subset of Meta IV4[ISO96]. The de�nitions resemble usual BNF grammar productions, and use operatorssuch as *",\+",\|" and \[]", as well as the \-set" operator yielding an unorderedcollection of objects.{ a concrete textual grammar given in extended BNF. The relation between abstract gram-mar nodes and concrete grammar non-terminals is described in the text.{ a concrete graphical grammar which speci�es in a formal way the contents of SDL graphicaldiagrams corresponding to di�erent language objects. The graphical grammar is describedusing a form of BNF extended with operators denoting graphical relationships: contains,is connected to, etc.3A channel is a communication entity which conveys signals between two designated agents. A detaileddescription of the communication facilities in SDL can be found later in this section.4Also known as VDM-SL { Vienna Development Method Speci�cation Language.

3.2. Language concepts 37The informal semantics of SDL language objects is given in plain text in Z.100. Somelanguage elements have stand-alone semantics, while others are only shorthand notation andtheir semantics is given by expansion into elementary language constructs. For example, anoutput statement which sends more than one signal is shorthand for a series of outputs, each onesending only one message. Thus, only the dynamic semantics of outputs sending one signal hasto be de�ned. Abstract syntax also is not de�ned for shorthand constructs.Finally, the formal semantics is given as a separate annex of Z.100 (Annex F, [IT99c]). Ithas two parts:{ A static semantics which provides well formedness rules for SDL models, written in �rstorder predicate calculus, as well as transformation rules for shorthand notations.{ A dynamic semantics which provides an operational description of SDL model execution,in terms of Abstract State Machines (ASM, [Gur95, Gur97, Gur88]).We discuss the semantics in more detail in x3.3. The formal semantics (Annex F, [IT99c])has lower priority with respect to the rest of the standard. This means that whenever theinformal semantics from Z.100 contradicts the Annex F, Z.100 takes precedence. The formalsemantics constitutes one of the big di�erences between SDL-2000 and the previous versions ofthe language, in which both static and dynamic semantics were de�ned using Meta IV [ISO96].3.2.2 Architecture and communicationAgentsAs part of the functional description of a system, SDL supports the description of both structureand behavior. On the structural side, SDL has facilities for describing the architecture of asystem in a hierarchical way, so that the complexity of a model can be managed one level ofdetail at a time.Thus, the system components (called agents) form an aggregation tree, in which each agent(except the root agent which represents the entire system) is embedded in another agent fromthe upper level of detail. An agent encapsulates the contained agents and provides a black-boxview for the outer agents. Communication is possible by means of asynchronous signals, eitherbetween sibling agents, or between an agent and its contained sub-agents. An agent may act asa router for the signals coming from or going to its sub-agents (this is usually the case for blockagents, see below).There are two kinds of agents:{ concurrent agents, in which sub-agents execute in parallel. This does not mean thatin an implementation of the SDL system, these agents must be implemented in trueparallelism or using the operating system multitasking. The concurrency attribute is away of specifying that no constraint should be assumed about the possible interleaving ofthe actions of the contained sub-agents.For traditional reasons, concurrent agents are called blocks, with the exception of the toplevel agent which is always concurrent and is called system.{ alternating agents, in which sub-agents execute in a mutually exclusive way: when a sub-agent is executing a transition, every other sub-agent has to be in a stable state. Theother sub-agents remain in the respective states until the executing sub-agent �nishes thetransition.

38 Chapter 3. SDL

Figure 3.1: Hierarchical description of a point-to-point link in SDLFor traditional reasons alternating agents are called processes. Processes also supportshared data, which may be used as a communication mechanism between alternating sub-agents inside a process, in addition to the asynchronous signal passing mechanism.An example of hierarchical system architecture is presented in Fig. 3.1. It shows the decom-position of an SDL system modeling a point-to-point network link, into agents modeling thehosts, the link interfaces, their sub-components, etc. More concrete examples can be found inlater chapters. In the �gure, rectangles represent blocks, rounded rectangles represent processes,and lines between agents represent the communication paths, annotated with the types of signalsthey may carry. The graphical SDL symbols are shown in Fig. 3.2.Each SDL agent can have its own behavior described through an extended state machine(this is discussed further on in x3.2.3). Each agent also has a unique identi�er, called PId, whichcan be used by other agents to communicate with it by direct addressing (see next section).There are several di�erences between SDL-2000 and SDL-965, with respect to architecturaldecomposition. The intention in SDL-2000 was to harmonize the two types of architectureobjects (blocks and processes):{ In SDL-96, the behavior of blocks cannot be described by means of a state machine.Blocks do not have a PId and cannot themselves handle signals. They can only routesignals (statically) towards inner or outer system components, by describing channel inter-connections.{ In SDL-96, blocks cannot be created and destroyed dynamically, whereas in SDL-2000they can.{ In SDL-96, blocks and processes cannot be mixed inside a block. In SDL-2000, they canbe freely mixed.5This stands also for previous versions of the language (SDL-88 and SDL-92). Henceforth, previous versionsare mentioned only when they di�er signi�cantly from SDL-96.

3.2. Language concepts 39{ In SDL-96, processes cannot be re�ned in sub-processes. Instead, processes can be re�nedinto entities called services, whose behavior is described with state machines. However, aSDL-96 service does not have its own identity (PId), and therefore signals cannot be sentto a speci�c service, but only to the whole enclosing process.Communication methodsThe primary communication method between SDL agents is by asynchronous signals. Signalsare named entities which can carry data parameters. Signals are produced by an agent using anoutput instruction (discussed in x3.2.3). Upon arrival to a destination agent, a signal is placedin the input port of the agent. Each agent has an input port with a signal queue. Signals canbe consumed, saved for further use or discarded by the agent state machine. More details areprovided in x3.2.3.Other communication means are:{ Remote procedure calls. An agent can call a remote procedure de�ned in another agent, ifthe communication paths between the two agents are properly speci�ed. Remote procedurecalls are actually realized by an implicit signal interchange, therefore they are only ashorthand notation.{ Remote variables. An agent may declare a variable as \remote", so that other agents mayconsult its value using an import instruction. Other agents actually consult a copy of thevariable, which is updated explicitly by the exporting agent using an export instruction.Like remote procedure calls, importing remote variables is also realized by implicit signalinterchange, so remote variables are also just shorthand notation.{ Variables shared by a process agent for the use of its sub-agents.Signal-based communication can use either direct addressing or implicit signal routing. Di-rect addressing is done by specifying the destination agent's PId in the output instruction. Aroute (see next section) to the destination agent capable to transport the signal must neverthe-less exist. Implicit routing is done when no destination PId is given. In this case, if routes toseveral destinations exist, one is chosen arbitrarily.Channels and gatesSignals are conveyed through channels. A channel has two ends, each of which can be connectedto an agent. The channel can be unidirectional or bidirectional. For each direction, the channelis considered to transport the signals reliably, i.e. without loss, corruption nor reordering. Thechannel may however delay the arrival of the signals, if a nodelay clause is not present in thechannel de�nition.Channels are connected to agents through gates. Conceptually, a gate is a couple of an inputport and an output port. A gate can be connected (implicitly or explicitly) to channels both onthe outer side of the agent, and on the inner side of the agent (if the agent contains sub-agents).In this case, the gate only transfers the signals from an outer channel to an inner channel, orvice-versa. Alternatively, a gate can be connected on the inner side directly to the agent statemachine (connection can be implicit or explicit). In this case, the gate transfers signals fromouter channels to the agent's signal queue, and signals produced by the agent (using outputinstructions) to the outer channels. Both gates and channels specify statically which signals canbe transferred in either direction.

40 Chapter 3. SDLThere are several di�erences between SDL-2000 and previous versions, concerning commu-nication:{ In SDL-96 gates are used only in the de�nition of agent types (which are discussed furtherin this section). In SDL-2000, type-based agent de�nitions and non type-based agentde�nitions have been harmonized. As a consequence, gates can be de�ned in non type-based agent de�nitions.Additionally, implicit gates are sometimes created, for example when an agent de�nes achannel-to-channel connection directly without de�ning a gate.{ SDL-2000 introduces the concept of interface. An interface is a named collection of signalde�nitions, remote procedure de�nitions and remote variable de�nitions. Among others,interfaces can be referenced in gate de�nitions, when specifying the signal types transferredthrough the gate.{ Since SDL-96, channels are created implicitly in certain cases, e.g. when there is noexplicit connection for a gate, and there is another gate in the same scope with a matchingset of conveyed signals. This is done in order to avoid the overhead that channel de�nitionsometimes causes for the modeler.Type based modelingIn this paragraph we discuss type-based modeling of agents. However, all features describedhere are also available for data types, which are examined in x3.2.4.SDL facilitates reuse by allowing type-based modeling of agents. Thus, if several agents withidentical structure and behavior appear in di�erent places in the system (e.g. host1 and host2in Fig. 3.1), the behavior and structure of the agents can be described through a unique agenttype which is afterwards referred from the respective places. This facility exists in the languagebeginning with SDL-92.Type-based agents also facilitate reuse by including two mechanisms available in modernobject-oriented languages: type specialization and generic types. With specialization (inheri-tance), a type can be derived from another by adding or modifying both the structure and thebehavior properties. Speci�c restrictions to preserve \observational" type compatibility apply.Generic data and agent types can be de�ned by using context parameters. Various languageobjects can be used as context parameters, including: agent types, procedures, variables, timers,gates, exceptions, etc. When a type with context parameters is instantiated, a concrete objectof corresponding kind has to be provided for each formal context parameter of the agent type.Agent types provide agent de�nition patterns, and their main use is to factor out the def-inition of identical agents appearing in several places in a system. However, agent types alsorelate to the data type system of SDL. An agent type A implicitly de�nes an interface type IA(based on the signals, remote procedures, etc. that are handled by the agent type). In turn,each interface I de�nes a type TI which is a sub-type of the prede�ned sort PId. A variable oftype TI contains a PId which points to an agent implementing the interface I.By supporting data sub-typing, including for PId types, SDL supports polymorphism. More-over, SDL provides type-safe polymorphism, as the data type system of SDL supports bothstatic and dynamic typing, so for example the \real" type of a PId variable can be checked atrun time. This is true for the entire type system of SDL and not only for the part referring toPId types.PId sub-types and the dynamic typing system are new in SDL-2000.

3.2. Language concepts 413.2.3 BehaviorThe previous section described the SDL constructs for architectural modeling and interfacingbetween system components. In order for the system to achieve the desired functionality, thebehavior of each component (agent) has to be described. This section examines the computationmodel of SDL and the SDL constructs for describing behavior.ControlAn important aspect of a functional model such as SDL is the way threads of control areorganized. Concurrent object oriented languages are usually classi�ed in two categories withrespect to ownership of control threads [Weg87, Pap92]:1. Orthogonal languages, in which threads of control are independent from (orthogonal to) theobject structure of the system. Usual sequential object oriented programming languageslike C++ [Str97] or Smalltalk [GR89] have orthogonal models, in the sense that executionthreads provided by the operating system can be freely used in programs.2. Languages with active objects, in which threads of control are owned by certain objects(active objects). Furthermore, languages with active objects can be homogeneous { withonly active objects, or heterogeneous { with both active and passive objects. Examples ofsuch languages are POOL-T [Ame87] or Ei�el// [CR96].From the point of view of this classi�cation, SDL falls into the second category. In SDL,each agent has its own thread of control, which is created and destroyed together with the agent.The agent state machine speci�es what is executed on that thread of control. The execution ismarked by moments in which the thread is idle { when the agent is in a stable state, and bymoments in which the thread is actually executing { when the agent executes transition code.States and transition code are described in the next paragraphs.StatesIn SDL-96 state machines have a
at structure, meaning there is no hierarchical structuring ofstates. A state is just a named entity, used to partition the
ow of control of an agent. Statesdesignate points in the
ow of control where the agent stops and waits for a certain conditionbefore continuing. The condition is usually triggered by the agent's environment (i.e. the otheragents, the underlying machine or the system's environment):{ The arrival of a signal in the agent's input port, tested with an input clause, and possiblyconditioned by a boolean test in a subsequent provided clause.{ The satisfaction of a logical condition, tested with a provided clause. The truth valueof the condition may depend on the agent's environment, e.g. if the expression involvesshared variables or the value of current time (now).The agent may also resume execution automatically, without waiting for a change in theenvironment. This is done either by using a spontaneous transition clause (input none) or bytesting a condition that holds without the intervention of the environment, such as providedtrue. The insertion of such states in which the execution is resumed automatically can be useful,for example in order to provide interruption points in a computation process.

42 Chapter 3. SDLIn SDL-2000, several artifacts for state modeling have been added, although without chang-ing the fundamental idea of state machines. The purpose of these artifacts is to facilitate thedesign of large state machines. They are:{ Composite states. A composite state groups a set of semantically related states of anagent. Composition can be used to factor out transition code: if a same transition can betriggered from several states, these can be grouped under a same composite state and thetransition may be written only once.Composite state entry points and exit points, history nodes and other constructs make iteasier to specify and understand the control
ow in a behavior description. However, theydo not add expressive power to SDL, in a strictly semantic sense.{ State aggregation. An aggregate state is a composite state with sub-states executing inparallel. The sub-states are also composite states, so each of them de�nes its own state-transition graph. They execute in parallel by interleaving, one entire transition at a time.Due to the interleaving semantics, an aggregate state can be transformed in a semanticallyequivalent
at composite state (by considering the cartesian product of the sets of sub-states). Therefore, state aggregation does not add expressive power to SDL, but onlyo�ers means to express more clearly the behavior of complex agents.{ Entry and exit actions. These actions, executed at the end of transitions entering a stateor at the beginning of transitions exiting a state, are further means to factor out recurringbehavior.Although they do not add expressiveness to the language, the mechanisms presented aboveare valuable from a methodological point of view. They were initially introduced by D. Harel inthe Statecharts formalism [Har87]. The ideas originating in Statecharts were later included inseveral object-oriented analysis and design methodologies [CD94, RBP+91], and in the Uni�edModeling Language (UML, [OMG99]).Transition codeAn agent ful�lls its functionality by executing actions during transitions from one stable state toanother. From the SDL speci�cation point of view, transitions are not always clearly identi�edentities originating in a stable state and terminating in another. This is because control
owstructuring constructs such as branching and jumps can be used in transition speci�cation. Forthis reason, we prefer the terminology transition code6.The transition code of an agent is structured on a state/clause basis: a code sequence isattached to a certain stable state and to a certain clause. Two types of clauses (input andprovided) have been mentioned in the previous section. Besides them, two additional clausesare de�ned in SDL:{ priority input, which has the same meaning as input, except that the speci�ed signaldoes not have to be �rst in the agent's signal queue (it is consumed regardless of its positionin the queue).6For language de�nition simplicity, in [IT99b] transitions are considered separate entities. Branching constructsand join points introduce pseudo-states from which transitions can originate or in which they can end.

3.2. Language concepts 43{ save speci�es that a signal is not consumed by the agent in the current state, but it issaved in the queue for further use. In the absence of a save, if a signal is in the head ofan agent queue and there is no corresponding input clause in the current agent state, thesignal is discarded.A save clause may not be followed by further transition code.The graphic symbols representing clauses are shown in Fig. 3.2.The code sequence following an input, priority input or provided clause can contain basicstatements (which have a graphical representation and existed before SDL-2000) and compoundstatements written in the textual algorithmic language that was added in SDL-2000. The basicstatements are (see Fig. 3.2 for the graphical counterpart):{ Informally speci�ed actions (task). These are actions speci�ed informally with a stringcontaining plain text. Formally, they have no e�ect and are just a placeholder to be usedduring analysis/design.{ Assignments and assignment attempts (task). Used to assign the result of an expressionto a variable, parameter, etc. Assignment attempts are speci�c to SDL-2000 and performa dynamic type checking before assignment.{ Agent creation (create). Used to create a new agent. In SDL-96, the agent can only be aprocess, and the create instruction must specify the process instance set in which the newagent is created. The process instance set speci�es the channel connections of the newlycreated instance (shared with already existing instances in the set).In SDL-2000, both blocks and processes can be created dynamically. The create state-ment may either specify an agent instance set, or just an agent type. In the latter case,the agent instance set in which the agent is created may be chosen from the existing setsof the same type, or a new set with implicit connections may be created if no sets of thesame type exist.The execution of a create statement updates several implicit variables. In the initialagent, the o�spring variable holds the PId of the newly created agent. In the newlycreated agent, self holds its own PId, while parent holds the PId of the agent executingthe create.{ Signal output (output). The statement creates a new signal instance, with parametervalues speci�ed in the output statement. The signal destination may be speci�ed bydirect addressing (using the destination agent's PId) or indirectly (using an output gateof the agent, and relying on the default routing mechanism of SDL{ this may imply non-deterministic choices at certain points).In both cases, the signal is conveyed by a channel route, determined at the moment theoutput is executed, and the delays and queuing order of the route apply.The PId of the sender process is sent with the signal. When the signal is consumed by thedestination agent using an input clause, this PId is stored in the implicit variable senderof the destination agent.{ Procedure calls (call). This statement can be used either to call a procedure on the controlthread of the current agent, or to send a remote procedure call.In the latter case, an implicit signal representing the procedure call is sent to the remoteagent. The same conditions from the above description of output apply in this case.

44 Chapter 3. SDL

procedure
return

SDL Structural Entities

block
 procedure

state

block type
 process
 process type
 channel

SDL Behavior Constructs (states and pseudo-states)

composite
state
type
 agent
start
 procedure
start

agent
stop

SDL Behavior Constructs (clauses)

input
 priority input
 provided
 save

SDL Behavior Constructs (actions)

exception handler
start

task
 call
create
 output

raise
join
(and label)

gate
(on agent/type)

signal list

(on channel/gate)

[]

SDL Behavior Constructs (control flow)

decision
 Figure 3.2: Graphical SDL symbolsAdditionally, a watchdog timer may be set in parallel with the procedure call, to unlockthe caller agent in case of non-response from the remote agent.{ Timer management (set and reset). Timers are discussed in a dedicated subsequentparagraph.Additionally, SDL contains the following graphical control
ow structuring statements:{ Decisions (decision) are used for conditional branching. The condition may be formalor informal (written in plain text). If the decision discriminant is the keyword any, thedecision equates a non-deterministic choice between the speci�ed decision answers.{ Jumps (join) are used for unconditional branching. Any basic statement may be precededby a label, which can be used in join statements.{ Return from procedure (return) can be used both in local and remote procedures, and itcan specify a return value.{ Termination of agent execution (stop), stops the execution of the agent executing thestatement.{ Raising a software exception (raise). The exception mechanism, speci�c to SDL-2000, isexamined in a dedicated further paragraph.

3.2. Language concepts 45Textual algorithmic languageAs mentioned before, a textual algorithmic language has been added in SDL-2000. We do notaim to describe this language here, but rather to give a general idea of the supported features.The statements of this language resemble (in both a syntactic and semantic way) the statementsof the C++ programming language [Str97]. They are:{ Compound statements, with the possibility of de�ning variables local to the compoundstatement.{ Expression statements. As in C and C++, the evaluation of an expression can constitutea statement.{ Conditional statements, which provide a simpler alternative to decision statements. Tex-tual decision statements are also supported.{ Loop statements, with
ow control similar to C and C++, including break and continuestatements.{ Exception handling, with a construct similar to the C++ try-catch statement (try-handle,in SDL-2000).Additionally to the above mentioned statements, all the transition actions with graphicalrepresentation enumerated in the previous paragraph can be included (in textual form) in atextual algorithmic language statement.Compound statements of the algorithmic language can be placed inside task instructions ontransition code. They can also be used for describing the body of SDL procedures.Exception handlingA major addition to SDL-2000 is the exception mechanism. Exception handling is a usefulprogramming technique available in many programming languages including Ada [Eng96], C++[Str97], Ei�el [Mey95] and others. It allows the programmer to tackle in an organized way withexceptional situations that may appear in a software system due to either hardware or softwaremalfunction or mishandling. For a more comprehensive discussion on the topic of exceptionhandling in programming languages in general, the reader is referred to [Set96] and [Mey97].In SDL, there is a set of prede�ned exceptions which are raised by the underlying abstractSDL machine. The modeler may also de�ne his own exception types; such software exceptionscan be raised using a raise statement.Once raised, an exception propagates up on the procedure call stack of an agent. Exceptionsraised in remote procedures also propagate back to the caller agent. If an exception reaches theagent level and is not handled, the further execution of the SDL system is unde�ned.Exception handling is done by attaching handlers to di�erent SDL objects. An exceptionhandler is a named entity containing a set of exception handle clauses. A handle clause resemblesa normal state machine input clause: it speci�es the type of exception (signal) being handledand is followed by transition code.A handler is de�ned within the scope of an agent or a procedure. However, the code portionson which a handler is active may be �ner grained: the handler may be attached to the entirestate/transition graph of an agent/procedure, to a composite state, to a simple state and itstransitions, to a transition, to another handler, or to just a single action.

46 Chapter 3. SDL
active/unexpired

active/expired

inactive

set(d,T)

reset(T)

now >= d /

output T in agent queue

reset(T)

reset(T) /
erase T from queue

input(T) or discard T /
consume T from queueFigure 3.3: The behavior of a timer T. d is a Time value for the deadline.Describing time-related behaviorSDL provides facilities for describing time-driven behavior. This is an important feature of thelanguage, as SDL targets the speci�cation and design of real-time systems. As we will see in alater section (x3.5), the facilities for describing timing information in SDL address the designor implementation level; however, they have a limited usability in the initial phases of systemspeci�cation, when more abstract and descriptive timing information needs to be captured.SDL provides two prede�ned data types related to time, Time and Duration, and prede�nedoperators for handling these types (adding Time with Duration, multiplying Duration, etc.) Thecurrent time { i.e. the time since the beginning of system execution { may be consulted usinga prede�ned operator, now. The manner in which time progresses during the execution of asystem is, however, left unspeci�ed in SDL. The only assumption that can be made is thatsuccessive evaluations of now yield (non-strictly) increasing results.Time-driven behavior may be described either by using directly the value of now in tests ortransition triggers, or by using timers.Timers are special objects of the SDL language. They resemble data objects from certainpoints of view, but also have their (prede�ned) behavior which parallels the behavior of thesystem agents. Each timer de�nition also introduces a new implicit signal type, with the samename and parameter types as the timer.A timer can be declared by an agent, using the timer keyword. Optionally, the de�nitionmay contain a default relative deadline for the timer. The behavior of a timer, as describedby the SDL standard, is sketched using a simple state machine in Figure 3.3. There are threeprede�ned operators on timers:{ set(Time-value, timer), which arms a timer with the deadline speci�ed by the Time value.If time elapses beyond that deadline, and the timer is not reset in the meantime by theagent, the underlying abstract SDL machine switches the timer to the expired state, andputs a signal corresponding to the timer in the agent's signal queue.{ reset(timer), which switches the timer back in an inactive state. If the timer has expiredbeforehand, the signal corresponding to the timer is erased from the agent queue.A signal returns in the inactive state either when it is reset or when the correspondingsignal is consumed from the queue by an input or a discard clause.{ active(timer), is a query operator which returns the boolean value true if the timer is inone of the two active states shown in Fig. 3.3, and false otherwise.

3.2. Language concepts 47It is important to note that timer expiration signals always pass through the signal queue.Therefore, when a timer is consumed with an input clause, the only assumption that is guaran-teed by the semantics of SDL is that the deadline of the timer has passed. In principle, nothingcan be assumed about how much time has passed since the timer has expired. This is a comfort-able semantics from the implementation point of view. However, it has certain disadvantageswhen SDL is used for building initial abstract models of a system, as discussed further on inx3.5.3.2.4 DataSDL provides a data system similar to that of usual imperative programming languages. Thedata system is an important part of any modeling language, since even the most simple systemsinvolve the manipulation of a certain amount of data. However, for the purpose of this thesis,which focuses on the speci�cation and validation of timing properties in real-time systems,data in SDL is not of paramount importance. Therefore, in this section we only give a briefintroduction to the SDL data system.Data typesSDL provides prede�ned types, such as Boolean, Character, Integer, Real, Time, Duration,etc., and mechanisms to de�ne more complex types based on simple ones. The mechanisms forde�ning new types include constructs similar to what can be found in Algol-like programminglanguage, as well as constructs inspired from object-oriented languages.In the �rst category, we mention constructs for creating record types (struct,) records withvariants (choice), enumerated types (using literals), sub-range types (syntype), or collectionsof di�erent elements types (based on several prede�ned collection type generators: Array, String,Bag, Powerset, Vector). As a general note, the set of type de�nition constructs suported by SDLis larger than that of most usual programming languages.Object-oriented concepts are included in the SDL data system: a data type de�nition mayinclude operators and methods which act over values of that type, and inheritance relationshipsbetween data types may be de�ned. Inheritance allows the rede�nition of operators and methods,and additions to the type structure, as in usual object-oriented languages.As mentioned before, the data type system of SDL supports dynamic type checking andincludes PId types which provide typed references to agents.PId sub-types, dynamic typing, as well as several other object-oriented features are newlyintroduced in SDL-2000.Variables and parametersData types are used in order to de�ne variables and parameters at di�erent levels in an SDLdescription.The notion of variable in SDL corresponds to the same notion from imperative programminglanguages: variables have a name and may store a value of a certain type. Variables maybe de�ned in di�erent entities: in an agent, a procedure, a composite state or a compositealgorithmic action. The lifetime of the variable is equal to the lifetime (activation time) of itsenclosing entity. The scope of the variable is the enclosing entity, and in some cases its sub-entities. For example, a variable de�ned in a process agent is visible in all its sub-agents and

48 Chapter 3. SDLin the procedures de�ned therein. A variable de�ned in an agent or procedure is visible in allprocedures recursively de�ned in that agent or procedure.For complex types such as object types, both expanded variables { which contain an objectwith its �elds, and reference variables { which contain only a reference to an actual object, maybe de�ned. This facility is new in SDL-2000.Parameters designate named data items, and are used for passing around data values in agentcreation, procedure calls or operator/method calls. The semantics of parameters is similar tothat from procedural languages.Data types may also be used in the de�nition of signals, exceptions and timers. Theydesignate the types of data items that may be conveyed by these communication objects.ExpressionsExpressions are SDL syntactic constructs for obtaining data values. An expression may involve:{ literals designating prede�ned type values (e.g. 1, true, 0.5) or values of structured types(e.g. (. true,1 .) { designating a structure with two components, a boolean and aninteger){ variable or parameter identi�ers{ calls to user de�ned operators, value-returning procedures and methods{ prede�ned operators, etc.3.3 SemanticsSDL is an object-oriented modeling language used in the development of real-life applications.One of the features which di�erentiate it from other languages from this category is the de�nitionof its semantics.While other modeling languages, such as OMT [RBP+91], ROOM [SGW94] or UML[OMG99, RJB98, BRJ98], only provide an informal semantics for the language concepts, thede�nition of SDL [IT99b] contains a formal semantics for the entire language [IT99c], i.e. away of mapping any SDL speci�cation to a clearly de�ned mathematical object. Thus, SDLis part of a family of standard languages with formal semantics, generically known as FormalDescription Techniques (FDT's), family which also includes LOTOS [ISO89b] and ESTELLE[ISO89a].The semantics of SDL ful�lls two functions:{ de�nes formally the notion of well-formed SDL system, and{ provides a mathematical interpretation for the notion of SDL system execution.The two parts are relatively independent, and constitute respectively the static semantics andthe dynamic semantics of SDL.While a formal static semantics for SDL consists only in representing the well-formednessconditions from the informal language de�nition [IT99b] in a formal language such as �rst orderpredicate calculus, the de�nition of a dynamic semantics implies a choice of a base formalismwhich is less obvious and has more implications as to the analysis methods applicable to SDLspeci�cations. For this reason, several dynamic semantics for SDL have been proposed in theliterature.

3.3. Semantics 49
Concrete textual grammar (BNF)

Abstract Syntax 0 (BNF, ASM)

Expanded AS0 (BNF, ASM)

AS1 (BNF, ASM)

compilation

Transformation (ASM)

Mapping (ASM)

WFR (PC1 / ASM)

WFR (PC1 / ASM)
Figure 3.4: SDL static semantics layers.In the 1988 version of SDL, the ITU{T standardized a semantics based on the Meta-IVlanguage [ISO96]. This semantics was further updated with the release of SDL-92. As SDL-2000 brings along many changes, the ITU{T preferred to rede�ne the semantics from scratchrather than update the existing semantics. Another formalism, Abstract State Machines (ASM,[Gur88, Gur95, Gur97]) was preferred to Meta-IV for this task. In the following sections, we basethe discussion on the new semantics of SDL-2000, and we brie
y mention the other proposalsfound in the literature.3.3.1 Static semanticsThe goals of the static semantics are:{ to de�ne the notion of sound SDL system, and{ to provide a basis for the de�nition of the dynamic semantics.A �rst level of soundness, as in any language, is de�ned by the syntax. Z.100 [IT99b] containsa concrete textual syntax described in usual Backus-Naur Form (BNF). There are howeveradditional constraints that a correct SDL system must observe, which cannot be expresseddirectly through a context-free syntax. Static typing constraints or identi�er scope rules areexamples of such constraints. These rules are de�ned in the static semantics.Moreover, the concrete syntax of a complex language such as SDL is diÆcult to use directlyas a basis for the de�nition of the dynamic semantics. For this reason, the static semantics isorganized as a set of increasingly abstract layers, shown in Fig. 3.4.In the less abstract layer (topmost), an SDL speci�cation is modeled by its syntactic form.A syntax tree can be built from the model through a compilation process. By removing theunnecessary tokens from this tree (separators, various terminals), a more abstract tree containingonly the meaningful language objects is obtained. This abstract model of an SDL systemcorresponds to the abstract syntax level 0 (AS0) of SDL, de�ned by the static semantics.Two more layers are added in order to ease the de�nition of the dynamic semantics. Thisis done by identifying a set of basic mechanisms, for which a dynamic semantics is de�ned,and translate other language constructs in terms of the basic mechanisms. For example, signalexchange is a base mechanism in SDL, whereas remote procedure calls are actually realized byan implicit signal exchange. Only the basic constructs are included in the layer 1 of the AbstractSyntax (AS1), which corresponds to the bottom layer in Fig. 3.4. The static semantics givesthe rules for transforming an AS0 tree with remote procedure calls in an AS0 tree using only

50 Chapter 3. SDLoutputs. The AS0 tree obtained after transformation, called expanded AS0 tree in Fig. 3.4, isthen mapped into an AS1 tree.The structure of AS0 and AS1 trees is given in [IT99c] in a formalism similar to BNF.However, the non-terminals and productions of AS0 and AS1 also de�ne ASM domains, andrespectively access functions corresponding to each kind of language object (see the introductionto ASM in the next section). The well-formedness rules for SDL systems are then given asformulae of the �rst order predicate calculus (PC1) over these functions/domains.3.3.2 Abstract State MachinesThe base formalism used for de�ning the dynamic semantics of SDL in Annex F of Z.100 [IT99c]are the Abstract State Machines (ASM). This section is not intended as a full tutorial for ASM,and provides only the de�nitions needed to understand the rest of the thesis. For a thoroughintroduction to ASM, the reader is referred to [Gur95, Gur97].For each sound SDL system, [IT99c] de�nes a correspondingmulti-agent ASM. For simplicity,we de�ne �rst the notion of mono-agent ASM.De�nition 3.1 (Abstract State Machine) An ASM is a tuple A = (V; S0; P) with the fol-lowing components:1. V denotes a vocabulary (or signature) of domain names, function names and predicatenames.2. S0 denotes an initial state (or interpretation) of the vocabulary V .3. P is a program iteratively modifying the interpretation of the vocabulary V .The meaning of the components described above is detailed in the following. Besides beinga model, ASM is also an algebraic speci�cation formalism, with its own established syntax. Thesyntax is presented in parallel with the model elements below.VocabularyThe vocabulary V contains domain names, function names and predicate names. Each functionor predicate has an arity, which speci�es the domain names of the parameters and of the result.Predicates always have the result in the Boolean domain.Boolean is a special domain name de�ned by any ASM. Several other domains (Nat, Real) andusual functions (arithmetic and boolean operation names) are also considered to be de�ned byany ASM. Moreover, the interpretation of these \prede�ned" domains and functions is consideredto correspond to their standard mathematical de�nition.The vocabulary of an ASM is given by declaring the domain names and function namesand arity, using the following syntax ([attributes] denote optional properties such as static,controlled, monitored, shared, described in the following paragraphs):[attributes] domain D[attributes] f : D1 �D2 � :::�Dn ! D

3.3. Semantics 51States. Initial state.A state is a function that assigns a mathematical interpretation to each domain name andfunction name in the vocabulary. The interpretation of a domain name D in a state s must bea set, denoted s(D). For a function name f with the arity f : D1 � D2 � ::: � Dn ! D, theinterpretation is a function s(f) : s(D1)� s(D2)� :::� s(Dn)! s(D).For simplicity, all the domain name interpretations (called domains henceforth) are consid-ered to be part of an in�nite set s(X), which is the interpretation of a prede�ned domain nameX called the base set of the ASM. s(X) contains a particular element called unde�ned, andthere is a prede�ned function name undefined :! X which denotes this element. All functionsde�ned by an ASM are considered total on X, and they yield unde�ned for all elements forwhich an interpretation is not explicitly de�ned.In the speci�cation of an ASM, the initial state S0 of an ASM is given by a set of initiallyclauses, as shown in the example below:initially D = fel1; el2ginitially 8d 2 D : f(d) = 1Static and dynamic namesAs we mentioned before, the interpretation of some elements of the vocabulary V is �xed apriori. For example, the interpretation of the Boolean domain name must always be a set oftwo elements representing the values true and false, and the prede�ned boolean operator namesmust have an interpretation corresponding to their mathematical de�nition.Such names are called static names. Their interpretation is either �xed by the initial stateof the ASM (S0) or prede�ned by the ASM framework and must not change during the executionof the ASM (the notion of execution is de�ned below).The names whose interpretation may change from one state to another are called dynamic.Both functions and domains can be static or dynamic.Basic and derived namesBoth domains and functions may be basic or derived. Basic names have their own interpretation,which is either prede�ned, or de�ned by the initial state S0 and modi�ed by the ASM program.Derived names have their interpretation derived from the interpretation of the basic names.For example, a derived domain can be de�ned as:D =def D1 �D2and a derived function can be de�ned as:f(d : D) : D0 =def g(s-D1(d); s-D2(d))where g is a function de�ned on D1 �D2.In the above examples, we have used some function names that are implicitly de�ned forderived domains. For example, for the product domain D above, the functions s-D1 : D ! D1and s-D2 : D ! D2 are implicitly de�ned and can be used to extract the components of a coupled 2 D. The constructor function mk-D : D1 �D2 ! D builds a couple from the components.

52 Chapter 3. SDLPrograms and runsThe program P of an ASM A = (V; S0; P) speci�es how the state of the ASM is updated. Thereare two kinds of elementary constructs of an ASM program:{ the location update rules, which have the following form:f(t1; :::; tn) := t0where f denotes a basic dynamic function and t0,t1,. . . ,tn denote terms7 constructed fromASM function names.To execute the above update in a state s means to transform s into a state s0 such thats0(f)(s(t1); :::; s(tn)) = s(t0), and the interpretation of all the other elements of V remainsthe same in s0 as in s.{ the domain update rules, which have the form:extend D with d... // further rulesendextendwhere D denotes a dynamic (basic) domain. To �re the above update in a state s meansto transform s in a state s0 in which the domain s0(D) has an additional element comparedto s(D). The new element is denoted by the term d in the update rules enclosed byextend..endextend, so speci�c location updates referring to this element may be written.More complex transition rules may be constructed recursively, based on simple location anddomain updates: conditional updates (if condition then Rule1 else Rule2 endif), parallelupdates (Rule1 Rule2 ...), non-deterministic updates (choose v : condition(v) Rule(v) end-choose). However, for a given state s, a program P always resolves to a set of elementaryupdates, which are executed in parallel. A soundness requirement for the ASM is that par-allel updates are not contradictory, i.e. for each distinct location (basic dynamic function +parameter values) there is only one update.The executions (runs) of a single agent ASM are modeled through �nite or in�nite sequencesof state transitions of the form: s0 P�! s1 P�! s2 P�! :::, where s P�! s0 denotes the applicationof the updates speci�ed by the program P in the state s to obtain the state s0.As it can be noticed, the execution of an ASM means iteratively applying the same programP to the current state of the ASM, over and over again. However, as conditional updates arepossible, the same program P may specify di�erent update sets in di�erent states of the ASM.Multi-agent ASMMono-agent ASMs de�ne execution as a sequence of applications of the ASM's program to theASM's current state, resulting in a sequence of states. The updates are executed by an implicitagent, which is not described explicitly in the ASM model.In multi-agent ASMs (also called distributed ASMs), there can be several execution agents�ring state transitions simultaneously, and sharing the same ASM state. Moreover, the set of7Terms, which are function applications, can be written either in the pre�x notation shown above, in in�x no-tation (for some prede�ned operators), or in an alternative dotted notation, as in: t1: f(t2; :::; tn). The parenthesesmay be dropped for nullary functions in pre�x notation and for unary functions in dotted notation.

3.3. Semantics 53agents is dynamic, and the assignment of programs to agents is also dynamic. A distributedASM contains several domain and function names with prede�ned meaning:controlled domain Agent - contains one element for each con-currently executing agentstatic domain Program - contains one identifying elementfor each program descriptioncontrolled program : Agent ! Program - identi�es the program executed byeach agentmonitored Self : ! Agent - function interpreted di�erentlyby each agent, provides the agentwith its own identityThe concurrent execution that takes place inside a multi-agent ASM is modeled as a set ofpartially ordered runs. We do not intend to provide here a thorough introduction to the executionmodel of distributed ASMs. The model is detailed in [Gur95, Gur97], and several properties ofpartially ordered runs are deduced therein. We only note that some of the properties stated in[Gur95, Gur97] imply that the partial order model is equivalent to an interleaving model for theexecution of the parallel agents, in the sense that the same ASM states are reachable and thesame properties are held by the two models.Distributed ASMs are used for the de�nition of the SDL semantics, as they provide a con-venient way to cope with the inherent concurrency of SDL models. As we will show in x3.3.3,SDL agents are modeled through ASM agents, thus taking the burden of modeling concurrencyout from the SDL semantics description.Open speci�cations and real-time behaviorSDL systems are open, in the sense they can interact with an unspeci�ed environment. ASMspeci�cations can model the intervention of an unspeci�ed environment through monitored orshared functions and domains (functions and domains which can only be updated by the ASMagents, introduced previously, are called controlled).A monitored function or domain is a dynamic object that can only be modi�ed by theenvironment. Thus, a monitored object can change its interpretation from state to state in anunpredictable way (unless prevented by some integrity constraints). An ASM agent may testthe value of a monitored object, and take actions corresponding to the state of the environmentmodeled by that value. However, an agent may not modify (update) the values of monitoredobjects.Shared functions and domains di�er frommonitored in that they can be updated both bythe environment and by the ASM agents.Integrity constraints (written as predicate calculus formulae in the ASM speci�cation) mayrestrain the possible interventions of the environment on the shared andmonitored functions.An important case of interaction with the environment is represented by the elapse of time.In the semantics of ASM, time is considered part of the environment and can only be consultedbut not controlled by the agents. This is modeled through a monitored function:monitored currentTime : ! RealThe integrity constraints imposed to currentTime are too complex to be expressed in pred-icate calculus over the usual terms admitted in ASM speci�cations. These constraints are animportant part of the execution model of SDL. They basically impose the following conditions:

54 Chapter 3. SDL
Architecture

Behavior

Data

SDL Spec

(AS1)

Signal

Flow

Agents

Behavior

Primitives

compi-

lation

Semantic ASM

initialisation

execution

SDL Abstract

Machine
Figure 3.5: SDL dynamic semantics1. Monotonicity : the currentTime function changes its values monotonically increasing overASM runs.2. Discreteness: for every � 2 R there is a �nite number of steps made by the ASM beforecurrentTime becomes greater than � .3.3.3 Dynamic semanticsIn this section we will examine the organization of the dynamic SDL semantics as describedin [IT99c] and we will discuss the semantics of concurrency and time. We conclude with somegeneral remarks on the suitability of ASM for describing the semantics of SDL, and on the othersemantic de�nition attempts that can be found in the literature.Structure of the dynamic semanticsThe approach undertaken in [IT99c] to de�ne the dynamic semantics of SDL is sketched inFig. 3.5. The semantics provides the rules for building the ASM representing the semanticmodel of an SDL system.The semantic ASM is a multi-agent ASM (see previous section) comprising one ASM agentfor each living SDL agent, and one ASM agent for each agent instance set contained in thesystem, at a certain moment. The behavior of each agent, prescribed by a corresponding ASMprogram, comports two phases: an initialization phase and an execution phase. The entiresemantic ASM of an SDL system is executed in two phases, which correspond to the initializationand execution of the system agent.The programs of the semantic ASM are based on a set of ASM rules implementing thebehavior of the basic SDL objects. These rules form together a library of ASM macros8, calledthe SDL Abstract Machine (SAM). The description of the SAM takes up a signi�cant part ofthe formal dynamic semantics of SDL, and includes primitives which implement:8An ASM macro is a named update rule, that can be referenced from other macros or programs.

3.3. Semantics 55{ The signal
ow model of SDL: signals, gates, input ports, channels and routing, timersand exceptions.{ The agent model described above, comprising the de�nitions of agent domains and asso-ciated functions (agent mode functions for modeling phases of the agent's behavior, etc.).{ The behavior primitives, the abstract machine instructions of the SAM. This part containsrules implementing SDL statements: assignment, call, output, create, timer set/reset, etc.The SAM programs which specify the behavior of the semantic ASM use, directly or throughthe SAM primitives, the syntactic structure of the SDL system, more precisely the AS1 syn-tactic tree extracted from an SDL speci�cation (see the static semantics, x3.3.1). As shownin Fig. 3.5, the SDL structure and data parts are used directly, while the AS1 syntactic treenodes corresponding to the behavior description, i.e. SDL state machine transitions, need anadditional preprocessing step.The preprocessing step, called compilation in [IT99c], is necessary because of the limitedcapability of ASM to represent sequential behavior. As shown in x3.3.2, an ASM agent functionsby repeatedly evaluating the same program over the current ASM state, and atomically updatinga set of locations as a result of this evaluation. In order to model sequential algorithms in ASM,one has to explicitly store and use control
ow information, e.g. by keeping an ASM function thatmemorizes the current position in the program (program counter). This is how SDL transitioncode is handled in [IT99c]. The compilation step assigns unique labels to the SDL instructionscontained on every transition in the system, used as values of the program counter.A complete description of the components of the dynamic semantics of SDL described aboveis outside the scope of this work. For that, the reader is referred to [IT99c]. Some features of thedynamic semantics which are relevant to the present work are discussed in the next paragraph.Semantics of concurrencyThe concurrency model for SDL is derived from the concurrency model of distributed ASMs,described in 3.3.2. As we mentioned there, the runs of a multi-agent ASM are partially orderedsets of transitions, but the model is proved to be equivalent to a model with nondeterministicinterleaving at the level of ASM agent transitions.On the level of SDL, this model corresponds to interleaving of individual SDL actions (task,create, output, etc.), as all simple SDL actions are executed in one ASM step9.The evaluation of the expressions contained in an SDL action, e.g. output or createparameters, right-hand side of task, in not included in the unique ASM step mentioned before.These expressions are evaluated in a series of ASM steps preceding the action. Therefore,interleaving may occur during the parallel evaluation of expression in parallel agents. However,as there is no communication between agents executing in parallel10, other than by means ofSDL signals, and signals cannot in
uence the result of an ongoing expression evaluation, theinterleaving that may occur during parallel expression evaluation has no in
uence over the overallbehavior of the system.9This concerns only simple actions (see x3.2.3). Compound actions written in the textual algorithmic language,are mapped to structures of simple actions in the static semantics section of [IT99c]. For compound actions, theatomicity level is that of the simple actions contained therein.10Alternating agents contained in a process agent (see x3.2.2) are protected from parallel execution using amutual exclusion
ag in the state of the owner agent.

56 Chapter 3. SDLSemantics of time. TimersAs shown in x3.3.2 on page 53, time in the ASM model is considered part of the environment,and modeled through themonitored function currentTime. There are two monitored functionsrelevant for the temporal behavior of SDL systems in the dynamic semantics:1. monitored now : ! Real , is used instead of currentTime in the SDL semantics, to rep-resent the current time. now satis�es the same constraints as currentTime (monotonicity,discreteness), and one additional constraint:{ The value of now does not increase as long as a signal is in transit on a non-delayingchannel.2. monitored delay : Link! Duration gives the amount of time with which a signal passingthrough a Link is delayed. delay is a monitored function, so it can vary nondeterministicallyduring the execution of the system. It satis�es two integrity constraints:{ It always returns 0 for non-delaying channels.{ For every link l, successive evaluations of now + l.delay yield increasing values. Thisconstraint ensures that channels preserve the order of the conveyed signals.Timers are managed in the SDL Abstract Machine using the concept of schedule. Each inputgate has a schedule which contains a list of signals with their corresponding arrival times. Inthe ASM model, the schedule contains both the signals in transit (with the arrival time > now)and the arrived signals (with arrival time � now). The queue of the gate, which in SDL is a\physical" object, is merely a derived function in the ASM model: it contains the signals fromthe schedule for which the arrival time is � now. For further details on the modeling of schedulesthe reader is referred to [IT99c, GGP99].The schedule provides a convenient way to handle timers: when an agent sets a timer, acorresponding timer signal is directly put in the agent's schedule, with an arrival time equal tothe timer deadline. Then, as soon as now becomes greater than the deadline, the timer becomesvisible in the (derived) queue of the agent.Schedules are also used, in combination with the delay function, to model communicationchannel delays.We outline below, in less formal terms, the main characteristics of the semantics of time inSDL implied by the ASM modeling described before:{ Individual actions on SDL transitions are atomic, and execute in 0 time.{ The evaluation of SDL expressions is not atomic, and therefore the value of the ASMfunction now may vary during evaluation. This may in
uence the result of expressionsinvolving the SDL prede�ned expression now.{ Any amount of time may generally pass between the execution of two actions, or before atransition is triggered.{ A timer, although visible in the queue from the moment it expires (see the explanation onschedules, above) may be ignored by the concerned agent for an indeterminate amount oftime.

3.3. Semantics 57ASM vs. other semantic approachesIt can be argued that the ASM semantics of SDL presented in the previous paragraphs, whilebeing formal, captures the functioning of SDL systems at the right abstraction level. Indeed,the functioning of one ASM agent is close to that of an Extended Finite State Machine, whichis the intended behavioral model of SDL agents [OFMP+94].Moreover, composition and communication between parallel agents is captured in ASM bythe multi-agent ASM model and by sharing parts of the state between multiple agents. Thismodel corresponds naturally to the semantics of SDL described informally in Z.100 [IT99b]. Themodel also makes unnecessary the description of explicit composition operators, which would benecessary in an automata-based semantics model, while still being equivalent to an asynchronous-synchronized composition (the synchronized actions corresponding to modi�cations of the sharedlocations of the global ASM state).The ASM semantics of SDL also responds to a number of critiques which concerned theprevious version of the standard formal semantics (see for example [Boz99]), namely the con-currency model, the handling of timers, etc.Several other semantic models for SDL have been proposed in the literature. They usuallytackle only with a subset of the language. We mention some of them here, with an accent onthose concerned with the representation of timing issues.{ [KM95, MGHS96] describes two possible ways of de�ning a timed denotational semanticsfor SDL, based on the Duration Calculus [CHR92]. The semantics of an SDL processis a duration calculus formula satis�ed by the process speci�cation, and the semanticsof a system is obtained by the conjunction of the formulae corresponding to the systemcomponents.System timing hypotheses, e.g. duration of individual tasks, may be expressed similarlywith duration calculus formulae. The semantics together with the hypotheses may be usedfor proving timing properties of the SDL system. However, we found no characterizationof the level of automation of this task in the literature.The semantics given in [KM95] is restricted to a small subset of SDL (restrictions concernarchitecture, behavior and data) and cannot scale up without diÆculties, as noted by itsauthors.{ A di�erent approach is proposed in [BFG+99, BGMS98, Boz99], where a semantics isgiven to a representative subset of SDL by translation to another formalism, IF, basedon extended communicating timed automata. The dynamic semantics of IF is describedformally in [Boz99], using a layered approach and taking as basis Labeled TransitionSystems (LTS) and Timed Automata (TA, [ACD93, AD94]). The translation of SDL toIF is described informally in [Boz99].The approach undertaken in [BFG+99, BGMS98, Boz99] answers many problems raisedin the context of our present work, concerning the description and analysis of time-relatedbehavior. However, the answers are given at the level of IF rather than SDL. In contrast,the approach presented in this thesis concentrates on providing extensions, semantics andtechniques working directly on the level of SDL and its standard ASM semantics.{ Other semantic models for SDL proposed in the literature are not particularly concernedwith timing issues. We cite here semantic de�nitions for SDL based on Petri Nets [FG97,FDT95], process algebra [BMU98], �nite automata [God91] and data
ow models [Bro91].

58 Chapter 3. SDL3.4 ToolsSDLmodels can be employed in several phases of the system development cycle, as noted in x3.1.Speci�c software tools support the developer in each of this phases. In this section we review themain types of tools for building and analyzing SDL models. The types of tools presented herecan be found in several SDL tool frameworks, but they have common characteristics beyondframework or vendor speci�c issues.{ Editors and semantic checkers. SDL has a graphical syntax which makes the editoran important part of a tool framework. Editing is usually doubled by a syntactic andsemantic checker, which ensures that the static semantics constraints of SDL are met bya speci�cation.{ Simulation tools perform a symbolic execution of an SDL speci�cation, conforming moreor less to the formal dynamic semantics (x3.3.3). Simulation tools provide usual debuggingfunctionality (step by step execution, breakpoints, investigation of system values, etc.) aswell as more advanced features (stepping backwards, automatic stimulation of the systemwith signals, random simulation, tracking of complex conditions e.g. speci�ed through astate machine, etc.).Because the real execution and communication times under simulation di�er from thosefound in implementations, simulation tools typically use an arti�cial notion of time, andcontrol time passage during simulation. Thus, the notion of time in simulation is morerestrictive than the one speci�ed by the formal semantics (x3.3.3). This issue is furtherdiscussed in x3.5.{ Veri�cation tools can be used to prove formally that an SDL system speci�cation satis-�es a certain behavior property. The way the property can be de�ned is tool-speci�c, andcan be a temporal logic or another formalism (Message Sequence Charts used as prop-erty speci�cation language, automata based languages, etc.). The veri�cation methodsimplemented by SDL tools are derived from model checking [QS82, CES86] (see also themonographs [CGP99] and [Hol91]).Dealing with time can be an important aspect of veri�cation, and tools typically use acontrolled notion of time equivalent to that used by simulators.{ Code generators and deployment tools allow the developer to obtain an implemen-tation for a speci�c platform automatically from the SDL speci�cation. As SDL is animperative, design-oriented language, the translation of most SDL constructs into imple-mentation objects is straightforward.{ Test generators can be used for automatically deriving test cases from an SDLmodel. Inthis case, the SDL speci�cation is considered a correct, high-level description of the desiredsystem functionality. Test cases corresponding to particular system executions are derivedusing simulation techniques. Current test generation tools and simulation tools handlesystem time in a similar manner. However, the test generators of which we are aware usethe information concerning time only to correctly explore the SDL system execution, anddo not generate timing information in the tests.

3.5. Discussion 593.5 DiscussionThis section complements the preceding SDL language description with some general remarks onthe usability of SDL for the speci�cation and analysis of real-time systems. The ideas outlinedhere are also elaborated in [BGK+00].Speci�cation vs. programming in SDLSDL has the double aim of being on one hand a high-level speci�cation formalism, which meansit must abstract from certain implementation details, and on the other hand a programming(or description) formalism from which direct code generation is possible. The two roles ofthe language are sometimes con
icting, and in many cases the description side has been givenpriority.In consequence, SDL has several characteristics which make it interesting as a design lan-guage for real-time systems: native asynchronous communication, timer constructs, hierarchicalorganization of the speci�cation, etc. However, for requirements and high-level system speci�-cation, the constructs provided by SDL are mostly insuÆcient.In [BGK+00, BGM+01] we proposed several extensions to SDL, necessary in order to capturedescriptive information appearing in the initial phases of system modeling:{ Assumptions or knowledge about channel reliability, with attributes like loss rate, mini-mal/maximal delays, etc. As all other information types enumerated below, informationabout channels may be available early in the development cycle, and should be capturedin the SDL model. It is useful during simulation and veri�cation.Currently, in order to model such information in SDL, one has to model the behavior(losses and delays) of a channel in an imperative manner, e.g. through an SDL process.The approach has several drawbacks enumerated in [BGK+00], but is nevertheless used inpractice whenever the characteristics of channels are essential for simulation and veri�ca-tion purposes (e.g. in speci�cations of
ow control protocols, which are designed preciselyto cope with losses and delays).{ Information about execution times, especially in abstract SDL models containing informalaction speci�cations.Currently, execution times must be modeled by introducing explicit waiting (e.g. withtimers). This works for specifying minimal or exact execution times, but cannot expressmaximal execution times. Using such programming concepts to model high-level descrip-tive information about timing also changes the meaning of the model, which can preventit from being used for tasks such as code generation.{ Information about the behavior of the environment. In SDL, the system may communicatewith the environment, which is completely unspeci�ed. However, in real systems somecharacteristics of the environment, concerning the ordering and periodicity of signals, arefrequently known. The well-functioning of the system may rely on such assumptions onthe environment.Some of these extensions and their possible exploitation are described in the later chaptersof this thesis.

60 Chapter 3. SDLReasoning about time in SDL speci�cationsThe manner in which time progresses during the execution of a system is left unspeci�ed in SDL.Z.100 [IT99b] speci�es that an indeterminate amount of time may elapse during the executionof any action, and two di�erent executions of the same action may take di�erent amounts oftime. Moreover, any agent may be kept waiting or may be suspended indeterminately by thesystem scheduler, which is not speci�ed. The modeling of time in the formal ASM semantics[IT99c] complies with the above informal description.These assumptions about the behavior of an SDL system are the minimal hypotheses thatcan be assumed about any implementation of the system. With such loose assumptions aboutthe performance of the underlying machine, many unrealistic execution scenarios of an SDLspeci�cation are actually allowed by the semantics. The result is that it is diÆcult to guaranteealmost any time-related property about the system behavior. This problem, previously raisedby other authors [Boz99, MGHS96], is also examined in [BGK+00, BGM+01].SDL simulation and veri�cation tools solve this problem by deviating from the standardsemantics in what concerns time. As mentioned in x3.4, in simulation and veri�cation tools timeis a \logical" parameter, controlled by the tool. The control is based on a set of tool-speci�c rules(which may be parameterized). For example, the ObjectGEODE simulator [TEL00a] controlstime passage by considering that actions take 0 time to execute unless otherwise speci�ed, andthat time only passes when the system is idle (all agents are in a stable state waiting for anexternal stimulus). The solution provided by tools falls in the other extreme: it idealizes theperformance of the underlying machine and may consider unrealizable certain realistic executionscenarios.In Chapter 6 we propose a solution for this problem, based on constructs and techniquesinitially developed in the framework of timed automata. The idea is to include descriptions ofassumptions on time in the SDL model, and to use these assumptions for a controlling timeprogress during simulation and veri�cation.

Chapter 4MSC and GOALA central aspect of the real-time systems speci�cation and validation process adopted in thiswork is the speci�cation of timing requirements. Such requirements may serve di�erent purposes:{ during system analysis/speci�cation, requirements describe features of the system on ahigh-level of abstraction,{ during validation, requirements describe properties of the system which have to be veri�ed,{ for automatic test generation, requirements describe the typical functions of the system,for which test cases have to be generated.Requirements may be described, up to a certain limit, in SDL. However, they are usuallysituated on a more abstract level for which SDL is ill adapted. For instance, a pure functionalrequirement for a typical behavior of a system, such as \the system responds to a signal A witha signal B within ... time units" is not concerned with the structure of the system, still thestructure has to be described if the requirement is written in SDL. Moreover, as noted in theend of Chapter 3, SDL is in general ill adapted for non-imperative (i.e. declarative) descriptionof behavior.In practice, speci�c (declarative) languages are used to specify requirements. Such languagesrange from logic formalisms (�rst order logic, temporal logics) to automata-based languagesor trace languages. Industrial practitioners show a preference for trace-based requirementslanguages, this being proved by the integration of such languages within modern analysis anddesign methodologies [IT97, OMG99].The SDLmethodology guidelines [IT97] recommends the use of MSC [IT99a] as requirementsspeci�cation language in the context of designing SDL systems. We will examine also a secondlanguage, GOAL [ALH95], as it provides a complement to MSC. GOAL is de�ned and supportedin the ObjectGEODE toolset [TEL00a], and is more suitable than MSC for the speci�cationof properties employed in formal veri�cation. In Chapter 7, MSC and GOAL are used andextended for expressing time-related properties of real-time systems.4.1 MSCMessage Sequence Charts is a formal language for representing execution traces of systems interms of the messages exchanged between the system components or with the environment. TheMSC Language is standardized and maintained by the ITU{T as the Recommendation Z.120[IT99a]. 61

62 Chapter 4. MSC and GOALMSC emerged from a practical need to express system execution traces in a visually intu-itive and precise way. Many non-standard precursors of MSC (time sequence diagrams, arrowdiagrams, information
ow diagrams, interworkings) were used locally in companies and stan-dardization bodies in the telecommunication sector. The work on a standard language forrepresenting execution traces begun in the ITU{T around 1990.The �rst version of MSC dates from 1992, and it provides a textual and a graphical syntax,as well as an informal semantics. The elements de�ned in MSC-92 { instances, messages, con-ditions, actions, timers, process creation and process stop, coregions and sub-MSCs { remainedessentially the same in the current version of the language (MSC-2000).Around 1993, substantial work was put into de�ning a formal semantics for MSC. Therewere three main proposals: one based on automata [LL93, PL93], one based on Petri nets[GPR93], and one based on process algebra [MR94, MR96]. An improved version of the thirdone is currently part of the MSC standard (Z.120 Annex B).The 1996 version of MSC added several structural concepts { inline expressions, MSC refer-ences and High-level MSCs (HMSC) { which facilitate the construction of large speci�cations.A few basic concepts were also added: gates and general ordering arrows.The recent interest for expressing and analyzing timing constraints with MSCs lead to aseries of new concepts, added in MSC-2000. This version also includes constructs for declaringand manipulating data.Paradigm and scopeA basic MSC speci�cation essentially describes a set of instances and messages exchangedbetween these instances. AnMSC instance represents a component of the designed system, butthe level of granularity is unde�ned: the instance may correspond to an agent, a set of agentsor the entire system in an SDL speci�cation.Besides messages (outputs and inputs), other occurrences may be represented on an MSCinstance: timers, actions, local and global conditions. The language o�ers mechanisms forbuilding complex MSCs by composing basic MSCs.The scope ofMSC is the speci�cation of requirements for reactive systems and system com-ponents. Such requirements may appear in the initial phases of system development (analysis,speci�cation, design), they may be execution traces built for debugging purposes, or they maybe a basis for simulation, veri�cation and test case generation.Language de�nition artifactsThe MSC language de�nition (Z.120, [IT99a]) includes a textual syntax (MSC/PR), a graphicalsyntax (MSC/GR), an informal semantics written in English and a formal semantics (Z.120Annex B). The formal semantics is not stable yet in the current version of the language; conse-quently, in the following we refer to the formal semantics of MSC-96.The textual and graphical syntaxes have equivalent power of expression. The graphical formis easily readable and it is the form in which documents are sketched and used by humans.The textual format of MSC was designed primarily for facilitating the electronic exchange ofdocuments between CASE tools.1 Being simpler and more consistent than the graphical syntax,the textual syntax is also used as basis for the de�nition of the formal semantics.1Computer Aided Software Engineering tools

4.1. MSC 63

EnterSession(name2)

EnterSession(name1)

client1

client2

Client

srv

Client

Server

CACK

CR(name2)

CACK

CR(name1)

StartSession(2, name1, name2)

StartSession(2, name1, name2)

Session started

initial

msc
 connection;

inst
srv

: Server, client1

: Client, client2

: Client;

instance
 srv

: Server;

 condition
 initial
shared all
;

 in
CR(name1)
from
 client1;

 out
 CACK
to
 client1;

 in
CR(name2)
from
 client2;

 out
 CACK
to
 client2;

 out
 StartSession(2, name1, name2)
to
 client1;

 ou
t
 StartSession (2, name1, name2)
to
 client2;

 condition
 Session_started
shared all
;

endinstance
;

instance
client1

: Client;

 condition
 initial
shared all
;

 in
EnterSession(name1)
 from env
;

 out
CR(name1)
to
srv;

 in
 CACK
from
 srv;

 in
 StartSession(2, nam
e1, name2)
form
srv;

 condition
 Session_started
shared all
;

endinstance
;

instance
client2

: Client;

…[omitted]

endinstance

;

endmsc

;

msc
connection

T(5)

 U(2)

U(2)

Figure 4.1: Basic MSC for the connection phase of the protocolIn what follows we will use a simple made-up example for presenting the MSC languageconstructs. The example is a simple protocol, belonging to the application layer in the OSIstack, in which several clients use a central server for exchanging services (the nature of whichis not de�ned) in a session-based fashion. The initial connection phase (with 2 clients) is shownin Figure 4.1, in both graphic and textual format.4.1.1 Basic MSCA Basic MSC is a speci�cation describing instances and events. The nature of these concepts isexplained in the following paragraphs.Instances, events, orderingInstances are distinct sub-parts of a system, characterized by a name and a type. The type inMSC is just a name and it is supposed to be a meaningful information in the context of thelanguage in which the system is modeled. For example the type may correspond in SDL to anagent type, agent instance set, etc.As shown in Fig. 4.1, in graphical format, an instance is represented as a vertical bar,beginning at the top with a rectangle containing the name of the instance and ending at thebottom with an end symbol (or with a stop symbol as we will see later).Various types of events may be represented on an instance. Fig. 4.1 shows message outputand message input events (emission and reception of a message are considered distinct events,i.e. the model is asynchronous), timer events (set, reset, timeout) and global conditions.The events drawn on an instance bar are considered ordered in time, from top to bottom.However, the global ordering of events from multiple instances is not necessarily the visuallyintuitive order. Actually, the global order of events is a partial order, de�ned by the local instanceorders and the causality (a message must be emitted before it is consumed).

64 Chapter 4. MSC and GOALThus, the MSC in Fig. 4.1 states that CR(name1) is received by srv before CR(name2), butformally it says nothing about the order in which these two events were emitted.The environment of an MSC is capable of emitting and accepting messages. In the graphicalform, the outer border represents the environment of an MSC, from and to which message linesmay be drawn. In the textual form, the environment is denoted by env. For example, in Fig.1the message EnterSession is received from the user, who is part of the environment.MessagesA message represents an asynchronous communication occurrence between two MSC instances.The message has a name and may carry data parameters. In MSC, a message de�nes two events:the output and the input. The latter may actually represent either the receipt or the handling ofthe message by the destination instance, as the relation between MSC models and other modelsof a system (e.g. SDL) is outside the scope of [IT99a].In the graphical form, a message is drawn as an arrow, which must be horizontal or headingdownwards. The way the message is drawn does not imply anything about the delay betweenthe emission and the reception of the message. However, the above rule is useful as it eliminatesgeometrically the possibility of cyclic causality.Lost and found messages may also be represented on MSCs. A lost message de�nes anoutput event with no corresponding input. A found message de�nes an input event with nocorresponding output.In MSC-2000, the message types and the types of parameters may be declared. However,MSC does not describe a data de�nition language, so the user may use data types de�ned in otherlanguages (SDL, UML, ASN.1, etc.). Such external data types are referenced through namesthat are not interpreted in the MSC semantics. Instances may own variables which allows forthe speci�cation of more complex requirements, such as dependencies between parameter valuesof di�erent messages. Constructs for assigning a value to a variable may appear either in messagereceipts or inside actions.General ordering arrows and coregionsGeneral ordering arrows are useful when we want to constrain the order of two events, whichare otherwise unrelated by the MSC partial order. For example, in Fig. 4.1, the emission ofCR(name1) by client1 is not related in any way with the emission of CR(name2) by client2. Tospecify that client2 emits �rst, one would have to use a general ordering arrow.Coregions are used to relax the local ordering of events on an instance. A coregion belongs toan instance and is de�ned by a starting point and an ending point. The e�ect of a coregion is thatevents represented inside the coregion boundaries may occur in any order and not necessarily inthe visual order.Timer operationsMSC timers are inspired from the homonym concept of SDL. An instance may specify a timerset followed either by a timer reset or by a timeout. These timer events may be representedalso individually, when the description of an instance is split into more MSCs, and the timerconstructs appear on di�erent MSCs. A timer set by an instance may only timeout on or bereset by the same instance.

4.1. MSC 65As noted in [BAL97], timers may be used for expressing either minimal or maximal delaysbetween events on a same instance. In our example in Fig. 4.1, the timer T on the instancesrv models the requirement that the server must wait for at least 5 time units for incomingconnections, and after that it may consider that subscription phase ended. Timer U on client1and client2 models the requirement that the connection acknowledgement must come from theserver in at most 2 time units since the connection request was sent.Timer operations provide a very restrictive mechanism for specifying timing constraints, forthe following reasons: �rstly, timers are just discrete events in the formal semantics of MSC,with no special timing connotations. Secondly, there are constraints which cannot be representedwith timers, such as the delay between the emission and the reception of a message.For this reason, additional timing annotations were introduced in MSC-2000. They arediscussed in a further section.ConditionsAn MSC condition construct (e.g. initial or Session started in Fig. 4.1) represents either asigni�cant state of an instance, or a state shared by several instances. Shared states (conditions)are useful as they provide synchronization points between instances: a shared state introducesa single event which is shared by all instances and thus constrains the global partial ordering ofevents.A condition is characterized only by a name, and it does not necessarily say something aboutthe actual state of the system in terms of variables, message queues, etc.Actions, Method Calls, Instance Creation, StopActions { containing variable assignments or uninterpreted text { may be represented on in-stances.A concept of method call similar to the SDL RPC was introduced inMSC-2000. A methodcall begins with a message between two instances, representing the initiation of the method,and ends with another message representing the reply. Between the two, a suspension region isdrawn on the sender, and no message, timer or other construct may appear in this region.Creation of an instance by another instance, as well as termination of the execution of aninstance may be represented as an MSC event.4.1.2 Structuring conceptsThe MSC language de�nes several mechanisms for structuring complex speci�cations and de-scribing non-linear control
ows. These are: instance decomposition, inline MSCs, MSC refer-ences and High-level MSCs (HMSC).Instance decompositionAn instance from one MSC may be re�ned in another MSC containing sub-entities of thatinstance. If an instance I from an MSC M1 is decomposed in another MSC M2, then theenvironment of M2 will send and receive exactly the same messages that are received and sentby I in M1. A similar rule applies for timer events: a timer event appearing on the decomposedinstance I in M1 must appear someplace on an instance in M2.

66 Chapter 4. MSC and GOALInline MSCsInline expressions allow to express non-linear control
ows inside an MSC. They are based onthe notion of MSC composition operator. The operators are:{ alternative choice between two or more MSCs (alt operator),{ parallel execution of two or more MSC sections (par operator),{ repeated execution of an MSC section (loop operator),{ optional execution of an MSC section (opt operator){ execution of an MSC section with an option for treating exceptions (exc operator).On the semantics of inline operators, we note that the boundaries on an operand MSC arenot considered synchronization points for the instances involved in the MSC. Thus, for example,if two instances I1 and I2 are described by a loop MSC M, this is equivalent to the repetitionof M an arbitrary number of times, but does not introduce synchronization points between twosuccessive occurrences of M. For a more complete de�nition, the reader is referred to [IT99a].Gates, MSC references and HMSCMSC references may be used to re�ne the behavior of one or more instances from an MSCin another MSC. A referred MSC must contain the same instances as the referring MSC. Anadvantage of using MSC references is that they can be parameterized with data.Gates are used to clarify the connections of a referenced MSC when it is put in a largercontext. They are used to provide a mapping between the environment (bounding box) of thereferenced MSC and the instances or the environment of the referencing MSC.Gates are inspired from the homonym concept from SDL; thus, a gate is a named interfacebetween an MSC and its environment. Every message or general ordering arrow coming from theenvironment or going to the environment comes or goes through a gate. The gate through whicha message is transferred may be declared explicitly, or introduced implicitly (with a default namedepending on the name and direction of the transferred message).Gates and MSC references allow for the description of High-level MSCs (HMSC). A HMSCis a graph formed of start nodes, end nodes, conditions, MSC references and connection points.Arrows in this graph represent the
ow of control. Multiple arrows outgoing from the samenode represent alternatives. Conditions represent synchronization points for all the instancesconcerned by the HMSC. Strict static requirements for well formedness are given in the languagede�nition, such as: there should be exactly one start node and one end node for each HMSC.HMSCs allow a graphical representation of structured MSCs but the power of expression is thesame as that of textual composition operators (alt, loop, par, opt). An example of HMSC isgiven in Fig. 4.2; it includes references to MSC that are not described here for brevity.As for inline composition operators, we note that the sequential composition in HMSC doesnot introduce implicit synchronization points between the instances concerned by the HMSC.The semantics of the sequential composition of two MSCs is equivalent to that of the juxtapo-sition of events from the two MSCs on respective instances.4.1.3 Semantics and decidabilityAs in the case of SDL, there were multiple attempts for de�ning a formal semantics for MSC,based on various formalisms. The problem is easier than in the case of SDL, because MSC

4.1. MSC 67

Prepare transaction

Session started

 Cannot start

connection

Last transaction

Continue

Transaction

Figure 4.2: Example of high-level MSCis a language for describing traces and a formal semantics must only provide a mathematicalrelationship between a well formed MSC and the corresponding set of acceptable traces.The language of event traces described by a Basic MSC is a regular language, and thereare several ways in which it can be characterized formally: using �nite automata [LL93, PL93],1-safe2 Petri-nets [GPR93], or process algebra terms [MR94]. The three approaches mentionedabove are brie
y presented in the following paragraphs.The language of traces de�ned by a High-level MSC is no longer a regular language. Thisraises decidability issues which are discussed in the end of this section.Petri-net semantics of Basic MSCA Petri-net based semantics for MSC is described by Grabowski et. al. in [GPR93]. Fig. 4.3shows an example of a simple Basic MSC and the corresponding labeled Petri net. We employthe usual notation for Petri nets, in which circles denote places, rectangles denote transitions,and arcs denote token
ow.A place represents either the state of an instance between two consecutive MSC events,or a message that was sent and waits to be received. The labels on places correspond to theirfunction (in our example, labels are shown on places representing waiting instances). Transitionsrepresent MSC events. The initial marking puts one token in each place corresponding to thebeginning of an instance (except for dynamically created instances).Shared MSC conditions, which provide synchronization between instances, are modeled us-ing a unique synchronizing transition in the Petri net. A condition shared by n instances isrepresented as a transition with n input arcs and n output arcs, each corresponding to one ofthe n instances.It can be easily shown that Petri nets constructed from Basic MSCs following the above rulessatisfy the 1-safeness requirement (i.e. have at most one token in each place at any time). It2The meaning of 1-safeness is that in all reachable markings of a net, the number of tokens in any place neverexceeds one. See also [Pet81].

68 Chapter 4. MSC and GOAL

Figure 4.3: Labeled Petri net corresponding to a Basic MSCfollows that the language of traces de�ned by the MSC is regular, since the marking automatonof the Petri net is �nite.Automata semantics of Basic MSCAnother semantics for MSC, based on automata, was proposed by Ladkin and Leue [LL93, PL93].The automaton they construct from an MSC speci�cation is roughly equivalent to the markingautomaton of the Petri net proposed in [GPR93].Process algebra semantics of Basic MSCThe standard MSC formal semantics (Z.120 Annex B) is an elaborated version of the processalgebra-based semantics of Mauw et. al [MR94, MR96]. The semantics of an MSC is given by aterm in a process algebra PABMSC , which is an extension of the PA� de�ned in [BW90]. Thesignature of PABMSC contains:{ Empty process (�) and deadlock (Æ) symbols.{ Action constants, which are labels denoting MSC events: actions, outputs, inputs, etc.{ Operators for alternative composition (+), sequential composition (�), free merge (k),left merge (bb) and termination (p).For a more complete description of the process algebra semantics of MSC, the reader isreferred to [MR96] and to Z.120 Annex B.Decidability of HMSCAs de�ned by the standard, the upper and lower boundaries of Basic MSCs referenced from aHMSC do not constitute synchronization points between the represented MSC instances. Thismeans that, if we have a sequence of two Basic MSCs containing two instances (A and B),there may be traces represented by the MSC in which events appearing in (the beginning of)the second MSC on instance A, occur before events appearing in (the end of) the �rst MSC oninstance B.

4.1. MSC 69If we consider the Petri net semantics of MSC, which is quite intuitive for this example, thee�ect of this lack of synchronization at MSC boundaries destroys the 1-safeness property of theresulted Petri net.Indeed, if we take a Basic MSC M containing only two instances A and B and a messagem from A to B, and a HMSC which describes an in�nite loop on the BMSC M , the Petri netcorresponding to the HMSC contains places for which the marking may increase to in�nity. Thiscorresponds to the situation where A sends the message m continually at a higher rate than Bcan consume.Because of this choice of the semantics of HMSCs, most model checking problems for HMSCsare undecidable. An important example is the undecidability of the problem of emptiness of theintersection of two HMSCs. For a survey of the undecidability problems of HMSCs, the readeris referred to [MP00].In order to overpass the undecidability problems mentioned above, validation tools usingMSC as property speci�cation language employ a di�erent semantics for HMSCs. For example,the ObjectGEODE tool on which our further work relies, considers that Basic MSC boundariesintroduce synchronization points, and thus a HMSC de�nes a regular language of traces and isequivalent to an automaton. Moreover, the tool does not allow free-formed HMSCs, but usesoperators similar to the inline MSC operators described on page 66.4.1.4 ToolsMSC models can be employed in di�erent phases of the system development cycle, as notedin the beginning of x4.1. Various software tools provide support for each of these phases. Weenumerate below some of the tool types which are involved in building and manipulating MSCdescriptions, in order to set the background for the work presented in subsequent chapters ofthis thesis.{ Editors, syntactic and semantic checkers, used for manual editing of MSC speci�ca-tions and static checking.{ Simulation and veri�cation tools for other system models, such as SDL models. Theyuse MSC as an auxiliary language, and may take MSC speci�cations as input, or producethem as output.In input, an MSC speci�cation can be used for guiding a simulation, or for verifying thata system model is compliant to a requirement speci�ed by the MSC. The nature of thecompliance relationship is a tool speci�c issue; for example, an SDL speci�cation may beconsidered compliant to an MSC either if there is an execution of the SDL speci�cationwhich produces a trace that can be found in the MSC (possibly modulo some unobservableevents) or if all executions of the SDL system produce traces from the MSC. This kind offunctionality is frequently provided by SDL simulation and veri�cation tools.In output, MSC may be produced automatically to represent debugging information. Thisis also a frequent functionality of SDL tools.{ Test generation tools which generate tests either directly from an MSC, or from anMSC and another formalism, such as SDL.The MSC language is suitable, within a certain extent, for the speci�cation of test cases forasynchronous reactive systems. The latest version of the ISO test speci�cation languageTTCN [ETS00] actually de�nes MSC as an alternative representation for test cases.

70 Chapter 4. MSC and GOAL
client1

Client

srv

Server

CR(name1)

CACK

StartSession(2,name1,name2)

absolute

measurement

@abs1

@(abs1,abs1 + 5s]

absolute

constraint

(0,2] &c

(0,3*c]

relative

measurement

relative

constraints

msc
tConnection

Figure 4.4: MSC with timing annotationsIn test generation tools, MSC may be used either in output, to represent the test cases, orin input, to represent abstractly a test purpose for which test cases have to be elaboratedbased on another system model (e.g. SDL).4.1.5 Specifying timing informationAs a result of an identi�ed need in real-time systems development, the speci�cation of timedevent traces was approached in MSC-2000:{ The semantics of MSC-2000 was adapted so that an MSC speci�cation describes a setof timed traces of the following form: (e1; t1; e2; t2; e3; t3; :::). In this trace e1; e2; e3; ::: arediscrete events (outputs, inputs, actions, timers, etc.) and t1; t2; t3; ::: are relative timedurations between successive events. At the time of writing, the timed formal semanticsof MSC-2000 is not yet stable.{ Descriptive timing (constraints) may be introduced in MSC speci�cations. Their purposeis to specify the possible values for the time projection of a trace (i.e. t1; t2; t3; :::). Theannotations may specify either the absolute time of occurrence for an event, or the relativedelay between two arbitrary events.Both time of occurrence and delays can be speci�ed using a (possibly degenerated) intervalin the domain of Time values (which is not speci�ed but can be assumed to be that ofpositive reals, R+){ Measurements allow to obtain (and store in a variable of type Time) the relative delaybetween two events, or the absolute time of occurrence of an event. The measured timemay subsequently be used in a constraint.The MSC in Fig. 4.4 shows the representation of timing measurements and constraints.These mechanisms can be used both in Basic MSCs and in High-level MSCs; in the latter theyare attached to the beginning or the end of a referenced Basic MSC, and refer either to the �rstor to the last event in that BMSC.Note also that in the timed semantics of MSC de�ned informally in the standard[IT99a], no particular timing interpretation is attached to timer constructs. Thus, timer

4.2. GOAL 71sets/resets/timeouts model discrete events and do not imply anything as to the timing of theiroccurrence.The introduction of timing information in MSC raises the problem of the internal timingconsistency of an MSC speci�cation: \can there be any trace satisfying the timing requirementsgiven in the MSC, or are inter-event delays contradictory?". This problem has been studiedbefore, and static consistency analysis solutions based on graph theory are given in [AHP96]and [BAL97].The model checking problem for timing properties speci�ed with MSCs has not been ex-tensively explored previously. In Chapter 7 we discuss the manner in which MSCs with timingannotations may be used to specify and verify quantitative temporal properties of real-timesystems modeled in SDL.4.2 GOALScopeGOAL [ALH95] is the requirements speci�cation language supported by the ObjectGEODEtoolset [TEL00a]. It originates in the observer language of the Veda tool, described in [Gro89].Its scope of applicability is more reduced than that of MSC, in the sense that its graphicalrepresentation is not suited for capturing high-level requirements during the analysis and designphases. GOAL is used for:{ Automatic veri�cation of properties on SDL models. GOAL provides additional function-ality compared to MSC in this area, as it can describe properties referring to the internalstructure (agents, states) of an SDL system, or to the value of internal data. It also de�nesa clearer meaning for property satisfaction.{ Guiding simulations and the veri�cation process by: modeling the behavior of the environ-ment, cutting the exploration of parts of the model, injecting faults, unexpected signals,etc., and producing customized traces and statistics.In this work we are interested in GOAL primarily as a property speci�cation language. Inlater chapters of the thesis, we discuss extensions of GOAL for expressing timing properties ofreal-time systems, as well as timed property veri�cation methods and tools.ParadigmGOAL is an automata-based language. A GOAL speci�cation, called observer, is an extended�nite automaton designed to be executed synchronously with an SDL speci�cation, duringsimulation or veri�cation. The meaning of synchronicity is that from synchronized compositionof automata.The transitions of the observer are triggered by events occurring in the SDL model: trans-mission or reception of signals, �ring of transitions, creation or stopping of processes, timeprogression, etc. The states of the observer are classi�ed into ordinary, error or success stateswhich correspond to property satisfaction or breaking.The following sections describe the language concepts and the execution model of GOAL.

72 Chapter 4. MSC and GOAL4.2.1 Language conceptsStructureA GOAL observer speci�cation is similar to the behavior description of an SDL agent. Thedi�erences are:{ An observer is a stand-alone state machine, it is not connected through signal routes orchannels with other state machines.{ Besides internal data (variables), an observer may declare and use probes. Probes areaccess paths to SDL model entities, which can be used to observe or modify SDL modelobjects.{ The transitions of a GOAL observer are triggered either by a provided clause (similar toSDL continuous signals, see x3.2) or by a when clause which observes events happening inthe SDL model (see next paragraph). Input clauses are not allowed, as GOAL observersdo not communicate through signals. Additionally, in GOAL, provided clauses do nothave lower priority than when clauses.{ The transitions must not contain output, set, reset, create or stop actions, as well asseveral expressions de�ned in SDL (self, parent, o�spring, sender).{ The observer state machine must be deterministic, i.e. two transitions should not besimultaneously enabled in a state, and transitions must not contain informal decisions oranyvalue expressions. This is a practical rule imposed by the simulation and veri�cationtools to simplify state space exploration.{ Task actions on transitions can be used to modify both observer variables and SDL modelobjects (SDL variables, signal queues).{ In order to describe a property with an observer, some of its control states can be declaredas error or success states.Observation mechanismsWhen clauses may be used to observe the following types of discrete events occurring in theSDL model:{ the �ring of a particular transition,{ transmission or reception of signals,{ creation or stopping of processes,{ procedure calls.Additionally, provided clauses combined with probes may be used to observe the values ofSDL model variables, as well as time progression (by testing the value of now).GOAL observers may be combined with a transition �lter mechanism, so that the observermay cut the exploration of a part of the state space. This is an e�ective state space reductionmechanism, when a part of the state graph is not interesting for the veri�ed property.Fig. 4.5 shows an example of GOAL observer for the session oriented protocol introducedin x4.1.1. It speci�es that a successful initialization must take at most 5 time units, from themoment the initialization phase begins, until the sending of the �rst StartSession signal. Therepresentation of when clauses is shown in Fig. 4.5.

4.2. GOAL 73
observer obs

dcl x Real;
error state ko;

s

x := now

protocol_initial

protocol_initial

output StartSession

now - x <= 5

true

ok

false

ko

ok

ko

several

transitions

omitted here

Figure 4.5: An example of GOAL observer4.2.2 Observer executionUnlike MSCs which are descriptive, GOAL observers are executable speci�cations. In order tocheck a property of an SDL system, an observer is executed by a simulation or veri�cation toolin parallel with the system.The ObjectGEODE simulation/veri�cation tool, which implements GOAL, uses a notion ofsimulation step which normally corresponds to the execution of an SDL transition. A seriesof observable events (of the kinds described in the previous section) may occur in such anexecution step. These events are tracked by the tool, and after executing the SDL step thefollowing operations are repeated for each tracked event:1. The observer's �reable transition clauses are evaluated, according to:{ the event being processed,{ the global state of the model, after execution of the simulation step.2. If the observer does not have any �reable transitions, its state remains unchanged and thenext event is processed.3. If the observer has more than one �reable transition, a dynamic error occurs (since theobserver must be deterministic) and observer processing stops.4. If the observer has only one �reable transition, it is executed. If execution fails (due to adynamic error) then observer execution stops. If execution is completed successfully, thenext event is processed.A simulation step (e.g. �ring a SDL transition) generating several observable events maylead to several transitions of a same observer.Observers can be used to check automatically that a model behaves correctly, that is to saythat it meets user-de�ned behavior constraints. To describe a property with an observer, itscontrol states must be classi�ed as ordinary, error or success states. The observer should moveto a success state whenever the expected property is met, and to an error state whenever anunexpected behavior is observed.Usually, error states are observer state machine sink states. Since the observers are alwaysexecuted in parallel with the model, when an observer reaches an error (respectively a successstate), the property that it veri�es is false (respectively true) for the scenario that the simulatorhas executed from the initial state up to the current state.

74 Chapter 4. MSC and GOALThis mechanism is suÆcient for verifying safety properties using GOAL observers. Livenessproperties may also be checked using GOAL observers, in a special veri�cation mode (livenessmode) of the ObjectGEODE tool.In liveness mode, observers are executed synchronously with the SDL model in the sameway, but they are regarded as B�uchi automata [B�60]. The veri�er looks for in�nite executions(loops) which do not contain success states (i.e. success states are viewed as progress states,and the tool searches non-progress cycles).4.2.3 Specifying timing propertiesThere are no speci�c constructs for measuring time passage in GOAL. As an observer is alwaysexecuted in parallel with an SDL speci�cation, it may use the value of now to observe timeprogress. This could normally suÆce to express in�nitely complex timing properties.In practice, due to the manner the ObjectGEODE tool manages time, now is of no use inGOAL speci�cations in veri�cation mode. In Chapters 7 and 8 we describe several extensions ofthe GOAL language and of the veri�cation tool, which make them suitable for the veri�cationof quantitative temporal properties.4.3 Expressivity of MSC and GOALMSC and GOAL have slightly di�erent scopes: the former is more descriptive and orientedtowards analysis and requirements capturing, the latter is more veri�cation-oriented. However,both languages may be used in formal speci�cation of properties and veri�cation. In this sectionwe take a brief comparative look to the power of expression of the two languages, viewed asproperty speci�cation formalisms. We distinguish two comparison axes: the �rst measures theevent observation facilities, the second measures the power of the underlying semantic model ofthe two languages.4.3.1 Observation and other language facilitiesGOAL is more powerful than MSC in what concerns the alphabet of events that may be observed.MSCs observe the following event kinds:1. message outputs/inputs,2. timers set/reset/timeout,3. procedure calls,4. process creation/termination5. actions and conditions - existing SDL/MSC tools cannot actually map these to observableevents in the SDL system, so these events are never observed.6. time progress - existing SDL/MSC tools do not support this feature.Additionally to these, GOAL is able to observe:1. �ring of SDL transitions,2. time progress, e�ective in current SDL simulation tools but not in veri�cation,3. data values, discrete states of SDL agents, contents of signal queues.

4.3. Expressivity of MSC and GOAL 75MSC has the advantage of being more abstract and visually intuitive, while GOAL has theadvantage of being a complete imperative language. One can write real event-driven programsin GOAL, with more complicated control
ows than what can be expressed in MSC.Additionally, GOAL programs may modify the simulated SDL model. This can be used forexample for fault injection, or forcing the execution of certain parts of the SDL speci�cation.4.3.2 Semantic model and satisfaction relationshipIn x4.1.3 we noted that the semantic model of standard MSCs is richer than �nite automata,but most model checking problems are undecidable for this model. In practice, veri�cation toolsbased on MSC, such as ObjectGEODE, use a semantics for MSC equivalent to �nite automata.Thus, the basic semantic models of GOAL and MSC are identical.The satisfaction relationship between a model and an MSC speci�cation is outside the scopeof the MSC standard, and depends on the choice of veri�cation tools. Here are some examplesof choices that can be made by tools:{ The MSC represents successful scenarios vs. error scenarios.{ All executions of the system must comply to the MSC vs. at least one execution mustcomply to the MSC.{ The MSC represents a complete trace (all observable events are represented) vs. the MSCrepresents a partial trace (additional events may occur between the events speci�ed by theMSC).In practice, no MSC tool gives control over all these parameters of the semantics of the sat-isfaction relation. Expressing some things (e.g. a combination of complete and partial scenariosin the same MSC) may not even be possible without some extensions to the language.In contrast, the satisfaction relationship between SDL models and GOAL observers, usingexplicitly de�ned success and error states, is suÆciently
exible to encompass all the choicesmentioned above.4.3.3 ConclusionTo conclude, GOAL is more suitable than MSC for formally specifying properties of SDL mod-els, when automatic veri�cation is aimed. Nevertheless, MSC has several advantages: it isstandardized, used on a larger scale (and for more various tasks), more abstract, simpler andmore intuitive. For these reasons, in the context of this thesis we study ways to make bothlanguages more appropriate for the veri�cation of quantitative temporal properties of real-timesystems.

76 Chapter 4. MSC and GOAL

Chapter 5Timed automataIn the previous chapters we have presented the functional description languages on which thereal-time speci�cation and validation approach proposed in this work is based. There, we haveoutlined a series of lacks of these formalisms, which concern both the speci�cation of timinginformation and the possibilities to use such information e.g. in formal reasoning about timingproperties.In this chapter we examine the timed automata model, introduced by Alur et al. [ACD93,AD94], which allows both the description of timing information and the formal (possibly au-tomated) reasoning based on this information. In later chapters, we will use concepts andanalysis techniques from the timed automata framework in order to enhance the support of theSDL-centered framework for the design and validation of real-time systems.In the beginning of the chapter we discuss some of the choices that have to be made whenexplicit timing is introduced in a formalism. In x5.2 we introduce labeled transition systems(LTS) which provide the semantic basis for many formalisms including timed automata. Wecontinue in x5.3 with the de�nition of the timed automata model, whose semantics is based onLTS. In x5.4 we examine the reachability problem for the timed automata model, and someanalysis methods for solving it. The abstractions used for deciding reachability are useful forsolving other important problems for timed automata, e.g. various model checking problems.We close the chapter with a discussion of the extensions of the timed automata model that havebeen studied in the literature.5.1 Reasoning about timeA characteristic of real-time systems is that their correct functioning depends on the timing ortheir actions and responses. A real-time system model must include such timing information,representing either requirements or knowledge about the system behavior.For validation purposes, including timing information in the system model is necessary butnot suÆcient. What is further needed are techniques for manipulating this information andderiving additional properties about the temporal behavior of the model.Model-based vs. axiomatic frameworksVarious frameworks for reasoning about time have been proposed in the literature. There aretwo major lines of thought. One of them is concerned with deriving timing properties based onbehavioral models (the model-based approach). The idea is to take the behavioral model of the77

78 Chapter 5. Timed automatasystem, which is used for modeling and verifying functional properties, and to annotate it withtiming information and use it for modeling and verifying timing properties. The techniques usedfor analyzing such models are based on the exploration of the model state space, and on methodsderived from model checking. Temporal logics may be used in conjunction to these models toexpress properties.Representatives of the model-based based approach are formalisms such as timed automata[ACD93, AD94], temporal extensions of Petri nets [Sif77, Ram74, MF76], temporal extensionsof process algebras [NS91], etc. For property speci�cation, they use real-time extensions oftemporal logics (see for example the survey [AH91]), or automata-based formalisms such astimed B�uchi automata.The second category of frameworks for reasoning about time aim at modeling only thetemporal properties of a system, independently of any behavioral model. Reasoning is possiblebased on a proof system, formed of axioms and inference rules, in which new properties may bederived from existing ones. Examples of such frameworks include duration calculus [CHR92] ortimed extensions of Hoare logic [Sha95].In this work we concentrate on a model-based approach, as we aim to support the validationof quantitative temporal properties based on (extended) SDL models. We take timed automataas starting point, because they are extended versions of �nite automata, and thus semanticallyrelated to SDL.Discrete vs. continuous timeTimed models can be classi�ed in two categories: discrete models and continuous models.In discrete time models, time passes in discrete steps, so the distinguishable moments in thefunctioning of a system may be mapped on the set of positive integers. Any system event occursat one of these countable moments.In continuous time models, such as the timed automata model examined in this chapter,time is real-valued. Time passes continuously between two events occurring at moments t1 andt2, so other events are allowed to occur at any moment in the interval [t1; t2]. Continuous timemodels are also called dense time models.From the point of view of the power of expression, the two classes of models are not equivalent:continuous time models are strictly more expressive than discrete time models. This is arguedinformally in [Alu91, AD94] and more formally in [HMP92, AMP98]. For example, [AMP98]shows that for a certain class of digital circuits modeled with timed automata, discrete timesemantic misses a subset of the intended behavior.From the point of view of the analysis techniques applicable to them, the two classes of modelsare quite di�erent. On one hand, in discrete models time may be considered just another discretevariable of the system. Therefore analysis techniques for untimed models may be easily adaptedto discrete timed models, with all the consequent advantages. On the other hand, continuoustime models generate uncountable state spaces, so their analysis techniques must rely on asymbolic representation of time. With symbolic techniques, a possibly in�nite set of explicitstates is represented in one symbolic state using some coding method.The use of symbolic techniques for handling time may create an overhead at analysis, socontinuous models are generally regarded as more expensive than discrete models. However, thereverse is also possible, as enumerative techniques for discrete time models may su�er a statespace explosion phenomenon in case of time-nondeterministic speci�cations. Several examplessupporting this statement may be found in the case studies section of [Tri98].

5.2. Labeled transition systems 79Reasoning about time in SDL vs. timed automataSDL contains constructs for describing time-driven behavior: the designer can use timers orenabling conditions involving the time variable now in order to describe such behavior. Thus,the execution of an action may be triggered or conditioned by time.While these constructs can model in�nitely complex behavior, SDL has two major drawbackswhen one wants to verify temporal properties of timed systems:1. The formal semantics of the language [IT99c] is loose about time progress: inde�niteamounts of time may pass while a process is in a state even if it has a valid input sig-nal waiting in the queue, and actions take inde�nite times to execute. The only systemcomponent which behaves strictly with respect to time is the underlying component re-sponsible for keeping track of timers and sending timer expiration signals. With such looseassumptions about the performance of the underlying execution machine, it is diÆcult toguarantee almost any time-related property about the system behavior. This problem waspointed out in [BGK+00, BGM+01].2. The complexity of conditions on now is not limited. The modeler may describe inde�nitelycomplex behavior, for which it is diÆcult to conceive analysis methods and algorithms.Timed automata cope with both problems mentioned above:1. They provide stronger requirements on time progress, which can be constrained by thestate of the automaton. Thus, one can specify actions that occur at a speci�c moment orwithin a bounded time, unlike in SDL.2. Time conditions can only have simple forms. As we will see in later sections, in timedautomata the only mechanism to measure time is the clock. An automaton may useseveral clocks at a time, all of which progress at the same rate and can be initializedand tested separately. Time conditions are represented by conditions on clocks, which canonly have some restricted form. These restrictions are essential to make it possible to solveanalytically a series of problems on timed automata, such as the reachability problem orvarious model checking problems.For timed automata techniques to be applied to SDL, a SDL speci�cation has to conform,in a way, to the restrictions mentioned above. We discuss the implications of this in Chapter 6.5.2 Labeled transition systemsTimed automata (TA) are a special kind of Extended Finite State Machines (EFSM), withspeci�c means for describing time-related behavior. EFSM is a generic name for the class ofmodels which are based on a �nite state machines and are extended with additional capabilitiessuch as variables. Various types of EFSMs are used for modeling the behavior of reactivesystems, and they constitute the target model for analysis techniques such as model checking[QS82, CES86]. A common characteristic of all types of EFSM, including timed automata,is that their semantics is given as a (possibly in�nite) labeled graph of states and transitions(Labeled Transition System { LTS).De�nition 5.1 (Labeled Transition System) A labeled transition system (LTS) is a tuple(Q;Q0;�;!) where Q is a set (states set), Q0 2 Q is a non-empty subset of Q (initial states),

80 Chapter 5. Timed automata� is an alphabet of symbols (transition labels) and ! is a ternary relationship on Q � � � Q.We denote x a�! y the fact that (x; a; y) 2!.The structure or content of labels is not de�ned at this level. Usually, when an LTS is usedas the semantic model for a higher-level formalism, labels correspond to actions, transitions,etc. described in that formalism. For speci�c purposes (abstraction, veri�cation) sometimesit may be useful to classify labels according to various criteria, e.g. observable/internal, orinput/output/internal.Semantics of LTSFrom an operational point of view an LTS may be viewed as an automaton. Its execution beginsin the initial state. The LTS is in one state at any time, and it may take a transition out of thisstate depending on the external constraints expressed in terms of labels. LTSs di�er from �niteautomata in that they have no �nal state and acceptance conditions.De�nition 5.2 (traces and runs) Let S = (Q;Q0;�;!) be an LTS and ' = (a0; a1; : : :) a�nite or in�nite sequence of labels from �. ' is a trace of S i� there exists a sequence of states = (q0; q1; : : :) so that qi ai�! qi+18i: i < j'j. The couple (';) is called a run and is representedas q0 a0�! q1 a1�! q2 : : :Depending on the purpose served by an LTS, we may consider di�erent semantics for it.For example, if we want to check whether a certain trace is possible or not in an LTS S, wemight consider the semantics of S as the set of all traces accepted by S. However, if we wantto check that there are no sink states in an LTS, this semantics is not suÆcient. We give belowthe de�nition of the strong equivalence relationship between two LTS (derived from the strongbisimulation relation of [Mil80]).De�nition 5.3 (strong equivalence) Let S1 = (Q1; Q0 1;�1;!1) and S2 = (Q2; Q0 2;�2;!2) be two labeled transition systems. S1 and S2 are strongly equivalent i� there is a relation� 2 Q1 �Q2 such that:8q1 2 Q1:8q2 2 Q2: q1 � q2) 8>>><>>>: 8a 2 �1: 8q01 2 Q1:q1 a�! q01) 9q02 2 Q2 such thatq2 a�! q02 and q2 � q02 , and8a 2 �2: 8q02 2 Q2:q2 a�! q02) 9q01 2 Q1 such thatq1 a�! q01 and q1 � q01.and8q01 2 Q0 1: 9q02 2 Q0 2 such that q01 � q02 , and8q02 2 Q0 2: 9q01 2 Q0 1 such that q01 � q02 .LTS as semantic modelLTS is a natural, although low-level model for representing computations in a Von Neumannarchitecture. Thus, a sequential program in a usual imperative programming language can beseen as an LTS. The states of the LTS are tuples of the form hIC; V i where IC is the instructioncounter that keeps the position of the next instruction to be executed by the program and V is

5.2. Labeled transition systems 81the vector containing the values of all variables in the program. If some variable domains in themodel are in�nite (as it is the case with clocks in TA) the corresponding LTS may not be �nite.Concurrent programs such as SDL speci�cations may be represented with LTSs as the setof all possible interleavings of concurrent actions. For that, some level of atomicity has to beassumed for the instructions of the concurrent programs. The standard ASM semantics of SDL[IT99c] for example is in line with this requirement, and is equivalent to an LTS-based semantics.Generally, when LTS are used as a basis for the semantics of a high-level formalism, thede�nition is done on several layers so that the actual LTS corresponding to a speci�cation in theinitial formalism is not de�ned explicitly. In the case of SDL, the ASMs semantics provides anintermediate level between an SDL speci�cation and the corresponding LTS. Along the sameline, the LTS corresponding to a concurrent model is usually not de�ned explicitly; instead, theLTS is built from other LTSs corresponding to sequential components of the model, by using asuitable LTS composition operator.LTS composition operatorsIn this section we show several composition (product) operators that are usually employedto model concurrent programs. In the following de�nitions, let S1 = (Q1; Q0 1;�1;!1) andS2 = (Q2; Q0 2;�2;!2) be two labeled transition systems.The asynchronous product models non-synchronized parallel composition of programs, i.e.arbitrary interleaving of actions from the two programs.De�nition 5.4 (asynchronous product) The asynchronous product of S1 and S2 is the LTSS1kS2 = (Q1 �Q2; Q0 1 �Q0 2;�1 [�2;!) where ! is de�ned as:(q1; q2) a�! (q01; q02) i� (q1 a�!1 q01 and q2 = q02 orq2 a�!2 q02 and q1 = q01Alternatively, the asynchronous product may also be de�ned such that the two LTS can bothtake a step at the same time (the labels of S1kS2 are then in �1 [�2 [(�1 ��2)).The synchronized product models synchronized parallel composition of programs. Transitionsin S1 and S2 are either non-synchronizing, case in which they execute independently as in theasynchronous product, or synchronizing, case in which they must execute in parallel.De�nition 5.5 (synchronized product) Let � � (!1 � !2) be a relation between the tran-sitions of S1 and S2, which de�nes the pairs of transitions that are synchronizing. We will denote�j!1 and respectively �j!2 the projections of this relation on !1 and !2, i.e. the synchronizingtransitions of S1 and respectively S2. Let � be a transition label not contained in �1 [�2.The synchronized product of S1 and S2 according to � is the LTSS1
� S2 = (Q1 �Q2; Q0 1 �Q0 2; (�1 [f�g) � (�2 [f�g);!)where ! is the minimal set of transitions de�ned by the following rules:1. 8(q1; a; q01) 2!1 such that (q1; a; q01) 62 �j!1 , and 8q2 2 Q2, we have (q1; q2) (a;�)�! (q01; q2).2. 8(q2; a; q02) 2!2 such that (q2; a; q02) 62 �j!2 , and 8q1 2 Q1, we have (q1; q2) (�;a)�! (q1; q02).3. 8((q1; a; q01); (q2; b; q02)) 2 �, we have that (q1; q2) (a;b)�! (q01; q02).

82 Chapter 5. Timed automataA variant of synchronized product frequently used in the literature is based on the equality oflabels. This is equivalent to considering the following set of synchronizing transitions:� = �((q1; a; q01); (q2; b; q02)) 2 (!1 � !2) j a = b	5.3 The timed automata modelTimed automata were de�ned by Alur et al. in [ACD93, AD94]. Several slightly di�erent versionsof the basic model described in [ACD93] have been used in the literature. In the following, wewill use timed automata with urgency, de�ned in [BS97, BST98].De�nition 5.6 (timed automaton) A timed automaton is a tuple A = (�;X ; Q; q0; E)where:1. � is a �nite set of transition labels.2. X is a �nite set of clocks.3. Q is a �nite set of discrete states.4. q0 is a distinguished state of Q called initial state.5. E is a set of transition edges between the states from Q, each edge e = (q; �; u; a;X; q0) 2 Ehaving the following components:{ q; q0 2 Q are the source and destination states (denoted source(e) and dest(e) respec-tively).{ � is the guard of the transition (denoted guard(e)) and it is a conjunction of atomicconditions involving clocks from X .An atomic condition has one of the following two forms: x � c or x � y � c wherex; y 2 X , � 2 f<;�; >;�g and c 2 Z+ is a constant. We will denote CP(X) the setof conjunctions of atomic conditions over the clocks of X .{ u 2 feager; lazy; delayableg is an attribute called the urgency of the transition(denoted urgency(e)).{ a 2 � is the label of the transition edge e (denoted label(e)).{ X � X is the set of clocks reset during the transition e (denoted reset(e)).A semantics for timed automata in terms of labeled transition systems is given in the next para-graph. Informally, timed automata are �nite state machines extended with a set of real-valuedclocks. Clocks are synchronized, in the sense that they increase at the same rate (extended ver-sions of timed automata, in which this condition is relaxed, were also proposed in the literature;they are discussed in the beginning of x5.5).A run of a timed automaton is a sequence of instantaneous transitions, interleaved withwaiting periods in which the automaton resides in a state. Thus, from an operational point ofview, while a timed automaton is in a state it has two options: to take a discrete transition (ifthe transition is enabled, i.e. the guard condition holds) or to let some time pass (if the urgencyof the enabled transitions allows it). Transitions are executed instantaneously (i.e. the value ofthe clocks does not increase during the transition) and may reset some clocks to 0.

5.3. The timed automata model 83The notion of urgency in the above de�nition is essential, as it allows a simple modeling ofdeadlines, which appear frequently in real-time models. The urgency attribute of a transitionhas the following meaning:{ eager : the transition does not let time progress. If the automaton is in a state and aneager transition is enabled, the automaton may not remain in the state and must takeone of the enabled transitions immediately. Note that the transition that is taken may bedi�erent from the eager transition in cause.{ lazy : the transition lets time progress by whatever amount. If the automaton is in a stateand a lazy transition is enabled, the automaton may take the transition or may let timepass (if the other enabled transitions allow it too).{ delayable: the transition lets time progress up to a limit, beyond which the transitionwould be disabled. For example, if a delayable transition has a guard x � 2 and the stateis reached with a value of the clock x smaller than 2, time may pass up to the point whenx = 2. At that point, the transition becomes eager and it (or another enabled transition)must be taken immediately.In contrast to the above de�nition, the basic timed automata proposed in [ACD93] specifytime progress conditions using state invariants. Invariants are boolean conditions on clockswhich must hold in the state they refer to. Therefore, in a state, time may progress as long asthe invariant remains true.[BST98] argues that there is an inconvenient in specifying time progress conditions usingstate invariants: state invariants must continuously hold from the moment the state is entereduntil the state is exited. With state invariants it is sometimes diÆcult to model eager urgency,i.e. that a transition must be executed as soon as it is enabled.The notion of urgency originated from that of deadline [BS97, BST98]. A deadline is aboolean expression involving clocks that is associated with a transition and not with a state asthe state invariant. The deadline gives priority of the transition with respect to time progress:while the deadline is false, the transition is not urgent and the time may advance (if the othertransitions allow it too). When the deadline is true, the transition is urgent and time can nolonger progress until the concerned transition or another enabled transition is �red.The classes of transition urgency described above correspond to particular cases of deadlinesappearing frequently in real-time speci�cations: d = false for lazy transitions, d = g for eagertransitions, and d = the upper limit of g for delayable transitions (d and g denote respectivelythe deadline and the guard of the transition).Semantics of timed automata as labeled transition systemsA semantics is given to timed automata by associating an (in�nite) labeled transition system(LTS) GA to each timed automaton A. This in�nite LTS, called the semantic graph of the timedautomaton, is de�ned by the following:1. The nodes of GA are called con�gurations or dynamic states of A. They are pairs (q;v)where q 2 Q is a discrete state and v is a valuation of the clocks of the automaton,v : X ! R+ . If s = (q;v) is a con�guration, we denote by discrete(s) the discrete stateq.2. The edges of GA correspond to transitions of A from one con�guration to another. Thereare two kinds of transitions allowed in a state (q;v):

84 Chapter 5. Timed automata{ Discrete transitions happen when a transition edge e = (q; �; u; a;X; q0) is taken.e is enabled in (q;v) i� v satis�es the condition � (also denoted v 2 �). When thetransition e is taken, the system moves to state (q0;v0) where v0(x) = v(x);8x 2 X nXand v0(x) = 0;8x 2 X. The transition is denoted by (q;v) e�! (q0;v0).{ Time transitions happen when an amount Æ 2 R, Æ > 0 of time elapses without anydiscrete transition being �red in the meantime. A time transition moves the systemfrom state (q;v) to state (q;v + Æ) where v + Æ denotes the valuation v0 such thatv0(x) = v(x) + Æ;8x 2 X . The transition is denoted (q;v) Æ�! (q;v + Æ). The timetransition is enabled i� the following time progress conditions hold:(a) 8Æ0 2 [0; Æ), there is no eager transition e = (q; �; u; a;X; q0) enabled in (q;v+ Æ0)(i.e. u = eager and v + Æ0 2 �).(b) 8Æ0; Æ00 such that 0 � Æ0 < Æ00 � Æ, there is no delayable transition e =(q; �; u; a;X; q0) enabled in (q;v+Æ0) and disabled in (q;v+Æ00) (i.e. u = delayableand v + Æ0 2 � and v+ Æ00 62 �).We considered that GA contains only the vertices reachable from the initial con�guration ofthe system, which is (q0;v) with v(x) = 0; 8x 2 X (also denoted (q0; 0)).Runs. Canonical representation. Zeno runsThe runs of an automaton A are the runs of the semantic graph GA,regarded as an LTS. A runis therefore an in�nite sequence (q0;v0) a0�! (q1;v1) a1�! :::, where the labels a0; a1; ::: denoteeither discrete transitions or time transitions.Two runs which exhibit the same discrete transitions and the same accumulated delaysbetween successive discrete transitions can be considered equivalent. That is to say that twoconsecutive time steps (q;v) Æ�! (q;v0) Æ0�! (q;v00) in a run are equivalent to a single time step(q;v) Æ+Æ0�! (q;v00). Moreover, we can consider there is a time transition with delay 0 betweenany two consecutive discrete transitions of a run.By the above rules, each run is equivalent to a run of the following form: � = (q0;v0) Æ0�!(q0;v0+Æ0) e0�! (q1;v1) Æ1�! (q1;v1+Æ1) e1�! ::: in which time transitions and discrete transitionsalternate. This is called the canonical form of timed automata runs.A special form of canonical runs appears when the initial form of the run contains an in�nitenumber of transitions among which only a �nite number are discrete transitions. This impliesthat there is a point i in the run beyond which all transitions ai; ai+1; : : : are time transitions(with the delays, say, Æi; Æi+1; : : :). In this case, the canonical form of the run contains a �naltransition Æ�! where Æ = Pj�i Æj is the limit of the series of delays (it is possible to haveÆ =1). We denote the canonical form like this: � = (q0;v0) Æ0�! (q0;v0 + Æ0) e0�! (q1;v1) Æ1�!(q1;v1 + Æ1) e1�! ::: ek�1�! (qk;vk) Æ�!.On the canonical form � of a run, we use the following notation to denote the state reachedafter i time steps and i discrete steps: �(i) = (qi;vi).A con�guration (q;v) is reachable if there is a run of the automaton, starting in the initialstate (q0; 0) and ending in (q;v).A run of the canonical form shown above is called zeno if it is in�nite and the total elapsedtime along the run is �nite, i.e. Pi�0 Æi 2 R. The interpretation is that an in�nite numberof discrete transitions (which normally model actions in the speci�ed system) is executed in a

5.3. The timed automata model 85�nite amount of time along a zeno run. This usually corresponds to a erroneous or incompletespeci�cation.Timed automata compositionAs for LTS, it is sometimes possible to describe a concurrent timed system using a set of timedautomata modeling concurrent components, and a composition rule for constructing the globalTA of the system. [Bor98] proposed several composition operators for TA with urgency.We present here a variant of synchronized composition operator, which corresponds to thesynchronized execution of some discrete transitions and the interleaved execution of other dis-crete transitions. The pairs of synchronizing transitions are given by a binary relation �. Syn-chronous passage of time in all components is assumed.De�nition 5.7 (sychronized product) Let A = (�;X ; Q; q0; E) and A0 = (�0;X 0; Q0; q00; E0)be two TA with urgency. Also, let � � E � E0 be a binary relation between transitions from Aand A0 which denotes which pairs of transitions are synchronizing.The synchronized composition of A and A0 is A
� A0 = ((�[f�g)� (�0 [f�g);X [X 0; Q�Q0; (q0; q00); T), where T is the minimal set of transition edges de�ned by the following rules:1. 8e = (q1; �; u; a;X; q2) 2 E such that @e0 2 E0: (e; e0) 2 �, and 8q0 2 Q0,((q1; q0); �; u; (a; �);X; (q2; q0)) 2 T .2. 8e0 = (q01; � 0; u0; a0;X 0; q02) 2 E0 such that @e 2 E: (e; e0) 2 �, and 8q 2 Q,((q; q01); � 0; u0; (�; a0);X 0; (q; q02)) 2 T .3. 8e = (q1; �; u; a;X; q2) 2 E and 8e0 = (q01; � 0; u0; a0;X 0; q02) 2 E0 such that (e; e0) 2 �, then((q1; q01); � ^ � 0;max(u; u0); (a; a0);X [X 0; (q2; q02)) 2 TThe composition operator for urgencies, max is de�ned as the maximum with respect tothe following order relation: lazy < delayable < eager. The label � denotes the fact that onecomponent is not taking any transition, in interleaved transitions.The TA composition operator de�ned above is the simplest form of composition, and cor-responds to the synchronized composition of the semantic graphs (LTSs) of the two automata.The operator de�ned above is equivalent to the AND composition operator de�ned in [Bor98],provided the following restriction holds: if two synchronized transitions have urgencies delayableand respectively lazy, then the guard of the lazy transition must be � = true. A more compli-cated AND composition rule is de�ned in [Bor98] for the cases when the above condition doesnot hold. For more details, the reader is referred to [Bor98].The composition of timed automata is not used explicitly in the remaining of this thesis, aswe discuss the semantics of time in SDL directly at the level of the semantic graph of an entireSDL system. However, the rules by which describe the transitions (with their characteristics,like guards and urgencies) of that graph correspond to this de�nition of composition, applied toSDL agents. The composition operator would be explicitly necessary if a complete compositionaldescription of a timed automata-based semantics for SDL was aimed.Example of timed automata speci�cationWe illustrate the timed automata model introduced previously, using a slightly modi�ed versionof a classical example �rst introduced in [Alu91]. It models the controller of a railroad crossinggate system. The controller interacts with two elements of its environment: a train proximity

86 Chapter 5. Timed automata
x := 0 (x = 1)�(true)�
(true)�x := 0

(x = 1)�
(a)

approach sig
exit sigraise sig (true)�y := 0 (true)�

(2 � y � 5)Æ(true)�
(b)

train approaching
exit sig train exiting

approach sig

z := 0lower sig
raise sig
(true)�
(true)�z := 0(c)

lowering
down

up
raising(1 � z � 2)Æ

lower sig train entering
(y � 5)Æ

(z � 1)Æ
Figure 5.1: The railroad gate system modeled with timed automata.sensor, and the actuators of the physical gate. Its behavior is quite simple and deterministic:each time the proximity sensor signals the approach of a train, the controller waits for one timeunit then begins to lower the gate. Then, when the sensor signals the exit of the train from thezone of the gate, the controller waits for one time unit after which it begins to raise the gate.The behavior of the controller is modeled in Fig. 5.1-a. In the �gure, states are representedas circles, the initial state being marked with a dangling incoming arrow. States are annotatedwith a name, when that is signi�cant. Transitions are represented as arrows between the sourcestate and the destination state, annotated with their label, clock guard, urgency (we use �,Æand � exponents to denote respectively lazy, delayable and eager urgency, like in [BS97]), andclock resets. Clocks are denoted with characters from the end of the roman alphabet.All the transitions of the automaton modeling the controller are marked as eager, becausethey correspond to actions executed by the controller as soon as they are possible. The waitingtimes are modeled by testing the value of clock x.For assessing the timing of this system, the environment of the gate controller must also bemodeled. We model the components of the environment through two other automata, whichsynchronize with the controller automaton (transitions with identical labels are synchronizing).Although the complete behavior of the environment is not completely deterministic, someinformation about it may still be available. For example, we consider that an approaching trainis detected by the sensor at least 2 time units before it enters the gate, and that it exits thegate at most 5 time units after it has been �rst detected. Moreover, the proximity sensor isconsidered to transmit the approaching signal to the controller as soon as the train is detected,and the exit signal as soon as the train exits the gate. The automaton in Fig. 5.1-b representsthe train and the proximity sensor together. Transitions concerning the train (train approaching,entering, exiting) are lazy or delayable, modeling the non-determinism of the train. Transitions

5.4. Analysis techniques and decidable problems 87which model the sending of signals to the controller are eager to model the immediate reactionof the sensor.The behavior of the gate, shown in Fig. 5.1-c, is as follows: it takes between 0 and 1 timeunits for the gate to go down, and between 1 and 2 time units to go up. Transitions which startlowering and raising the gate are modeled as lazy, to capture the fact that they are triggered bysynchronizing with the controller.5.4 Analysis techniques and decidable problemsAn interesting problem concerning a timed automaton A is whether a particular con�guration(q;v) is reachable from the initial state (q0; 0). This is called the reachability problem. Theveri�cation of many properties of TA, such as invariance or other safety properties, can bereduced to reachability.[ACD93] provides a solution for the reachability problem, using an abstraction techniquewhich allows to build a �nite graph, which preserves reachability, from the potentially in�nitesemantic graph GA. The abstract graph, called region graph, is de�ned below.The region graphIn what follows, it will be useful to give a geometrical representation to the clock space of aTA: in a con�guration (q;v) of an automaton A, v is point in the space RjX j . A conjunctionof atomic conditions � 2 CP(X) de�nes a convex polyhedron in RjX j ; the polyhedron can beidenti�ed with the condition �. A disjunction of conditions � de�nes a non-convex polyhedronin RjX j ; we will denote NCP(X) the class of non-convex polyhedra on X .The following de�nition of the region graph is based on that from [Tri98], with some smallcorrections (namely, the addition of condition no. 3 in the de�nition below). The constructionof the region graph is based on the observation that the transition guards of a TA, involvingonly conditions such as x � c or x � y � c (see Def. 5.6), cannot distinguish between twovaluations v and v0 if the integral part of all clocks is the same and the order of the fractionalparts is the same. Moreover, for each TA there is a maximal constant c with which a clock ora clock di�erence is compared, and the transition guards cannot distinguish between values ofclocks or di�erences exceeding c.Formally, the construction of the region graph is based on the de�nition of the region equiv-alence relation: two valuations v and v0 are region equivalent with respect to the maximalconstant c (v 'c v0) i�:1. 8x 2 X : bv(x)c = bv0(x)c or bv(x)c > c and bv0(x)c > c.2. 8x; y 2 X : bv(x) � v(y)c = bv0(x)� v0(y)c or jv(x) � v(y)j > c and jv0(x)� v0(y)j > c.3. 8x 2 X :fv(x)g = 0, fv0(x)g = 0.(where frg and brc denote respectively the fractional and the integer part of a real number r).Fig. 5.2 shows the region equivalence classes for a 2-clock space, with a maximal constantc = 2 (points, lines and grayed zones represent equivalence classes).The region equivalence on clock valuations induces an equivalence relation between the nodesof GA: (q;v) 'c (q0;v0) i� q = q0 and v 'c v0. [ACD93] proves that 'c is a strong time

88 Chapter 5. Timed automatay

xFigure 5.2: The region equivalence classes for two clocks and c = 2abstracting bisimulation of A1, i.e. if concrete time values are abstracted away on the timetransitions of GA, region equivalence is a strong equivalence on GA in the LTS sense (x5.2).The region graph is de�ned as the quotient of GA with respect to 'c. It preserves reachabilityin the sense that a con�guration (q;v) is reachable in A if and only if its region equivalence class[(q;v) is reachable in GA='c . As the region graph is �nite ([ACD93] provides an upper boundfor the size of the graph), and there is an e�ective procedure for representing and computingthe region graph of a TA, it follows that the reachability problem is decidable for TA.Other forms of the reachability property, such as: \starting from a state (q;v), can theautomaton A reach a discrete state q0?" can also be solved using the region graph. Moreover,the region graph preserves more complex classes of properties, such as linear-time properties orbranching time properties expressed in some temporal logics. A survey can be found in [Tri98].The simulation graphFor veri�cation problems involving only reachability or linear properties, there are more eÆcientanalysis methods than the region graph mentioned above. In this section we describe the sim-ulation graph, that is used in a later chapter for the veri�cation of temporal properties of SDLspeci�cations.The simulation graph of A has vertices of the form (q; S), where q 2 Q is a discrete stateand S 2 NCP(X) is a polyhedron that we will call zone. The following operations are de�nedon (q; S) pairs:time-succ((q; S)) = (q; fv0 j 9v 2 S; Æ 2 R: (q;v) Æ�! (q;v0)g)disc-succ(e; (q; S)) = (q0; fv0 j 9v 2 S: (q;v) e�! (q0;v0)g)where e is an edge between q and q0.It can be proved that if S is a zone from NCP(X), time-succ((q; S)) and disc-succ(e; (q; S))also yield zones from NCP(X)2. The simulation graph of the automaton A is the smallest graphSG(A) such that:1. time-succ((q0; 0)) is a node of SG(A)2. for every node (q; S) of SG(A) and every discrete transition edge e from q to q0, if (q0; S0) =time-succ(disc-succ(e; (q; S))) and S0 6= ; then (q0; S0) is also a node of SG(A) and (q; S) e�!(q0; S0) is an edge of SG(A).1The results in [ACD93] refer to the basic TA model. However, they can be easily extended to TA withurgency.2For basic TA (without urgency), convexity is also preserved, and therefore all zones of the simulation graphare from CP(X). See [Tri98].

5.5. Discussion 89We note that a zone S can be decomposed in a �nite union of regions (see previous section).In consequence, the simulation graph is always �nite. It can further be proven that the simulationgraph preserves reachability and linear properties (i.e. every run of A is contained in a pathfrom SG(A)). For further details, proofs and examples, the reader is referred to [Tri98].5.5 DiscussionDecidability limits of the timed automata modelA number of extensions of the basic timed automata model have been studied. They try toovercome practical limitations of the TA, e.g. by generalizing the laws of variation for clocks orthe types of conditions that can be included in guards. We survey here some of these lines ofresearch.Automata with integrators allow to measure accumulated delays by using clocks which canbe stopped and restarted at the same value (called integrators or stopwatches). They are usefulfor example to model preemptive multitasking systems. However, the reachability problem fortimed automata with integrators is undecidable [Cer92, HKPV98].There have been several attempts to de�ne restricted variants of integrator automata forwhich reachability is decidable [KPSY93, BER94, ACH93]. The restrictions are quite important:for example, [KPSY93, ACH93] constrain the integrators to be neither reset not tested by theautomaton, except in a �nal transition that may be triggered only once.Multirate automata [ACH+95] de�ne clocks that may vary at di�erent relative speeds. Theyare useful for modeling distributed systems with drifting clocks. The reachability problem formultirate automata is decidable with the condition that clocks are not compared between thembut only with constants (i.e. no x� y � c conditions allowed in guards) [HKPV98, ACH+95].In general, TA and all their extensions are restrictions of a more general model, hybridautomata [ACHH93, NOSY93]. A hybrid automaton models a hybrid system [MMP91, NSY91],which combines discrete and continuous components. Hybrid automata are state-transitionsystems in which the state has a discrete part and a continuous part. The continuous part isformed of real-valued variables which vary in time according to a law, which can be very general(e.g. a di�erential equation). TA are hybrid systems in which all continuous variables x (clocks)vary by the equation _x = 1. Hybrid automata have been extensively studied in the past decade,with results ranging from the identi�cation of decidable restrictions [HKPV98, Hen96] to variousveri�cation methods applicable on restricted models [ACH+95, OSY94].All the models mentioned above are usually decidable only under strong restrictions (fora synthesis of decidability results, see [HKPV98] and the work cited therein). Semi-decisionprocedures can sometimes be developed for undecidable models. Such procedures are importantfrom a practical point of view, in situations where timed automata are not expressive enoughand only a generalized model can capture the behavior of a system. Nevertheless, these semi-decision procedures are usually complex and diÆcult to apply to large models. Thus, timedautomata give in a way a complexity limit up to which \general" timed models are decidable,and the available analysis methods are simple enough to be applied in a framework based onSDL. Therefore, in our work we have restricted to basic timed automata and equivalent SDLmodels.

90 Chapter 5. Timed automataAutomata vs. other models for timed behaviorMuch of the research on timed models has initially concentrated on other kinds of formalisms,such as Petri Nets or process algebras. In the domain of Petri Nets, we mention the earlymodels of Timed Petri Nets [Sif77, Ram74], the Time Petri Nets [MF76], as well as the manyother variations de�ned subsequently (for a recent comparison between di�erent models, see[Boy01]).Petri Nets present some advantages from the modeling point of view, being able to capturemore naturally di�erent types of synchronization and composition. However, recent research hasconcentrated more on basic automata models, for which more evolved constructs for specifyingtiming constraints, urgency, etc. have been developed. From the point of view of the expressivityof the models, there are several results showing the equivalence between classes of time Petri Netsand classes of timed automata (see the survey in [Boy01]). From the point of view of analysis,both models use essentially the same techniques, based on the construction of a symbolic statespace, and on inequality systems for representing time information. We note however that theapplication of these techniques in veri�cation tools is more advanced on the side of automata-based models, with tools such as Kronos [Yov97, DOTY95], Uppaal [LPY97, BLL+96], HyTech[HHWT97] and IF [BFG+99, Boz99].The situation is similar on the side of timed extensions of process algebras, where analysistechniques typically work by mapping the algebraic model to some automata model similar totimed automata (see for example [Nic92]).

Part IILanguage Extensions, ValidationTechniques and Tools

91

Chapter 6SDL extensions for timed behaviordescriptionIn this chapter we examine a series of extensions to SDL which improve the capability ofthe language to handle the speci�cation of time-related information at an abstract level. Thetechnique for specifying timing information introduced here uses the primitive mechanisms fromtimed automata: clocks, conditions on clocks and urgencies. The semantics of time in SDL isadapted to suit the usage of these mechanisms.We begin the chapter with an overview of the problems encountered when specifying time-related behavior in SDL. The issues discussed here have been pointed out in our previous work[BGK+00, BGM+01], and an outline is given in x3.5.We continue in x6.2 by introducing the extensions to the SDL language. The constructsproposed here are inspired from primitives used in timed automata. For this reason, theyare rather low level, and current e�orts go towards distilling a set of higher level primitives(semantically based on those introduced here) to be proposed for standardization [BGM+01].In x6.3 we examine the impact of the proposed extensions on the formal semantics of SDLdescribed in the Annex F of Z.100 [IT99c] . The precise semantics of the extensions as well asthe new semantics of time is expressed in a clear and formal way using Abstract State Machine(ASM) speci�cations.As current simulation and veri�cation tools based on SDL do not use the standard ASMsemantics from [IT99c], in x6.4 we discuss how the extensions de�ned previously may be inte-grated in the LTS-based semantics used by most tools. The result is an LTS that has all thecharacteristics of the semantic graph of a timed automaton: the states contain a discrete part(referring to the agents, states, variables, etc. of the SDL system) and a part referring to clocks,the transitions are either discrete transitions or time transitions. The simulation and veri�cationtool described in Chapter 8 uses the LTS-based semantics of the extended SDL de�ned here, inconnection with analysis techniques originating from timed automata.We close the chapter with a discussion of the gains brought by the extensions, and of relatedwork that can be found in the literature.6.1 Overview of problemsWe discussed previously (x3.5) the dual nature of SDL which is both a speci�cation formal-ism and a programming formalism, and we have outlined the fact that SDL gives precedence93

94 Chapter 6. SDL extensions for timed behavior descriptionto programming constructs rather than high-level speci�cation. [BGK+00, BGM+01] providesuggestions for language improvements on both sides. In this thesis we concentrate on thespeci�cation side, as that is more critical for the validation of real-time system speci�cations.6.1.1 Classi�cation of problems and solutionsThe use of SDL as a real-time speci�cation formalism leads to two types of problems: expressivityproblems and usability problems.1. Expressivity problems are represented by the impossibility to capture in SDL meaningful(timing) information about a system, like the execution time boundaries of a piece of SDLcode. This kind of problems is due to the lack of appropriate language constructs forexpressing such information.2. Usability problems are caused by the practical or theoretical impossibility to use SDLmodels for some speci�c system engineering task, like simulation or property veri�cation.Usability problem are frequently due to the de�nition of the SDL semantics. For example,with the present de�nition of the SDL semantics, there are currently no analysis methodsfor deciding the reachability problem on SDL models in the general case.The solutions for the two types of problems are di�erent: expressivity problems require theaddition of new constructs to the language, whereas usability problems require the modi�cationof the language semantics. In the de�nition of new constructs, care must be taken as to thecoherence between new constructs and existing ones: no overlapping and no hidden dependenciesshould exist. The modi�cation of the language semantics is however more problematic, asthe same semantics normally has to serve several purposes (e.g. code generation, simulation,veri�cation, performance analysis, etc.), which may impose contradictory demands.We take the example of code generation versus formal veri�cation. The semantics of SDL[IT99c] is more suitable for code generation than for simulation and veri�cation: [IT99c] main-tains that each action takes an indeterminate time to execute, and that a process stays anindeterminate amount of time in a certain state before taking the next �reable transition. Thisnotion of time that is external and unrelated to the SDL system is practical for code generationin the sense that actual implementations of the system conform to it. However, for simulationand veri�cation, this semantics of time is impractical: timer extents do not have any signi�canceexcept that of lower time bounds, and any timer that gets in a queue may stay there for anindeterminate amount of time.Any rigorous attempt to construct the semantic graph (LTS) of an SDL system (which isthe starting point for simulation and veri�cation) must account for all combinations of execu-tion times, timer expirations and timer consumptions, causing an explosion of the state space.Moreover, few temporal properties may be ensured using the hypotheses stated by the standardsemantics. This causes a usability problem.In practice, simulation and veri�cation tools make simplifying assumptions on execution andidle times. The usual convention is that actions take 0 time to execute, and any action thatcan be executed is executed immediately. This option is justi�ed by the fact that it generatesthe highest degree of determinism, thus reducing the state space by an important factor andrendering SDL speci�cations analyzable.The two alternative de�nitions of the SDL semantics mentioned above are mutually exclusiveand equally justi�ed: one by the needs of code generators, one by the needs of simulators and

6.1. Overview of problems 95veri�cation tools. We argue that this dichotomy cannot be surpassed by a single SDL semantics.A solution is to adopt multiple semantic pro�les of SDL, which would correspond to di�erentusages of SDL models: code generation, simulation, performance analysis, model checking, testgeneration etc. A semantic pro�le would de�ne a semantics that is particularly suitable for acertain type of manipulation. We consider however that the de�nition of a theoretical basis forde�ning pro�les is outside the scope of this thesis, and we do not explore this issue in moredetail.6.1.2 Expressivity problemsIn this section we outline some problems that may be encountered when expressing abstract tim-ing information in an SDL speci�cation. The extensions described in later sections go towardssolving the problems enumerated here.Assumptions on execution timesThe abstract speci�cation of a real-time system may involve the speci�cation of informationabout the execution times of certain actions. Such descriptive information is meaningful insimulation and veri�cation, as the well functioning of the system may depend on it.Currently, in order to introduce assumptions on execution times the modeler is forced touse imperative constructs such as timers. While this does not entirely solve the problem (e.g.maximal execution times cannot be expressed), it also implies a style of speci�cation which isincompatible with some uses of the SDL model (e.g. code generation).Execution times normally depend on the deployment of the SDL system. There are how-ever cases in which execution times are meaningful from a qualitative point of view (e.g. forcalibrating system timers), and thus appearing in earlier phases of system speci�cation.Some earlier approaches for the speci�cation of execution times in SDL models exist [Rou98,DHHMC95a]. The ObjectGEODE Simulator [Rou98] uses a syntactic extension by which onecan associate an execution time interval to an action, and a probability distribution in thisinterval. [DHHMC95a] uses a more elaborate approach in which execution times are dynamicallycalculated with the help of queuing machines, so that they are depending on the amount of workand on the charge of the system. However, both approaches target performance evaluation andlack precise semantic de�nition and a uni�ed mechanism for expressing other timing assumptions(e.g. communication times or the timing of events, see next paragraphs).Assumptions on timing of eventsIn open speci�cations communicating with the environment, the timing of events coming fromthe environment is an important factor for the behavior of the system. We argue that informa-tion of the timing of these events should be included in the SDL speci�cation. Moreover, thedevelopment of a real-time system usually comports several preliminary stages in which abstractand incomplete descriptions are produced. In order to validate these early designs, the timingof events occurring in incompletely speci�ed components has to be described within the SDLmodel.To preserve the clarity of the language, the extensions for expressing timing assumptionshave to be based on a simple primitive mechanism capable of expressing many types of timingassumptions (e.g. event period and jitter, timed inter-event synchrony, etc), instead of enumer-

96 Chapter 6. SDL extensions for timed behavior descriptionating di�erent extensions for all the types of assumptions. This concerns also the expression ofexecution times, and the other timing information discussed in this section.Assumptions on channel behaviorSDL de�nes channels as reliable means for transporting messages: a channel never looses mes-sages. Additionally, a channel may either be non-delayable (i.e. messages arrive instantaneouslyat the other end) or with non-speci�ed delays (but keeping the order of the conveyed messages).These attributes are insuÆcient for characterizing real communication channels. For exam-ple, SDL is used to describe
ow control protocols such as the alternating bit protocol from theOSI stack. Such protocols are built upon the assumption that channels are unreliable, and it istheir mission to make them reliable through software. If the assumptions on channels cannotbe marked in SDL, the resulted description of the protocol cannot be used in simulation orveri�cation: the tools will never cover the behavior parts that handle signal loss.Currently, lossy or delaying channels can be modeled only by explicitly describing the be-havior of the channel (e.g. using an SDL process). This approach has several drawbacks:{ once the behavior of the channel is speci�ed, all messages will arrive at destination with awrong sender PId.{ the channel description must be replicated over and over again for every lossy channel in thesystem (note that a generic process type cannot be used, because the channel descriptiondepends on the types of the conveyed signals, which di�er from channel to channel).{ dynamic creation of timers is needed in order to transport an inde�nite number of messagesat once on a delayable channel.A solution is to let the modeler describe the behavior of the channel through a set of at-tributes such as loss probability and upper and lower time bounds for transmission delays.More complicated solutions which take into account the type and size of a message can also beimagined.6.1.3 Usability problemsAs described previously, usability problems consist in the diÆculty to use the standard semanticsof an SDL model for a speci�c engineering task. In this work we are concerned with model-based validation tasks: simulation, formal veri�cation (model checking). These tasks requirethe construction of the semantic graph (LTS) corresponding to the behavior of an SDL model.There are two major diÆculties in building the graph with the standard semantics: the lack ofcontrol over time progress and the lack of an appropriate notion of atomicity.Control over time progressThis problem was mentioned as an example in x6.1.1. It refers to the fact that using the rules fortime passage prescribed by the SDL semantics [IT99c], the semantic LTS of an SDL model willcontain many unrealistic execution scenarios. The result is both a state explosion phenomenonand the impossibility to guarantee elementary timing properties.In order to be usable in simulation or veri�cation, the semantics of an SDL model mustprescribe some level of control over the progress of time. Existing simulation tools do this, by

6.2. Extensions for representing timing information 97assuming that actions take 0 time to execute, and that time never progresses while the systemhas something to execute.These means of controlling the time progress in simulation are limited. There are cases whenthe user needs to control the simulation time in more
exible ways:{ to specify that in a certain state, an unlimited amount of time may pass, even though thesystem has something to execute,{ to specify that in a state, a bounded amount of time may pass regardless of whether thereis something to execute or not. In this case, there is a number of consequent problemsconcerning the speci�cation of the amount of time (�xed or with lower and upper bounds;speci�ed statically or dynamically).Atomicity of transition elementsZ.100 [IT99b] prescribes that the agents composing a system or a block are executed in parallel.However, simulation or veri�cation techniques are based on the LTS associated to an SDLmodel,which can only be built by assuming a certain degree of atomicity. The formal semantics of SDL[IT99c] is equivalent to an interleaving model at the level of SDL actions (x3.3.3). However, ifexecution times are associated to individual actions, the validity of this interleaving model hasto be checked, since the execution of truly parallel actions should not sum up execution times,while the execution of interleaved actions (e.g. in process sub-agents) should do it.6.2 Extensions for representing timing informationIn this section we introduce some SDL language extensions which allow to express descriptivetiming information characterized as problematic in the previous section. The syntax and in-formal semantics for these extensions are described in the following paragraphs. As a generalrule, we describe the abstract syntax of the extensions using the BNF-like formalism from Z.100[IT99b]. The BNF rules described here either replace the productions for existing non-terminals,or specify newly introduced non-terminals.The de�nition of the concrete syntax is less formal. As a general rule, we use formal SDLcomments (see the comment keyword of SDL [IT99b]) for introducing annotations on modelentities. However, the syntax proposed here is not the most suitable for additions to the standard,and is provided only to clarify the de�nition of the extensions.The semantics of the extensions is explained informally in this section. The impact of theseextensions on the formal semantics of SDL is discussed later on in x6.3.6.2.1 Clocks, guards and transition urgencyWe introduce one basic mechanism which can serve for describing many forms of timing infor-mation: the clock. Like in timed automata (Chapter 5), clocks can be used to measure andconstrain time passage. A speci�cation may use several clocks, which all progress at the samerate. To preserve the encapsulation principle, each clock must belong to an SDL agent. Onlythe owner agent of a clock, and its sub-agents may refer to the value of the clock or performoperations on it.

98 Chapter 6. SDL extensions for timed behavior descriptionClock operationsFrom the point of view of the SDL type system, a clock is a value of the type Clock. Clockscan be declared statically, like in:dcl c Clock;or created dynamically using the mkClock() operator like in:dcl c object Clock; /*reference type*/...c := mkClock();The resetClock construct is used to reset a clock to 0:resetClock(c);The assignment between two Clock variables is also allowed. This operation is not de�ned intimed automata, but it does not interfere with the analysis methods and the decidability of theTA model.We impose several restrictions to the use of variables of type Clock, in order to preserve theapplicability of the analysis methods existing for timed automata to SDL. A �rst restriction isthat a clock variable may not be passed as parameter to a procedure, in an agent creation or inan output. Passing the value of a clock as parameter would equate with a stop clock operation,which is beyond the scope of timed automata. For compatibility with timed automata, a secondrestriction is that expressions involving Clock variables are allowed only inside transition guardsor continuous signals (SDL provided clause).The operators de�ned below may be used for building expressions involving Clock variables.The following set of operators can be used for comparing a clock with an integer value:"<" : Clock,Integer -> Boolean"<=" : Clock,Integer -> Boolean"=" : Clock,Integer -> Boolean">" : Clock,Integer -> Boolean">=" : Clock,Integer -> BooleanThe di�erence of two clocks yields a value of the prede�ned type DifClock. DifClock is byde�nition not compatible with any other type in the SDL type system, so DifClock valuescannot be converted into reals, for example. The purpose of this constraint is to forbid staticallythe use of clocks in expressions di�erent from those de�ned in timed automata."-" : Clock,Clock -> DifClockThe operators prede�ned for DifClock values are:"<" : DifClock,Integer -> Boolean"<=" : DifClock,Integer -> Boolean"=" : DifClock,Integer -> Boolean">" : DifClock,Integer -> Boolean">=" : DifClock,Integer -> Boolean

6.2. Extensions for representing timing information 99Guards and urgencyIn order to specify the precise timing of events, we need a mechanism able to link the momentwhen a transition is �red to the values of clocks. This is done, like in timed automata, by usingtransition guards to constrain transition �ring and urgencies to constrain time passage.A transition guard or continuous signal (provided clause) can use comparisons of clockvalues to constrain the moment the transition is �red. The guard must be the conjunction of twoparts c1^c2 where c1 is a (possibly void) condition not involving clocks, and c2 is a (possibly void)conjunction of boolean terms obtained from clock comparisons and clock di�erence comparisons.Like in timed automata (x5), we de�ne three classes of transition urgency: lazy, delayable,eager. In the abstract syntax, an urgency attribute which can take one of the above values isattached to each type of transition clause (Input-node, Continuous-signal, Spontaneous-transitionnon-terminals):Input-node :: Transition-urgency[priority]Signal-identi�er[Variable-identi�er]*[Provided-expression][On-exception]TransitionSpontaneous-transition :: Transition-urgency[On-exception][Provided-expression]TransitionContinuous-signal :: Transition-urgencyContinuous-expression[Priority-name]TransitionTransition-urgency = lazy j delayable j eagerIn concrete syntax, urgency is represented with a formal comment (comment) attached tothe transition clause, containing the urgency attribute. Transitions not specifying the urgencyattribute have eager urgency by default. This choice di�ers from the standard semantics ofSDL (which is equivalent to considering all transitions lazy) but is justi�ed in simulation andveri�cation, as it reduces the size of the state space and leads to more realistic scenarios.6.2.2 Action execution durationsIn the TA model, transitions execute in 0 time. For this reason, in the semantics associatedto the extended SDL, we consider that SDL actions also execute in 0 time. However, timeconsuming actions may be represented explicitly using clocks and urgencies: an additional staterepresents the time consuming action, and a delayable transition exiting this state representsthe ending of the execution (time). The actual action may be executed (in 0 time) either uponentering or exiting this state. We introduce an extension for annotating time consuming actions,so that the representation described above is obtained by an implicit transformation.

100 Chapter 6. SDL extensions for timed behavior description
no time

consumption

here

x := mkClock()

s

x >= A
 and

x <= B
 delayable

'time consuming

action'

'time consuming

action'
 exectime(A,B)

implicit transition

implicit

state

implicit

clock

Figure 6.1: Implicit transformation of time consuming actionsSyntaxGraph-node :: (Task-nodej Output-nodej Create-request-nodej Call-nodej Compound-nodej Set-nodej Reset-node)Exec-min-delayExec-max-delay[On-exception]Exec-min-delay = NatExec-max-delay = NatIn abstract syntax, two integer attributes (Exec-min-delay and Exec-max-delay) representingthe lower and upper limits of execution time are associated to each action (Graph-node non-terminal). In concrete syntax, a time consuming action is annotated with a formal commentcontaining the string "exectime(A,B)", where A and B are integer constants denoting the lowerand upper bounds of the execution time.The extension is similar to that proposed in [Rou98]. If the execution time of an action isnot speci�ed explicitly, the default time limits are both equal to 0. This choice is di�erent fromthe standard semantics of SDL, but is justi�ed in simulation and veri�cation as it reduces thesize of the state space and leads to more realistic scenarios.SemanticsA time consuming action introduces an implicit state in the enclosing agent. When the systemreaches the action, it stays blocked in that implicit state for an amount of time Æ 2 [A;B],where A and B are the execution time limits speci�ed for the action. Time consuming actionsare shorthand notation for (and translated implicitly into) a 0-time model, as shown in Fig. 6.1.

6.2. Extensions for representing timing information 1016.2.3 Channel behavior speci�cationStandard SDL channels never lose nor distort messages, and the time necessary to transfera signal can be controlled using the nodelay attribute: 0 time if the channel is nodelay,indeterminate time otherwise. We introduce here two extensions which allow to specify:{ the possibility of signal loss, with a certain probability,{ the minimal and maximal delays for signal transfer.These extensions cover the basic modeling needs for a large class of systems. However, if theproperties of a channel are more complex (e.g. signal distorsion, loss probability depending onthe length of signal, etc.) they have to be modeled explicitly, using for example an SDL process.SyntaxChannel-de�nition :: Channel-name[nodelay]Channel-loss-probabilityChannel-delay-kindChannel-min-delayChannel-max-delayChannel-path-setChannel-delay-kind = delay j pipelineChannel-min-delay = NatChannel-max-delay = NatChannel-loss-probability = LiteralIn abstract syntax, a signal loss probability (Channel-loss-probability { real constant in [0; 1]) isassociated to a channel speci�cation (Channel-de�nition non-terminal). Two integer attributes(Channel-min-delay and Channel-max-delay) representing the lower and upper limits of signaltransmission delay, and an attribute (Channel-delay-kind) taking the value delay or pipeline,are also associated to each channel speci�cation. The meaning of the delay depends on theattribute delay or pipeline, as explained in the next section.In concrete syntax, lossy channels are annotated with a formal comment containing"lossy(p)", where p is the signal loss probability. Delaying channels are annotated with aformal comment containing either "delay(A,B)" or "pipeline(A,B)", where A and B are in-teger constants denoting the lower and upper bounds of signal communication delay. At mostone delay and one loss speci�cation can be mixed in the same comment and refer to the samechannel.If the loss probability is not speci�ed explicitly for a channel, the default value is 0. If thetransmission delay is not speci�ed explicitly for a channel, the default value is pipeline(0,0).Channels marked with the standard SDL attribute nodelay must have the minimal and maxi-mal transmission delays equal to 0.SemanticsThere is a signal queue for each valid direction of every channel instance of an SDL speci�cation.The queue holds the signals that have been sent at one end of the channel, and not yet received

102 Chapter 6. SDL extensions for timed behavior descriptionat the other end. Thus, when a signal is transferred between two agents it may pass throughseveral channel queues before arriving at the destination. Each queue preserves the order of theconveyed signals.Signals sent through a channel marked lossy may not arrive at the receiving end of thechannel. In that case, no observable event will occur at the receiving end of the channel, andthe loss of a signal does not in
uence the transmission of other signals conveyed by the samechannel. The loss probability is informative, in the sense that if p is strictly between 0 and 1,for every transferred signal the two alternatives of losing or not losing it are valid behaviors.A signal sent through a channel marked with "pipeline(A,B)" at a moment T arrives atthe receiving end at a moment between T +A and T +B. The arrival time is further constrainedby the fact that the order of the signals is preserved, so a signal may not arrive at the end of achannel before the signal preceding it in the channel queue.A signal sent through a channel marked with "delay(A,B)" at a moment T arrives at thereceiving end at a moment between T 0 + A and T 0 + B, where T 0 is the maximum between Tand the arrival time of the previous signal transferred through the channel.The two types of channel delays correspond to two degrees of parallelism in the processingof signals in the channel. The meaning of delay is that no parallel transmission of signals ismade in the infrastructure represented by the SDL channel. For example, an SDL channelrepresenting a data link layer connection (in the OSI stack) { e.g. on an ethernet link { exhibitsthis type of delay, as the transmission of a signal does not begin until all previous signals havebeen conveyed. The meaning of pipeline is that fully parallel processing of signals is made in theinfrastructure represented by the SDL channel. For example, a TCP link between two remotehosts connected by a multi-node network path exhibits (asymptotically) pipeline delays, asthe transmission of a signal may begin as soon as the transmission of the previous signal wasinitiated, and does not have to wait until the previous signals arrives at destination. (In reality,in this case too a small part of the signal transmission is made sequentially, but that is negligiblecompared to the end-to-end transmission time).6.2.4 Example of extended speci�cationIn this section we present a small example illustrating the SDL extensions introduced previously.This is an incomplete version of the SpaceWire protocol speci�cation [sWG00], which is discussedin more depth in Chapter 9.The Exchange Level of SpaceWire is a data link protocol providing services like connectionestablishment, error detection and
ow control. This level is materialized by a Link Interface thatmakes the connection between a host system and a physical SpaceWire link. A Link Interfaceis composed of three entities: a Receiver (RX), a Transmitter (TX) and a State Machine (SM),described in more detail in Chapter 9.For some of the functions provided by the Link Interface, the SpaceWire standard [sWG00]contains requirements concerning timing. There are two types of requirements:{ requirements concerning various timeout periods used by the system. The particularity ofSpaceWire is that the normative values for these timeouts are not �xed, but may varywithin (large) intervals speci�ed by the standard.For example, a disconnection timer is used for detecting transmission problems on thephysical link. If no signal from the link reaches the receiver for a period equal to theduration of the timer, the Receiver informs the State machine about the disconnection.The disconnect timeout period may vary between 740 ns and 1080 ns.

6.2. Extensions for representing timing information 103

Figure 6.2: Modeling time non-determinism in the SpaceWire speci�cation

Figure 6.3: The SpaceWire model for validation

Figure 6.4: Non-deterministic behavior of the host systems

104 Chapter 6. SDL extensions for timed behavior descriptionStandard SDL timers are set with a unique duration. Thus, using an SDL timer formodeling the disconnection timeout does not allow to validate the protocol speci�cationfor all the possible combinations of timeout values at the two ends of a link. With theextensions introduced in this chapter, the disconnection timeout may be modeled using aclock and a delayable transition in the receiver component, as shown in Fig. 6.2-a.Similarly, the connection establishment phase uses a time-controlled reset cycle, duringwhich the link interface passes successively through several states (the meaning of thesestates is not important at this stage). The standard speci�es the time periods for which thelink must remain in each state. For example, the ErrorReset state is left after 5.12 �s to7.78 �s, and the ErrorWait state is left after 10.24 �s to 15.48 �s. Such non-deterministictime requirements may also be modeled using clocks and delayable transitions, as shownin Fig. 6.2-b.{ requirements concerning the speed (and other characteristics) of the physical link. In anSDL model, the physical link is modeled as a channel between the two link interfaces. Alink operating at 100 Mbps transfers a bit in 10 ns. If the character encoding layer isabstracted away in the SDL model, and full characters are considered to be sent on thelink, the delay for a character is 80 ns1. This is shown in the model in Fig. 6.3.The lossy attribute may be used to model the fact that a physical link is unreliable (messagedistortion is not taken into account in this case).The model shown in Fig. 6.3 is built for validating the speci�cation of the SpaceWire linkinterface. For this, the context in which the link operates also needs to be modeled. This contextincludes the two host systems operating the connected interfaces. Their complete behaviorshould not be speci�ed; nevertheless, several properties of host systems have to be taken intoaccount for validation purposes:{ a host system may fail and reset the link at random,{ a host system may send characters on the link at random.Fig. 6.4 shows how this non-deterministic behavior is modeled using lazy transitions.6.3 Impact of extensions on the ASM semantics of SDLThe purpose of this section is to study how the timing extensions introduced in x6.2 can be inte-grated in the ASM semantic framework of SDL [IT99c], and to provide a precise understandingof the extensions for readers familiar with the formal SDL semantics. We do not aim to givehere a complete list of modi�cations to be made to Z.100 Annex F [IT99c], but rather to showthe main lines for the implementation of the extensions in ASM.There are several points to be detailed:{ the handling of explicit clocks in ASM,{ the handling of action execution durations, communication delays and timers in ASM,{ the introduction of a notion of controlled time, which progresses depending on the state ofthe system.1As a character may have di�erent lengths, this requirement is actually represented di�erently in the detailedmodel presented in Chapter 9.

6.3. Impact of extensions on the ASM semantics of SDL 1056.3.1 Explicit clocksExplicit clocks introduce two new prede�ned data types: Clock and DifClock. The de�nitionof these types introduce many changes in the ASM semantics, as can be seen from the de�nitionof other prede�ned types (e.g. boolean, integer, etc. See [IT99c] Part 3, Ch. 3.). We do notdetail all the ASM constructs involved in the de�nition of these types here, especially as theydo not provide insight into the functioning of the timed SDL model. Instead, we concentrateon the next sections which describe the handling of delaying channels, timers and time in theASM model.The prede�ned types Clock and DifClock introduce two new data domains:SDLClock =def Clock � Identi�erSDLDifClock =def Real � Identi�erwhich are included in the Value domain (see [IT99c] Part 3, x2.1.3.1) gathering values of allprede�ned data types:Value =def SDLClock [SDLDifClock [SDLInteger [SDLBoolean [SDLReal [SDLCharacter [SDLString [PId [Object [SDLLiterals [SDLStructure [SDLArray [SDLPowersetValues from the SDLClock domain refer to elements from a domain called Clock:controlled domain Clockinitially Clock = ?The Clock domain gathers all the clocks de�ned in the SDL system (both implicit and explicit)at a speci�c moment. Explicit clocks are added whenever a data item of the type Clock iscreated (i.e. at agent creation time for static clocks, or when the operator mkClock is called fordynamic clocks). Implicit clocks are added whenever the underlying semantics needs them (e.g.for measuring signal transmission times), as will be shown in the next section.The function clockValue gives the current value of a clock:controlled clockValue : Clock ! RealSeveral ASM artifacts are needed to make the Clock and DifClock types functional. Forexample, the function compute ([IT99c], Part 3, x3.1) must be able to compute the prede�nedoperators of the new types: "<", "<=", "=", ">=", ">", "-" for Clock, "<", "<=", "=", ">=", ">"for DifClock. We show below the de�nition of the functions used to compute the prede�nedoperators, which have to be called from compute:computeClock(procedure: Procedure, values : Value*) : Value =defif procedure.procName = \�" thenmk-SDLDifClock(values [1].s-Clock.clockValue � values [2].s-Clock.clockValue,DifClockType)else let val1 = values [1].s-Clock.clockValue, val2 = values [2].s-Nat incase procedure.procName inj \<" : mk-SDLBool(val1 < val2, BooleanType)j \<=" : mk-SDLBool(val1 � val2, BooleanType)j \=" : mk-SDLBool(val1 = val2, BooleanType)j \>" : mk-SDLBool(val1 > val2, BooleanType)j \>=" : mk-SDLBool(val1 � val2, BooleanType)endcase

106 Chapter 6. SDL extensions for timed behavior descriptionendletendifcomputeDifClock(procedure: Procedure, values : Value*) : Value =deflet val1 = values [1].s-Real, val2 = values [2].s-Nat incase procedure.procName inj \<" : mk-SDLBool(val1 < val2, BooleanType)j \<=" : mk-SDLBool(val1 � val2, BooleanType)j \=" : mk-SDLBool(val1 = val2, BooleanType)j \>" : mk-SDLBool(val1 > val2, BooleanType)j \>=" : mk-SDLBool(val1 � val2, BooleanType)endcaseendletendifThe resetClock construct introduced in SDL is implemented in the ASM semantics by a newbehavior primitive, similar to the behavior primitives de�ned in the standard for each basicaction (output, assignment, set, reset, etc.). A resetClock action is represented by an elementof the ResetClock domain:ResetClock =def ValueLabel � ContinueLabelwhere the ValueLabel refers a SDLClock value. The reset is then realized by the following macro:EvalResetClock(a : ResetClock) �value(a.s-ValueLabel,Self).clockValue := 0Self.currentLabel := a.s-ContinueLabel6.3.2 Execution and communication delays. TimersExecution delays are handled using implicit clocks. However, the handling of these clocks neednot be de�ned by the semantics, as in x6.2.2 we have shown the syntactic transformation ofa time consuming action into an implicit state, with a delayable transition and an additionalimplicit clock. This transformation (see the Transformation step in x3.3.1, Fig. 3.4) may behandled in the static semantics, and the dynamic semantics will handle the newly introducedclock like any explicit clock2.For handling communication delays and timers in the ASM semantics, we have two options:1. to adapt the schedule mechanism already existing in the standard (see x3.3.3, page 56), or2. to use implicit clocks for measuring communication and timer delays.We will discuss both alternatives in the following paragraphs.2The dynamic semantics must nevertheless ensure mutual exclusion for alternating agents (i.e. sub-agents ofa process). In the context of time consuming actions, this means that an alternating agent should not yield theexecution rights token (modeled by the isActive function in the standard formal semantics) upon entering animplicit action state.

6.3. Impact of extensions on the ASM semantics of SDL 107ASM implementation using schedulesTimers and communication delays are implemented in the standard ASM semantics of SDL usingthe schedule mechanism. This mechanism can be easily adapted to accommodate channels withspeci�ed delays, such as those introduced in x6.2.3. We de�ne the following derived functionswhich retrieve the attributes from a channel speci�cation3:channelDelayKind(l : Link) : Channel-delay-kind =defl.nodeAS1.s-Channel-delay-kindchannelMinDelay(l : Link) : Nat =defl.nodeAS1.s-Channel-min-delaychannelMaxDelay(l : Link) : Nat =defl.nodeAS1.s-Channel-max-delaychannelLossy(l : Link) : Boolean =defl.nodeAS1.s-Channel-loss-probability 6= 0A controlled function is necessary to hold the delivery time of the previously delivered signal,for delay channels. This is because in delay channels, unlike in pipeline, the delivery of asignal is done only after the previous signal has reached the destination.controlled previousDeliveryTime : Link ! TimeThe ForwardSignal macro (already de�ned in [IT99c] Part 3, x2.1.1.3), which is executed bychannel ASM agents (Link) and is responsible for delivering signals between the ends of a link,is modi�ed to take into account the channel delay and loss attributes:ForwardSignal �if Self.from.queue 6= empty thenlet si = Self.from.queue.head inif Applicable(si.signalType, si.toArg,si.viaArg,Self.from,Self) thenif (Self.channelDelayKind = \pipeline" _(Self.channelDelayKind = \delay" ^ Self.previousDeliveryTime � now)) thenDelete(si,Self.from)choose looseIt : looseIt 2 Booleanif :Self.channelLossy _ :looseIt thenInsert(si,now+Self.delay,Self.to)si.viaArg := si.viaArg nSelf.from.nodeAS1.nodeAS1ToId, Self.nodeAS1.nodeAS1ToIdendifendchooseSelf.previousDeliveryTime := now + Self.delayendifendifendletendif3The function de�nitions use the nodeAS1 function, which makes the interface between the ASM behaviordescription objects (de�ned in the dynamic semantics), and the ASM representation of the SDL syntax (de�nedin the static semantics).

108 Chapter 6. SDL extensions for timed behavior descriptionThe signal delivery algorithm described above, as well as the one described in [IT99c], makesuse of a monitored function (delay) which gives the delay applied to a speci�c signal instancetraveling through the link:monitored delay : Link ! DurationAs in [IT99c], the above algorithm preserves the order of transferred signals under speci�cassumptions about the values of delay. The assumptions are given in [IT99c] in the form ofintegrity constraints on delay. Adapted for our semantics, the integrity constraints on delay canbe formulated as follows: whenever the macro ForwardSignal is executed, if the updates (i.e.ASM assignments) speci�ed in the macro are executed, the following inequalities must hold:Self.channelMinDelay � Self.delay � Self.channelMaxDelaySelf.previousDeliveryTime � now + Self.delayThe �rst constraint ensures that the link delay is within the speci�ed bounds. The secondconstraint ensures that order is preserved on pipeline channels (on delay channels, it is preservedby de�nition).In order to preserve the strict nature of delay speci�cations, the execution of the For-wardSignal macro must be considered eager whenever there is a signal that can be e�ectivelytransferred by the link. This issue is taken into account in x6.3.3, when the semantics of timeprogress is described.ASM implementation using implicit clocksThe behavior of delaying channels and timers may alternatively be described in ASM usingimplicit clocks, instead of the schedule mechanism. A reason for using implicit clocks is thatthe schedule mechanism uses absolute times: signals (and timers) are stamped with an absolutearrival time, which is then compared with the absolute clock now (see the de�nition of thefunction queue from [IT99c], Part 3, x2.1.1.2) to implement signal arrival. Such a use of absolutetime marks in a model poses important problems for model checking, as there are currentlyno abstractions able to reduce an in�nite state space generated by such a model to a �niterepresentation, in the general case.For SDL systems which use only relative times (i.e. timers set with statements likeset(now+d,t), where d is a duration not depending on the value of now) as well as delayingchannels, the use of absolute time marks may be avoided. In this paragraph we discuss a methodof handling relative timers and delaying channels in the ASM semantics of SDL, using only con-structs which can be mapped to timed automata primitives (i.e. clocks, guarded transitions,urgency). We conjecture that the resulted semantics is equivalent to the timed automata-basedsemantics of SDL examined later on in x6.44.In this implementation, Link agents hold a signal queue:controlled linkQueue : Link ! SignalInst*(We note that the ASM operators for list creation and concatenation are respectively the brackets< ::: > and \. This notation is used in the macros de�ned below.)A sequence of Clocks is used to measure the travel time of signals. In case of pipeline links,there is a clock for each signal in the queue. In case of delay links, only one clock (correspondingto the �rst signal in the queue) is suÆcient.4The proof of the equivalence between the two semantics may be based on an argument of strong bisimulationbetween the LTSs generated by the two semantics. However, due to the complexity of the SDL language and ofthe semantics, the actual realization of the proof is hardly possible.

6.3. Impact of extensions on the ASM semantics of SDL 109controlled linkQueueClocks : Link ! Clock*The macro ForwardSignal (from [IT99c], Part 3, x2.1.1.3) is rede�ned as shown below.Every link executes (in parallel, and whenever possible) two actions:1. retrieve messages from the head of the queue of the transmitting end, and place them inthe linkQueue,2. deliver messages from the head of the linkQueue to the receiving end, when their arrivaltime has come.ForwardSignal �RetrieveSignalDeliverSignalRetrieveSignal �if Self.from.queue 6= empty thenlet si = Self.from.queue.head inif Applicable(si.signalType, si.toArg,si.viaArg,Self.from,Self) thenDelete(si, Self.from)Self.linkQueue := Self.linkQueue \ <si>if Self.channelDelayKind = \pipeline" _ Self.linkQueueClocks = emptythenextend Clock with cc.clockValue := 0Self.linkQueueClocks := Self.linkQueueClocks \ <c>endextendendifendifendletendifDeliverSignal �if Self.linkQueue 6= empty^ Self.linkQueueClocks.head.clockValue � Self.channelMinDelay^ Self.linkQueueClocks.head.clockValue � Self.channelMaxDelaythenInsert (Self.linkQueue.head, now, Self.to)Self.linkQueue := Self.linkQueue.tailif Self.channelDelayKind = \pipeline" thenSelf.linkQueueClocks := Self.linkQueueClocks.tailelseif Self.linkQueue.tail 6= empty thenextend Clock with cc.clockValue := 0Self.linkQueueClocks := <c>endextendelse

110 Chapter 6. SDL extensions for timed behavior descriptionSelf.linkQueueClocks := < >endifendifWhen a link retrieves a message from the transmitting end, the message is put in the linkqueue. If the link is pipeline, a new clock is created and set to 0, in order to measure the traveltime of the newly handled signal; the same is true if the link is delay and there is no othersignal currently traveling through it. The link delivers a signal at the other end only when it isin the head of the queue and the corresponding clock satis�es the channel delay bounds. Theclock corresponding to the delivered signal is erased from the queue, but if the link is delay anew clock is created for the next signal in the queue (if there is one).We note that with this semantics of channels, the mechanism of schedules from [IT99c],Part 3, x2.1.1.2, which are used to delay signal arrival is no longer necessary. For simplicity, inthe macros described above we use the same basic primitives (Insert, Delete, queue) as in[IT99c], but each time a signal inserted in a gate schedule (i.e. Insert is called) the signal isstamped with now and not with a delayed arrival time.Timers can be handled similarly, using clocks instead of the schedule. In [IT99c], timers aremodeled using two domains:1. the timer de�nitions: Timer =def ftid 2 Identi�er : tid.idToNodeAS1 2 Timer-de�nitiong2. the timer instances: TimerInst =def PId � Timer � Value*.The same domains are used in this variant of the semantics. An additional function maps every(non-expired) timer instance to a clock:controlled timerClock : TimerInst ! ClockAnother function keeps the non-expired timer instances of every agent:controlled runningTimers : SDLAgent ! TimerInst-setA third function keeps the relative deadline of each (non-expired) timer instance. We willconsider that the relative duration is a natural, for every timer set by the system. This is arestriction to the SDL language, made for simplifying the compatibility with timed automata.controlled timerDeadline : TimerInst ! NatThe macros SetTimer and ResetTimer described in [IT99c] are modi�ed as shown below:SetTimer(tm:Timer, vSeq :Value*, t :Time) �let tmi = mk-TimerInst(Self.self, tm, vSeq) inDelete(tmi, Self.inport)Self.runningTimers := Self.runningTimers [f tmi gextend Clock with ctmi.timerClock := cc.clockValue := 0endextendif t = unde�ned thentmi.timerDeadline := tm.durationelsetmi.timerDeadline := t � nowendifendlet

6.3. Impact of extensions on the ASM semantics of SDL 111ResetTimer(tm:Timer, vSeq :Value*) �let tmi = mk-TimerInst(Self.self, tm, vSeq) inDelete(tmi, Self.inport)Self.runningTimers := Self.runningTimers n f tmi gendletThe derived predicate Active ([IT99c], Part 3, x2.1.1.5), which indicates whether a timer is activeor not is rede�ned as:Active(tmi : TimerInst) : Boolean =deftmi 2 Self.runningTimers _ tmi 2 Self.inport.scheduleAs can be seen above, the macro SetTimer does not handle the delivery of the timer messagein the agent input port, as it does in the semantics using schedules. Therefore, an additionalrule macro is described to that end:ExpireTimers =choose tmi : tmi 2 Self.runningTimers ^tmi.timerClock.clockValue � tmi.timerDeadlineInsert(tmi,now,Self.inport)endchooseThe macro ExpireTimers must be inserted in the normal execution cycle (described inx2.3.2.2 of the standard semantics) of every SDLAgent. There are several phases of the cycle inwhich it can be inserted with the same e�ect, e.g. it may be called within the FireTransitionmacro.6.3.3 Controlled timeAn important change brought by the timing extensions in the semantics of SDL is the handlingof time progress. As we mentioned before, in order to guarantee the satisfaction of timingconstraints, time must be modeled as an internal, controlled parameter of the system, insteadof being an environment parameter.Concretely, this means that the function now, instead of being a monitored function as in[IT99c], is modeled as a controlled function:controlled now : ! Realinitially now = 0A new ASM agent is responsible for handling the now function and the system clock values(the clockValue function). This agent exists from system creation until the end of systemexecution.TimeAgent =def Agentstatic timeAgent : ! TimeAgentinitially Agent = f system, timeAgent gThe program of the time agent consists in computing the maximal value up to which time mayadvance at a moment, and then advance now and the values of all system clocks by an amountnon-deterministically chosen between 0 and the computed maximal value:

112 Chapter 6. SDL extensions for timed behavior descriptionAdvanceTime �choose v : v 2 Real ^ 0 � v ^ v � maxTimeProgressnow := now + vdo forall c : c 2 Clockc.clockValue := c.clockValue + venddoendchooseThe key of the above speci�cation is the maxTimeProgress function, which implements the timeprogress conditions (which are similar to those of time automata with urgency):{ Time does not progress while an SDL agent is executing a transition. We remind thatin the model executed by the dynamic semantics, time consuming actions are alreadytransformed into waiting states and zero-time actions.{ Time does not progress if there is an agent in a stable state for which an eager transitionis �reable.{ Time can progress with at most d time units, if there is an agent in a stable state for whicha delayable transition is �reable, and progress beyond d would disable the transition.{ Time can progress with at most d time units if there exists a signal on a delayable channelwhich should arrive at the end of the channel in at most d time.{ Time can progress with at most d time units if there exists a running timer is a processwhich should expire in d time.The de�nition of maxTimeProgress is then:maxTimeProgress : Real-inf =def min(< maxTimeZeroActions,maxTimeEager, maxTimeDelayable,maxTimeDelayLinks, maxTimeTimers >)In the de�nition, we use the domain:static Real-inf = Real [f 1 gwhere static1 :! X is a distinct element of the ASM basic set denoting the in�nite value. Wealso suppose that the functionmin(Real-inf * [Real-inf -set) : Real-infreturns the minimum of a sequence or set of real numbers including1, and that a function \�": Real-inf � Real-inf ! Boolean extends the comparison operators for 1 in the usual way.In what follows, we examine the functions involved in the de�nition of maxTimeProgress.Zero execution time for transitionsTo ensure that time does not progress while an agent is executing a transition, until it reaches astable state, the function maxTimeZeroActions returns 0 whenever an SDL agent is executinga transition, and 1 otherwise.The execution of an SDL agent is a process comporting multiple phases (execution start,transition execution, transition selection, execution stop) with complex control and sub-phases.Each phase consists of one or more ASM agent steps (applications of the ASM program). Apossible de�nition of maxTimeZeroActions is to allow time to progress only in a particular phase

6.3. Impact of extensions on the ASM semantics of SDL 113
Figure 6.5: Activity phases of SDL agents.of execution of the ASM agent implementing the SDL agent. In this way, all the other phasesin the execution of the ASM agent, which are invisible on the SDL level, are considered atomicwith respect to time (i.e. eager). The following de�nition of maxTimeZeroActions allows timeto progress only when all agents are about to begin the selection of �reable transitions5:maxTimeZeroActions : Real-inf =defif 8 ag 2 Agent : ((ag.program = Agent-Program))(ag.agentMode1 = execution ^ag.agentMode2 = selectingTransition ^ag.agentMode3 = startSelection))then 1 else 0 endifThere is a problem with this de�nition: in each ASM agent, the cycle between transitionselection { transition execution is a continual process, i.e. if a selection phase does not �ndany �reable transition, another selection phase begins unconditionally. Moreover, the cyclesof the agents composing the system do not synchronize with each-other. Therefore, with thede�nition of maxTimeZeroActions given before, the system may enter a timelock in which allagents cycle on the transition selection phase, but do not pass through the state tested bymaxTimeZeroActions simultaneously.A solution to this problem is to synchronize the execution cycles of all SDLAgents in thesystem (e.g. using a semaphore variable), so that they are forced to pass through the state testedby maxTimeZeroActions simultaneously. This may be done in such a way that the generality ofthe model is not a�ected, i.e. all possible interleaving of SDL actions in concurrent agents arepreserved. For that, it is necessary to allow the re-execution of the selection phase in an agenteven if a �reable transition was found, so that the synchronization introduced above does notforce the �ring of transitions. In the next section we show how we rede�ne the execution cycleof an SDLAgent to take into account these facts.Eager and delayable transitionsSeveral changes are needed in order to introduce the conditions on time progress imposed by theexistence of eager and delayable transitions into the ASM model. Fig. 6.5 shows the executioncycle of an SDLAgent from the standard formal semantics [IT99c], with an additional urgencyselection phase. In this phase, the clock constraints of the form x � c (�2 f<;�;=;�; >g),guarding the eager and delayable transitions which are otherwise �reable (i.e. except for thetruth value of these clock guards), are gathered together in two lists:5The test ag.program = Agent-Program is used in maxTimeZeroActions to select the SDLAgents from thewhole set of ASM Agents which also contains SDLAgentSets and Link agents

114 Chapter 6. SDL extensions for timed behavior descriptioncontrolled eagerGuards : ! (Value � Nat � Procedure)*controlled delayableGuards : ! (Value � Nat � Procedure)*The components of the tuples kept in these lists represent respectively the referenced clock (x),the constant (c) and the comparison operator (�).If the clock guard corresponding to an eager transition evaluates to True with the currentvalues of clocks, then an additional location denoted by the function trueEagerGuard is put toTrue:controlled trueEagerGuard : ! BooleanThe ASM implementation of the urgency selection phase is similar to that of the selectingtransition phase. The di�erences are that in urgency selection, the evaluation of the enablingconditions di�erentiates conditions on clocks from other boolean terms, and constructs the listsmentioned above instead �nding �reable transitions (without returning on the �rst transitionfound but by traversing all possibly �reable transitions).We note that in order for the urgency selection phase to work properly, all SDLAgents in theASM model must start executing it in a synchronized manner. Otherwise, if some SDLAgentsare still in the �ring transition phase while others begin the urgency selection, the former maychange the �reable transitions of the latter \on the
y", thus invalidating the global time progresscondition. Synchronization may be achieved through an ASM variable used as semaphore, likein the case of the selecting transition phase (see previous section). Thus, the phases representedin black in Fig. 6.5 are phases at the beginning of which SDLAgents need to synchronize.With these preparations, the expressions of the functions maxTimeEager and maxTimeDe-layable are:maxTimeEager : Real-inf =defif trueEagerGuard then0elsemin(< v.s-Nat � v.s-Value.s-Clock.clockValue j v in eagerGuards :v.s-Nat � v.s-Value.s-Clock.clockValue � 0 ^(v.s-Procedure.procName = \>" _v.s-Procedure.procName = \>=" _v.s-Procedure.procName = \=")>)endifmaxTimeDelayable : Real-inf =defmin(< v.s-Nat � v.s-Value.s-Clock.clockValue j v in delayableGuards :v.s-Nat � v.s-Value.s-Clock.clockValue � 0 ^(v.s-Procedure.procName = \<" _v.s-Procedure.procName = \<=" _v.s-Procedure.procName = \=")>)In the above de�nitions, we suppose that min returns1 if the list or the set parameter is empty.As can be seen, maxTimeEager returns 0 if the \urgency selection" phase has found (atleast) one eager transition which is �reable with the current values of clocks and now. If no

6.3. Impact of extensions on the ASM semantics of SDL 115such transitions are found, the list eagerGuards contains the (atomic clock comparisons fromthe) guards of eager transitions which may be enabled by only letting time pass. For every suchtransition, time may not progress beyond the lower bound of the transition guard, as this wouldmean to let time progress while the eager transition would be enabled. Actually, maxTimeEagercannot handle eager transitions with guards of the form x > c. However, such transitions arelogically nonsense, as they allow time to progress up to x = c { where they are not enabled, butnot beyond { where they would be enabled. Therefore, such transitions should be signaled asmodeling errors.maxTimeDelayable is based on the list delayableGuards, computed in the \urgency selection"phase, which contains the (atomic clock comparisons from the) guards of delayable transitionswhich may be disabled by letting time pass. For every such transition, time may not progressbeyond the upper bound of the transition guard, as this would mean to let time progress untilthe transition becomes disabled.Channel delays and timer expirationThe implementation of time progress conditions related to delaying channels and timers in ASMdepends on whether these constructs are implemented using the schedule mechanism or usingimplicit clocks (see x6.3.2).1. Time progress conditions for schedules. A schedule does not let time pass beyond thearrival time of the �rst signal not arrived. Globally, the maximum amount of time that isallowed (by the schedules) to pass is the minimum of the amounts let by all schedules in thesystem. Moreover, in the implementation using schedules, there is no di�erence betweenthe time progress condition generated by timers and that generated by delaying channels.We have therefore the following de�nitions for maxTimeDelayLinks and maxTimeTimers:maxTimeDelayLinks : Real-inf =def maxTimeSchedulesmaxTimeTimers : Real-inf =def maxTimeSchedulesmaxTimeSchedules : Real-inf =defmin(f g.signalsInTransit.head.arrival � now jg 2 Gate : g.signalsInTransit 6= empty g)where the function signalsInTransit computes the list of signals in a gate schedule whichare not yet arrived:signalsInTransit(g : Gate) : SignalInst* =def < si in g.schedule : (now < si.arrival) >2. Time progress conditions for implicit clocks. If implicit clocks are used for handling delay-ing channels and timers in the ASM semantics, the time progress conditions are based onthe values of implicit clocks and the relative timer and signal delays.The time progress condition imposed by delaying channels (maxTimeDelayLinks) are:{ If there is a signal at the transmitting end of a Link, which is ready to be put in thelink signal queue (action RetrieveSignal, de�ned on page 109), then time may notadvance until this action is done.{ Otherwise, time may advance until the (maximum) arrival time of the �rst signalwhich is to reach its destination.We get the following de�nition for maxTimeDelayLinks6:6The test lk.program = Link-Program is used to select the ASM agents implementing Links.

116 Chapter 6. SDL extensions for timed behavior descriptionmaxTimeDelayLinks : Real-inf =defmin(f lk.channelMaxDelay � lk.linkQueueClocks.head.clockValue jlk 2 Agent : lk.program = Link-Program ^ lk.linkQueue 6= empty g)The time progress condition imposed by the handling of timers using implicit clocks is thattime cannot advance beyond expiration moment of the timer with the closest deadline7:maxTimeTimers : Real-inf =defif 9 ag 2 Agent : ag.program = Link-Program ^ ag.from.queue 6= emptythen0elsemin(fmin(ftm.timerDeadline � tm.timerClock.clockValue j tm 2 ag.runningTimers g) jag 2 Agent : ag.program = Agent-Programg)endifConclusionFor an increased precision in the de�nition of the extensions proposed for SDL, in this sectionwe have described the semantics of the extensions in ASM, and we have adapted the ASMsemantics of time to better suit the needs of timing analysis (especially by modeling time asa controlled parameter of the system). ASM provides a formal operational description of thesemantics, which it can capture at the right abstraction level.However, while an ASMmodel is semantically equivalent with a labeled transition system, thedirect application of model checking techniques on multi-agent ASM speci�cations is complicatedby the �ne granularity of ASM transitions, and by the high level of asynchrony between ASMagents. Moreover, current SDL tools such as [TEL00a, TEL00b] do not use the standardsemantics but rather some simpli�ed LTS-based semantics, which avoids the problems of ASMmentioned above and thus reduce the state space explosion problem. For these reasons, we �ndit easier to adapt timed automata analysis techniques to SDL, which is one of the goals of thiswork, by taking as starting point the simpli�ed semantics implemented by SDL tools.In the following section, we discuss the impact of our proposed extensions on the semanticsof SDL as given by tools. We obtain thus a semantic model for SDL which is closer to thetimed automata model.6.4 Impact of extensions on the LTS-based semantics of SDLSimulation and veri�cation tools for SDL, like [TEL00a, TEL00b], work by building an LTScorresponding to the possible executions of an SDL model. This LTS complies only partially tothe standard ASM semantics of SDL, as some simpli�cations are made for eÆciency reasons,such as: transitions are considered atomic (interleaving is at the level of transitions and notof individual actions), transitions take 0 time units, time progress is controlled in a simpli�edmanner.In this section we examine how the extensions introduced in x6.2 can be integrated in thesemantics of SDL implemented by the ObjectGEODE simulation tool [TEL00a]. Many details7The test ag.program = Agent-Program is used to select the ASM agents implementing SDL agents.

6.4. Impact of extensions on the LTS-based semantics of SDL 117are however treated only informally, as a more rigorous de�nition was given in ASM in theprevious section. As we noted previously, we may only conjecture that the semantics describedin the following is equivalent with the ASM semantics using implicit clocks, described in theprevious section. A proof for this equivalence is practically impossible due to the complexity ofSDL and of the semantics.The ObjectGEODE discrete time semantics of SDLFor a given SDL system S, theObjectGEODE veri�cation tool builds a labeled transition systemGS corresponding to the state space of S, which is used to check behavioral properties. Thenodes of GS are global states of the SDL system, comprising the discrete state of each processinstance, procedure or service, the values of all variables, the content of all queues, as well asthe relative delay until expiration for each active timer in the system. The prede�ned variablenow is not part of the system state8, since this would cause GS to be in�nite systematically.The initial state of the LTS, q0, corresponds to the state of the SDL system after the initialcreation of all statically declared SDL agents.GS may contain the following kinds of transitions between states:1. internal discrete transition. q1 t�! q2 i� there is an SDL transition identi�ed by t,enabled in the state q1 and which takes the system into the state q2. A discrete transitionis caused by an input, a priority input, a continuous signal, a signal save or discard, etc.The modi�cations of the components of the state are those prescribed by the standardSDL semantics.2. feed discrete transition. q1 t�! q2 i� t is an input transition, and the signal that causesit may be sent by the environment of the SDL system.It is considered that signals coming from the environment may arrive at whatever moment,and therefore a feed transition q1 t�! q2 is enabled even if the signal causing the transitionis not actually in the queue, and there are other signals in the queue. For the signalparameters, the modeler has to specify particular values considered to be representative,so that the graph GS is not constructed for all possible combinations of parameter values.This implementation of the communication between the SDL speci�cation and the en-vironment is compliant with the standard ASM semantics, in which gate schedules aremodeled as shared ASM functions and can be freely modi�ed by the environment.3. time transition. q1 time(c)�! q2 if the next timer to expire has c time units until expiring.q2 is equal to q1 except for the delays of active timers, which are decreased by c. Asemantic parameter of the tool speci�es whether time transitions are allowed at all times,or only when the system is idle (i.e. there is no internal discrete transition and no timeouttransition enabled in q1).The above conditions specify how time progress is controlled in the construction of GS .Time transitions are interleaved with other SDL transitions, therefore SDL transitionsalways take 0 time. Moreover, time advances in discrete steps, and always up to the nexttimer expiration deadline.8In consequence, certain expressions involving now cannot be interpreted correctly in GS .

118 Chapter 6. SDL extensions for timed behavior description4. timeout transition. q1 timeout t�! q2 i� the timer t is active in q1 and its relative delayuntil expiration is 0. q2 is equal to q1 except for the active status of t and the queue towhich the signal t is appended.Impact of language extensions and continuous time progress conditionsFor an SDL speci�cation S using the timing extensions introduced previously in this chapter,the semantics is given by an LTS G�S that we call timed semantic graph. The states of this LTShave the form q� = (q; qc;X ;v), where:{ q is the global system state, like in GS . q comprises the discrete state of all processes,procedures and services that are active in the system, as well as the values of all variablesand the contents of all signal queues.{ qc contains the state (i.e. contents) of the queues associated to delaying channels (onequeue for each direction of a delaying channel).{ X is a set of clock identi�ers. It contains an identi�er for each explicit or implicit clockexisting in the current system state. The set X is variable due to dynamic clock andprocess creation/deletion, as well as to the handling of implicit clocks.Implicit clocks are used for measuring signal delays and for handling timers. For eachrunning timer u, the initial relative deadline du is held in the state q, like in GS , but thisvalue is not modi�ed by time transitions.{ v is a valuation of the clocks v : X ! R. It is similar to the way clock values are handledin the semantic graph of timed automata (x5.3):The initial state of the LTS G�S is q�0 = (q0; qc0;X0;v0) with q0 being the initial state from GS ,qc0 containing void queues for every delaying channel, X0 containing a clock identi�er for eachstatically declared Clock variable in each agent that is created at system startup, and v0 = 0.Let q�1 = (q1; qc1;X1;v1) and q�2 = (q2; qc2;X2;v2) be two states of the LTS. The types of edgesthat can exist in G�S between q�1 and q�2 are described below:1. internal or feed discrete transitions (this category includes both internal discretetransitions and feed transitions). q�1 t�! q�2 if:(a) t is a discrete transition enabled in q1, and q1 t�! q2 according to the rules in theuntimed semantic graph GS , and(b) v1 satis�es the part of the guard of t referring to clocks (see the language extensionssection), and(c) qc2 is obtained from qc1 by updating the contents of queues of delaying channels withthe signals that are output during t, and(d) v2 is obtained from v1 by applying the clock operations (resets, creations) speci�edon the transition t, and(e) X2 = X1 [Xt" n Xt# where Xt" are the clocks created during t and Xt# are the clocksdestroyed during t, and 8x 2 Xt" ; v2(x) = 0.More precisely, the rules for computing the sets Xt" and Xt# are as follows: For eachtimer u that is set by the transition t, a clock xu is added (xu 2 Xt"). For each

6.4. Impact of extensions on the LTS-based semantics of SDL 119timer u that is reset by the transition t, the corresponding clock xu is deleted from(xu 2 Xt#).For each output of a signal s, s is placed in the queue corresponding to the �rstchannel on the signal delivery path (which is computed statically, according to thestandard semantics of SDL). If that channel is annotated as pipeline, a new clockxs is added (xs 2 Xt"), to measure the signal travel time. If the channel is annotatedas delay, a clock xs is added only if there is no other signal in the channel queue.Moreover, for each new Clock object x created using mkClock() or as a consequenceof the creation of a new agent, x 2 Xt". For each destroyed clock object x, x 2 Xt#.2. timeout transition. q�1 timeout u�! q�2 if u is active in q�1 and the the value of the clock xucorresponding to the timer u is equal to the initial relative timer deadline du kept in q1(v1(xu) = du). q2 is the same as q1 except for the status of u (inactive in q2) and for theagent queue to which the signal u is appended. qc2 = qc1, and X2 = X1 n fxug.Timeout transitions are treated as eager transitions (see the de�nition of time transitionsbelow).3. signal delivery transition. q�1 deliver s�! q�2 if the signal s is in the head of a channelqueue, and the clock xs corresponding to the signal satis�es the constraints of the channel(cmin � v1(xs) � cmax, where cmin and cmax are the minimum/maximum delays for theconcerned channel). The clock xs is deleted in X2, and the signal s which is deleted fromthe corresponding channel queue in qc2.If the channel is the last one in the signal delivery path, the signal s is simply put in thedestination agent queue in q2. If the channel is not the last one, the signal is forwarded inthe queue of the next channel (i.e. qc2 is updated), by the same algorithm as in the initialsignal output (see discrete transitions).Signal delivery transitions are treated as delayable transitions, as it can be seen in thede�nition of time transitions below.4. time transition. q�1 time(Æ)�! q�2 i� the time progress conditions speci�ed below hold. Inthat case, q2 = q1, qc2 = qc1, and X2 = X1. v2 = v1 + Æ.The time progress conditions are: 8Æ0; Æ00 such that 0 � Æ0 < Æ00 � Æ(a) there is no discrete eager transition and no timeout transition enabled in(q1; qc1;X1;v1 + Æ0), and(b) there is no delayable transition and no signal delivery transition enabled in(q1; qc1;X1;v1 + Æ0) and disabled in (q1; qc1;X1;v1 + Æ00).Relation to timed automataThe timed semantic graph G�S has the same characteristics as the semantic graph of a timedautomaton:{ its states are composed of a discrete part { (q; qc;X) for a state q� = (q; qc;X ;v), and apart referring to clocks: v.{ its transitions are classi�ed into transitions which act on the discrete part and do not in-crease the component v (internal, feed, timeout and signal delivery transitions are included

120 Chapter 6. SDL extensions for timed behavior descriptionin this category), and time transitions which leave the discrete part intact but increaseuniformly the component v.In [Obe99], we have actually shown that for each SDL speci�cation S, a timed automatonAS can be constructed such that the semantic graph of AS is strongly equivalent to the timedsemantic graph G�S of S.However, the actual construction of AS is not important, as the analysis methods designedfor timed automata work with (abstractions of) the semantic graph of an automaton, which forAS is equal to G�S . Therefore, in the veri�cation tool described in Chapter 8, we apply timedautomata abstractions (such as the simulation graph, see x5.4) and model checking techniquesdirectly on the G�S graph described above.6.5 DiscussionWe have presented a set of extensions to the SDL language which allow the modeler of real-timesystems to specify more precisely the timing of actions and events described in an SDL model.The extensions improve the expressivity of the language, in the sense that both events occurringat precise time instants as well as time non-deterministic events may be modeled; both boundedand unbounded temporal non-determinism may be captured in SDL using the extensions. This
exibility in capturing timing constraints is due to the concept of transition urgency taken fromtimed automata [BST98].The possibility to express time non-determinism in a
exible way is important especially forthe validation of abstract or incomplete speci�cations. In such speci�cations, it is often the casethat the behavior of a component is not fully speci�ed, yet some information is available aboutthe timing of its actions. An example of such speci�cation is provided in x6.2.4.Other extensions which have been demanded by SDL users (actions with duration, channelswith delays) and for which previous proposals existed [Rou98, Die97], are studied in this chapterand given a precise syntactic and semantic de�nition. Issues like time progress conditions andatomicity in the context of parallel agents, delaying channels and time consuming actions areexamined in our timed semantics.We argue that the analyzability of SDL speci�cations is also improved by using the extensionsand the timed semantics introduced in this chapter, for the following reasons:{ The semantics is more accurate with respect to time. Certain scenarios with unrealistictime lines, which are allowed in the standard semantics of SDL are eliminated in the timedsemantics, thus reducing the size of the state space.{ A relation between our timed semantics and timed automata exists, which makes it possibleto use timed automata analysis techniques in the context of SDL.Related proposalsThe issue of introducing timing annotations into SDL speci�cation has been studied previously,mostly in the context of model-based performance analysis. We mention here two previousapproaches:1. The ObjectGEODE Performance Evaluation Extensions. The ObjectGEODE simulatorimplements a series of extensions [Rou98] for modeling and evaluating performance valuesof SDL speci�cations. The modeler has the possibility to attach durations to actions,

6.5. Discussion 121speci�ed by the lower and upper bounds and a probability distribution. Deployment in-formation may also be introduced in the SDL model, by specifying which processes run onthe same processor. This information is necessary to determine which other processes areblocked by the execution of an action with duration in a process. The timing informationmay be used subsequently to make performance measures by intensive random simulation.The extensions from [Rou98] do not give the user full control over time progress. The se-mantics of time remains the same as the one implemented by the standard ObjectGEODEsimulator, modulo time consuming actions. Moreover, the extensions are not intended forveri�cation of temporal properties, and their semantics is not formally speci�ed.2. Queuing SDL (QSDL, [DHHMC95a, Die97]) is another extension of SDL for modelingtiming properties of systems with the goal of doing performance evaluation. QSDL intro-duces an extension for modeling time consuming actions, the request statement. Thedi�erence between QSDL and our extensions is that the execution time of a request isnot speci�ed statically. Instead, requests are directed towards queuing machines, whichcompute dynamically the processing time of each request. Queuing machines representcomputing resources shared between several agents of an SDL system, and have a seriesof attributes (like speed, number of processors, scheduling policy) through which their be-havior may be adapted to the necessities of the model. Thus, QSDL allows the modelingof congestion due to system overloads.QSDL also introduces extensions for modeling communication delays, although the designchoices are debatable: delays (�xed values) must be speci�ed for each message output,message overtaking is allowed.The critiques made to the ObjectGEODE performance extensions remain valid in the caseof QSDL: the extensions are not intended for veri�cation and lack a proper underlyingsemantic framework. The timed semantics of SDL discussed in this chapter could beadapted to QSDL.Closer to our proposal is the work related to IF [BFG+99], which does not propose extensionsto SDL but gives a timed semantics of SDL in terms of an intermediate formalism (IF), whosesemantics is in turn based on communicating extended timed automata [Boz99]. Many aspectsof the timed semantics of SDL described in this chapter are found also in the SDL to IF mappingfrom [Boz99].Our current e�orts [BGM+01] go towards de�ning a set of high-level extensions for specifyingtiming information, through which the user should be able to capture the types of informationoccurring frequently in real-time speci�cations (e.g. cyclic events with period and jitter, orsynchronization between events) without having to express them in terms of low level constructssuch as clocks and urgencies. These extensions are based on the semantic framework establishedin [Boz99] and in the present work.

122 Chapter 6. SDL extensions for timed behavior description

Chapter 7Timed property description andveri�cation using MSC and GOALAn important part of the validation methodology for timed systems proposed in this work isconcerned with the veri�cation of functional properties including timing aspects, over SDLspeci�cations. In this chapter we examine how such properties may be speci�ed and veri�edusing MSC and GOAL. There are three aspects that need to be studied:{ the language constructs for specifying quantitative temporal properties. The existing con-structs of MSC-2000 are suÆcient for expressing basic timing properties. In the case ofGOAL, we propose a small set of extensions which enable the modeling of quantitativetiming.{ the semantics of the languages. De�ning semantics for a property language means statingprecisely the conditions in which a property is satis�ed (i.e. the satisfaction relationbetween the set of models and the set of properties). In the case of MSC, a �rst problem isthat MSC-2000 lacks a formal semantics for the timing constructs newly introduced in thelanguage. A second problem is that MSC is not a property language, but rather a languagefor expressing execution traces to which no particular meaning is attached. Later in thischapter we show that several equally justi�ed de�nitions may be given to MSC satisfaction.In the case of GOAL, the notion of satisfaction is already de�ned. Therefore, we only needto provide a proper timed semantics for the language extensions that we introduce.{ the veri�cation method. For both languages, we provide an algorithmic veri�cation methodby reducing the satisfaction problem to a timed automata model checking problem.In order to give a sound semantic basis to the de�nition of GOAL and MSC as temporalproperty languages, we begin this chapter by de�ning an abstract property model, Timed Prop-erty Automata (TPA). TPA is de�ned at the level of abstraction of timed automata, and usesthe main ideas of Timed B�uchi Automata (TBA) introduced in [Alu91]. The main di�erencewith TBA is that TPA is event oriented rather than state oriented. This makes it more suitableas semantic foundation for MSC and GOAL, which are event-oriented languages.We use the TPA model also for studying the veri�cation problem. The veri�cation methodthat we describe for TPA may be projected directly at the level of SDL/MSC/GOAL to obtainveri�cation techniques for these languages.The chapter is structured as follows: x7.1 introduces the TPA formalism. We discuss �rstsome general notions about formal property speci�cation languages, and we continue with the123

124 Chapter 7. Timed property description and verification using MSC and GOALde�nition of TPA and with a study of the TPA veri�cation problem. In x7.2 we discuss thepossible de�nitions of MSC satisfaction, and we sketch a TPA-based semantics for a subset ofMSC. In x7.3 we introduce a set of extensions which enable the description of timing informationin GOAL, and we discuss informally the semantics and veri�cation issues related to GOAL.7.1 Timed Property Automata7.1.1 Property speci�cation languagesIn this section we introduce some general notions about the property speci�cation languagesused in model checking, in order to set the stage for the formalism de�ned in the next section.This section does not aim to give a thorough introduction to the subject; for that, the reader isreferred to a monograph such as [CGP99] or [Hol91].Linear vs. branching timeDe�ned in a general way, a property is an assertion about the behavior of a model. As thebehavior of an LTS (x5.2) may be regarded either as a set of possible runs or as an executiontree (with the possibly in�nite branches representing runs), it is common to distinguish betweenproperties that make assertions about the individual runs (linear properties) and properties thatmake assertions about the tree of runs (branching properties).Thus, for a linear property P and a run �, it is possible to say whether the run satis�es theproperty (denoted � 2 P). The property P may be identi�ed with the set of runs that satis�esit. Based only on the set of possible runs of an LTS (and not on its structure), it can be decidedwhether the LTS satis�es the property or not.Branching properties, on the other hand, make assertions about the structure of the tree ofruns, and therefore two automata with the same set of accepted runs do not necessarily satisfythe same branching properties.Logic vs. automata-based property speci�cationFormalisms for representing both branching and linear properties have been proposed in theliterature. There are branching and linear variants of temporal logics [Pnu77, CES86, BAMP83],as well as operational methods for specifying linear properties using B�uchi automata [B�60]. Inthis thesis we are concerned with the latter type of speci�cations, as they are semantically closerto the property languages considered here (MSC and GOAL).Safety vs. livenessIn linear time, it is common to consider two types of properties [Lam77]:{ Safety properties, which assert that a certain (bad) condition does not occur during theexecution of a system. If P is a safety property, and � is an execution that does not satisfyP , it means that there is a point in � where the \bad" condition occurs. Let � be thepre�x of � up to that point. A characterization of safety properties is that if � 62 P , then8� a continuation of the run �, the concatenation �:� does not satisfy P (�:� 62 P).Invariance properties, for example, are safety properties.

7.1. Timed Property Automata 125{ Liveness properties, which assert that a certain (good) condition occurs in�nitely oftenduring the execution of a system. If P is a liveness property, then every �nite execution� of the LTS has an in�nite suÆx � (not necessarily realizable in the LTS) such that theconcatenation �:� satis�es P (�:� 2 P).A topological characterization of linear properties [AS87] shows that any property is theconjunction of a safety property and a liveness property.Safety and liveness properties are speci�ed and veri�ed using di�erent methods. As weshow in the next section, in the formalism considered in this chapter safety properties arespeci�ed by assuming �nite automata acceptance conditions for the automaton representing thespeci�cation, while liveness properties are speci�ed by assuming B�uchi acceptance conditionsfor the speci�cation automaton.7.1.2 TPA de�nitionDe�nition 7.1 (timed property automaton) A timed property automaton (TPA) is a cou-ple B = (A;F) where A = (�;X ; Q; q0; E) is a timed automaton in which all transitions havelazy urgency, and F � Q is a set of accepting states.Property satisfaction is de�ned through two satisfaction relations: safety satisfaction andliveness satisfaction. The semantics of the accepting states is de�ned by the satisfaction rela-tions; it is similar to the B�uchi acceptance condition in the case of the liveness satisfaction, andto the �nite automata acceptance condition in the case of the safety satisfaction.Correspondence of runsThe satisfaction relations between a TA A = (�;X ; Q; q0; E) and a TPA B = (A0; F) withA0 = (�0;X 0; Q0; q00; E0) are de�ned based on a correspondence function between the transitionsof A and the transitions of A0. Let � : Q0�E ! E0[f�g be a function, such that 8q0 2 Q0; e 2 E,if �(q0; e) 2 E0 then �(q0; e) has q0 as source state. The symbol � signi�es that there is notransition in E0 corresponding to a state q0 and a transition e; it avoids the de�nition of � as apartial function on Q0 �E.Based on the above de�nition, we de�ne a correspondence function (denoted �) between runsof A and runs of A0. Let � = (q0;v0) Æ0�! (q0;v0 + Æ0) e0�! (q1;v1) Æ1�! : : : be a run of A in thecanonical form. The corresponding run of A0, �(�) = (q00;v00) Æ00�! (q00;v00 + Æ00) e00�! (q01;v01) Æ01�!: : : begins in the initial state of A0, (q00;v00), and is determined by the following transitions:{ Time steps from �(�) are identical with those from �: 8i: Æ0i = Æi. Given a state (q0i;v0i), thetime step Æi�! uniquely determines the next state of �(�): (q0i;v0i+ Æi). The validity of theÆi�! time step is ensured by the fact that all transitions of A0 are lazy (see the de�nitionof TPA) and therefore any amount of time may pass in any state.{ Discrete steps from �(�) are determined uniquely by the discrete steps from � as follows:e0i = � �(q0i; ei) ; if �(q0i; ei) 2 E0 and v0i + Æi 2 guard(e0i),� ; otherwise:In the former case, (q0i;v0i + Æi) e0i�! (q0i+1;v0i+1) is a usual discrete transition of the timedautomaton A0. Its validity is ensured by the fact that e0i = �(q0i; ei) 2 E0 is a discrete

126 Chapter 7. Timed property description and verification using MSC and GOALtransition departing from q0i (see de�nition of � above) and the guard is satis�ed: v0i+ Æi 2guard(e0i). The transition uniquely determines the next state (q0i+1;v0i+1), by the usual TAtransition rule.In the latter case, (q0i;v0i + Æi) ��! (q0i+1;v0i+1) does not denote an actual transition, butthe fact that the automaton A0 remains in the same state: q0i+1 = q0i and v0i+1 = v0i + Æi.The �-transition uniquely determines the next state (q0i+1;v0i+1), and its validity is ensuredby de�nition.Note that because of the �-transitions, the run �(�) is not in a canonical form. Thus, anin�nite run � may correspond to a �nite run �(�) if �(�) is brought to canonical form. This casecorresponds to the situation in which the property automaton does not make any more discretetransitions (di�erent from �) beyond a certain point.The above arguments imply the following property:Lemma 7.1 � associates an unique and valid run �(�) of A0 to every run � of A.For a TPA B = (A0; F) and a correspondence function �, letExecA;�(B) = f�0 run ofA0 j 9� run ofA; �0 = �(�)gWe de�ne also the following subset of ExecA;�(B):Exec-infA;�(B) = f�0 run ofA0 j 9� in�nite run ofA; �0 = �(�)gSatisfaction relationsWe de�ne two satisfaction relations for TPA:{ With the safety satisfaction relation (�S), a TA A satis�es a TPA B = (A0; F) (denotedA �S B) i� there is no run of A0 in ExecA;�(B) passing through a state from F .Intuitively, the states from F are regarded as error states, in which the property automatonmust not enter.{ With the liveness satisfaction relation (�L), a TA A satis�es a TPA B = (A0; F) (denotedA �L B) i� every in�nite run � of A corresponds to a run �(�) which brought to thecanonical form is either1. in�nite, and passes an in�nite number of times through a state from F (B�uchi accep-tance condition), or2. �nite, and ends in a state from F .Intuitively, the states from F are regarded as progress states, and every in�nite run of Amust make the property automaton B progress an in�nite number of times.The following notations are used in the de�nition of �S and �L: let A be a TA and B = (A0; F)be a TPA with the components denoted in usual way. Let � be a run of A0 in the canonicalform. We de�ne inf(�) as the set of discrete states q through which � passes an in�nite numberof times, if � is in�nite, and the singleton formed of the last state of �, if � is �nite. Let:ExecSA;�(B) = f� 2 ExecA;�(B) j 9i 2 N:discrete(�(i)) 2 FgExec-infLA;�(B) = f� 2 Exec-infA;�(B) j inf(�) \ F = ;g

7.1. Timed Property Automata 127Ax := 0Bx � k
BA

Ax := 0(a) (b)
x � 1x := 0true(c)

x := 0 x � k
Figure 7.1: Examples of Timed Property Automata.De�nition 7.2 (TPA safety satisfaction) A �S B i� ExecSA;�(B) = ;.De�nition 7.3 (TPA liveness satisfaction) A �L B i� Exec-infLA;�(B) = ;.By de�nition, �S may be used to check safety properties of a model, by negation: in orderto specify that a certain bad condition does not occur during the execution of a system, themodeler builds a TPA that enters an error state when the condition is met in a correspondingrun of the model.�L is strictly more powerful than �S, and may specify properties which have both a safetypart and a liveness part. In order to express a safety property in a liveness TPA B = (A;F),it is suÆcient to introduce a sink state q in the TPA such that q 62 F . Then, the TPA must bebuilt such that each (�nite) run � of the model that does not satisfy the safety property leadsthe TPA in state q. Since every �nite run is the pre�x of at least one in�nite run (in the sensethat time may progress to in�nity along it, but not necessarily containing an in�nity of discretesteps), and every in�nite continuation of � will leave the TPA in state q (because q is sink), theTPA will not be liveness satis�ed if a run � leading to q exists.The reason for which we introduce the two relationships is a practical one: the veri�cationof safety satisfaction is equivalent to the veri�cation of a simple reachability property, while theveri�cation of liveness satisfaction involves a more complex algorithm for searching non-progressloops in the state space of a model. We also think that making a clear distinction between thetwo categories helps the modeler in the speci�cation of properties.Examples of propertiesA simple example of safety property is: \an event A should never be followed by an event Bat less than k time units". The TPA that describes this property is shown in Fig. 7.1-a1. Thecorrespondence function used in veri�cation would have to ensure that TPA transitions labeledwith A and B correspond respectively to model transitions on which events A and B occur.The classical bounded response property is a liveness property: \every event A is eventuallyfollowed by an event B within at most k time units". The TPA corresponding to this propertyis shown in Fig. 7.1-b.The bounded response property may be expressed, in a slightly modi�ed form, as a safetyproperty: after an occurrence of the event A, k time units never pass without the occurrence of1For representing TPA graphically, we use the same conventions as for timed automata. Additionally, statesfrom the �nal set (F) are represented with double circles, and the urgency is not marked on transitions as all ofthem are lazy by de�nition.

128 Chapter 7. Timed property description and verification using MSC and GOALB. The di�erence between the liveness version of the bounded response property and the abovesafety version is that, with the latter, zeno runs on which neither B occurs, nor k time unitspass, are not considered to break the property. An example of such a property is speci�ed inGOAL, later in this chapter.Another example of liveness property is non-zenoness, which states that there is no in�niterun of the system along which time remains below a �nite limit. The speci�cation of thisproperty in liveness TPA is shown in Fig. 7.1-c. The correspondence function for this TPA mustrelate every transition of the model with the transition labeled true. The idea is that on everyin�nite run of the system, if time remains below a �nite limit then the TPA will eventuallyremain in the non-accepting state (on the left) forever, which will lead to the non-satisfactionof the property.Comparison with Timed B�uchi AutomataThe de�nition of TPA above is di�erent from both versions of Timed B�uchi Automata de�nedin [Alu91] and [Tri98]. The �rst di�erence is the correspondence relationship, which in [Alu91]and [Tri98] is state-based instead of transition-based. Thus, in [Alu91] and [Tri98], a function� : Q0 ! 2Q associates to each discrete state of B a set of corresponding states from A.The correspondence of runs from A and B is also de�ned based on the states rather than ontransitions.A correspondence based on transitions can be strictly more �ne grained than a correspon-dence based on states. In consequence, there are properties referring to the transitions of A,such as: \a transition e is always triggered t time units after a transition e0", which can beexpressed using the TPA de�ned above and which, in general, may not be expressible using theTBA from [Alu91, Tri98]. Conversely, properties referring to the states of A, such as \a state qis exited at most t time units after it is entered" can be expressed in both TBA and TPA.From the point of view of the satisfaction relations, it is diÆcult to compare TPA to TBA,as the de�nition of TPA is based on a notion of correspondence of runs such that each runof the model corresponds to a run of the TPA, while TBA satisfaction is based on languageinclusion [Alu91] or intersection [Tri98] and the sets of runs of the model and of the TBA areincomparable in general. We also note that satisfaction of TPA is decidable, as shown in thenext section, while satisfaction of TBA is decidable with the de�nition based on intersection[Tri98] and undecidable with the de�nition based on inclusion [Alu91].7.1.3 TPA model checkingIn this section we discuss the problem of deciding TPA satisfaction. As the satisfaction relations�S and �L are based on the set of runs of B corresponding to runs of A, ExecA;�(B), and on itssubset Exec-infA;�(B), we construct an automaton generating the runs ExecA;�(B).Characterization of satisfaction as an automata language problemDe�nition 7.4 (weak synchronized product) Let A be a TA, B = (A0; F) a TPA, and � :Q0 � E ! E0 [f�g the correspondence function between the edges of A and A0. We de�ne theweak synchronized product of A and A0 as: A��A0 = (��(f�g[�0);X [X 0; Q�Q0; (q0; q00); T),where T is the minimal set of transition edges de�ned by the following rules:1. 8e = (q1; �; u; a;X; q2) 2 E and 8q01 2 Q0 such that �(q01; e) = �, then((q1; q01); �; u; (a; �);X; (q2 ; q01)) 2 T .

7.1. Timed Property Automata 1292. 8e = (q1; �; u; a;X; q2) 2 E and 8q01 2 Q0 such that �(q01; e) = (q01; � 0; lazy; a0;X 0; q02), then((q1; q01); �^� 0; u; (a; a0);X[X 0; (q2; q02)) 2 T , and ((q1; q01); �^:� 0; u; (a; �);X; (q2 ; q01)) 2 T .The weak synchronized product de�ned above is similar to the AND synchronized productde�ned in x5.3: the function � : Q0�E ! E0[f�g induces a relation � = f(e; e0) 2 E�E0 j 9q0 2Q0: �(q0; e) = e0g, which de�nes a synchronized product A
� A0 almost identical with the weaksynchronized product A�� A0. This assertion is based on the following observations:{ as all transitions e0 2 E0 have the urgency u0 = lazy (see de�nition of TPA), we havemax(u; u0) = u; 8u{ from the de�nition of the product, it can be seen that all transitions of the automaton A0are either synchronizing with transitions from A, or not taken into account in the product.The reverse is not necessarily true, i.e. transitions of A may execute without synchronizingwith A0.The di�erence between A
� A0 and A �� A0 comes from the existence of transitions((q1; q01); � ^ :� 0; u; (a; �);X; (q2; q01)) 2 T 2. They allow the automaton A to take a transitione = (q1; �; u; a;X; q2) without synchronizing with e0 = �(q0; e) even if A0 is in the state q0, incase the guard � 0 of e0 is not satis�ed. Therefore, the above operator enforces synchronizationof A with A0 only when the latter is ready to accept it (whence the attribute \weak"), and thusit does not constrain the behavior of A.The above argument implies the following property:Lemma 7.2 There is a one-to-one correspondence between the runs of A and the runs of A��A0.Notations. In the following, we will use the following notations: let v : X [X 0 ! R avaluation of the clocks of A �� A0. We denote vjA and vjA0 the restriction of v to X andrespectively X 0, which are valuations of A and A0.Let � = ((q0; q00);v0) Æ0�! ((q0; q00);v0 + Æ0) e0�! ((q1; q01);v1) Æ1�! ::: a run of A �� A0. Wedenote �jA = (q0;v0jA) Æ0�! (q0;v0jA + Æ0) e0jA�! (q1;v1jA) Æ1�! ::: where eijA is the transition e ofA from which the transition ei of A�� A0 was constructed.We also denote �jA0 = (q00;v0jA0) Æ0�! (q00;v0jA0 + Æ0) e0jA0�! (q01;v1jA0) Æ1�! :::, where eijA0 = e0if the transition ei of A �� A0 is constructed by synchronization with e0, and eijA0 = � if thetransition ei is not constructed by synchronization.Sketch of proof. We argue that for every run � of A �� A0, �jA is a uniquely determinedrun of A, and conversely, for every run � of A there is a unique run � of A �� A0 such that� = �jA. The proof in both directions may be based on an induction argument, over the stepsof the runs.With the notations introduced above, the following property can be easily proved, using thesame induction argument as in the previous property:2Note that the guard of this transition (� ^:�0) may be a non-convex polyhedron, and thus does not conformto the de�nition of TA. However, this does not add complexity to the model, as � ^:�0 is a �nite union of convexpolyhedra �1 _ ::: _ �k and so the aforementioned transition may be considered to represent a set of alternativetransitions with the convex guards �1; :::; �k, which falls back in the class of TA de�ned in 5.3.

130 Chapter 7. Timed property description and verification using MSC and GOALLemma 7.3 For every run � of A, the corresponding run � of A �� A0 is such that �jA = �,and �jA0 = �(�), where � is the correspondence function between the runs of the TA A and theruns of the TPA A0.Using the above result, the sets ExecA;�(B) and Exec-infA;�(B) from the previous section,on which are based the de�nitions of the satisfaction relations, can be characterized as follows:ExecA;�(B) = f�jA0 j � is a run ofA�� A0gExec-infA;�(B) = f�jA0 j � is an in�nite run ofA�� A0gThe satisfaction relations can therefore be characterized as follows:{ A �S B i� there is no state (q; q0) reachable in A�� A0 such that q0 2 F .{ A �L B i� all in�nite runs of A �� A0 pass an in�nitely often through at least one stateq0 2 F .Abstractions for the veri�cation of TPA satisfactionThe characterization from the previous section reduces the problem of deciding TPA safety satis-faction to the reachability problem for the automaton A��A0. As such, TPA safety satisfactionmay be veri�ed by constructing either the region graph or the simulation graph (see x5.4) ofA�� A0, and checking that no state (q; q0) with q0 2 F is reachable in the constructed graph.TPA liveness satisfaction can be decided in a similar way, by checking that there are nocycles in the region graph or the simulation graph which do not pass through states (q; q0) withq0 2 F . Such non-progress cycles can be detected using Tarjan's algorithm for �nding stronglyconnected components [Tar72] or variants of it [HPY96, CVWY92].The above arguments imply the decidability of both safety and liveness TPA satisfaction.7.2 MSCAn MSC speci�cation de�nes a set of event traces ordered in time. The �rst problem in usingMSC as a formal property speci�cation language is the lack of a semantics comprising thenew timing aspects introduced in MSC-2000. In x7.2.1 we discuss a method of characterizingformally the language of traces speci�ed by an MSC, as the set of accepting runs of a timedautomaton with B�uchi acceptance conditions. Our characterization works for a subset of MSC-2000, for several reasons; �rstly, the language of event traces de�ned by a High-level MSC isnot regular, as previously discussed in x4.1.3. Some simplifying assumptions have to be madeso that the language may be characterized using automata. Secondly, certain constructs forspecifying timing in MSC-2000 are outside the expressivity limits of timed automata. Finally,some parts of the MSC language are not discussed here (e.g. use of data), as in this work weconcentrate on the speci�cation of timing constraints.A second problem in using MSC as property speci�cation language for formal veri�cationis to de�ne the satisfaction relationship between SDL models and MSC speci�cations. Therelationship is not de�ned in the standard Z.120 [IT99a], as it is considered outside the scope ofthe language de�nition. In x7.2.2 we examine some of the alternative de�nitions which may begiven to the satisfaction relationship.Based on the timed automata semantics de�ned for MSC, in x7.2.3 we discuss a methodfor verifying automatically the satisfaction of MSCs with timing constraints. The veri�cationmethod reduces MSC satisfaction to TPA liveness satisfaction.

7.2. MSC 131Throughout this work, we consider only the mechanisms for expressing timing constraintsalready available in MSC-2000, and we do not propose extensions to the language.7.2.1 A timed automata semantics for MSCIn order to verify any form of MSC satisfaction, the language of traces de�ned by an MSCspeci�cation has to be de�ned formally. This is the task of the formal semantics of MSC, whichis a part of the language standard (Annex B of Z.120). At the time being, however, the formalsemantics of MSC does not cover the timing aspects introduced in MSC-2000 and de�nes onlythe untimed trace language generated by an MSC speci�cation.To be able to apply timed automata model checking techniques to the veri�cation of MSCsatisfaction, we de�ne the set of timed traces generated by an MSC as the language of runsgenerated by a timed automaton with B�uchi acceptance condition. For that, we take as startingpoint the Petri-net semantics of MSC given by [GPR93] and described in x4.1.3.An MSC speci�cation not containing timing annotations speci�es a set of traces in whichthe relative delays between events may have arbitrary values. The timing annotations used toconstrain the relative delays between events are (see x4.1.5):{ relative constraints, which specify the distance in time between the occurrence of twoevents, by a lower and an upper bound.{ absolute constraints, which specify the moment of occurrence of an event, by a lower andan upper bound.The time values used in such constraints may either be speci�ed statically (with expressionsinvolving only constants) or dynamically (using unconstrained expressions of type Time). Inthe latter case, the expressions may contain values resulted from measurements, which may beeither relative delays between events, or the absolute occurrence time of an event. In Fig. 4.4we have shown an example containing both measurements and constraints.However, not all the constructs mentioned before can be expressed using timed automataconstructs. For example, measuring the distance in time between two events, and using it laterto constrain the occurrence delays of other events is equivalent to using a stop clock operation.This operation is beyond the expressivity limits of timed automata.Additionally, absolute constraints expressed in real-world time (like GMT) are also allowedin MSC. Such constraints raise problems, because there is no corresponding notion of absolutetime in timed automata. In turn, absolute constraints referring to a time scale in which the �rstevent of the MSC occurs at time 0 may be handled as relative constraints with respect to the�rst event of the MSC.For these reasons, the semantics described in the following takes into account only relativetiming constraints expressed using constants.The timed automaton whose set of runs is equal to the set of timed traces generated by anMSC M is obtained in the following steps:1. Build the Petri-net PN corresponding to the MSCM from which timing annotations havebeen removed, as explained in [GPR93] (and in x4.1.3).2. Annotate the transitions of PN with timed automata-like guards and clock operations, asfollows:

132 Chapter 7. Timed property description and verification using MSC and GOAL

srv.end

client1.end

client1

Client

srv

Server

CR(name1)

CACK

StartSession(2,name1,name2)

(0,5s]

(0,2s]

msc
tConnection

out CR(name1)

/ x1 := 0

in CR(name1)

/ x2 := 0

out CACK

in CACK

/ [0 < x1 <= 2]

out StartSession

/ [0 < x2 <= 5]

in StartSession

srv.start
 client1.start

CR.init.resp

CACK.init.resp

StartSession.

init.resp

srv.1

srv.2

srv.end

client1.2

client1.1

client1.end

srv.start

client1.start

srv.start

CR.init.resp

client1.1

out CR(name1)

/ x1 := 0

srv.1

client1.1

in CR(name1)

/ x2 := 0

srv.2

CACK.init.resp

client1.1

out CACK

srv.2

client1.2

srv.end

CACK.init.resp

StartSession.init.resp

client1.1

in CACK

/ [0 < x1 <= 2]

out StartSession

/ [0 < x2 <= 5]

srv.end

StartSession.init.resp

client1.2

in CACK

/ [0 < x1 <= 2]

in StartSession

out StartSession

/ [0 < x2 <= 5]

Figure 7.2: Semantics of timed MSC as timed automaton{ if the transition represents an MSC event which is the origin of a relative constraintC, annotate it with a clock reset \xc := 0", where xc is a unique clock correspondingto C.{ if the transition represents the �nishing event of a constraint C, annotate it witha guard \A �1 xc �2 B", where xc is the clock corresponding to C, A and B arethe lower and respectively upper bound of the constraint C, and �1;�22 f<;�gaccording to whether the interval specifying C is open or closed in A, respectively B.3. Build the LTS containing the reachable markings and transitions of PN . The de�nition ofthe timed automaton corresponding to an HMSC will only work if the graph of markingsof PN is �nite. However, as we have shown in x4.1.3, this condition is satis�ed if it isconsidered that upper and lower boundaries of a Basic MSC constitute synchronizationpoints for the instances contained in the MSC. In the following, we will consider that it isthe case, as otherwise the MSC model checking problem is undecidable.4. Annotate the transitions of the LTS with the same annotations (guards and clock resets)as the corresponding PN transitions. We obtain thus a timed automaton, in which alltransitions have lazy urgency (by default).In Fig. 7.2 we show the construction of the timed automaton corresponding to a simple MSCspeci�cation with timing annotations. First, in the center, the annotated Petri net is built. Onthe right we represented the timed automaton built from the LTS containing reachable markingsof the Petri net. The states of the automaton are annotated with markings, that is with thelabels of places in which there is a token.For each MSC, there will be one or more markings of the Petri net corresponding to �nalstates of the MSC. For the example in Fig. 7.2, the �nal marking is the marking in which theplaces srv.end and client1.end contain one token each. In the case of an HMSC, or a basic MSCusing inline operators, there may be more than one �nal state of the MSC due to alternatives.In the timed automaton, the �nal markings will generate one or more states which willbe marked as �nal states. These states are usually sink states, but may also have outgoing

7.2. MSC 133transitions if the MSC speci�cation ends in a loop. For this reason, the timed automaton isde�ned to have B�uchi acceptance conditions with respect to these �nal states. The set of timedtraces described by an MSC may be de�ned as the language of runs generated by the timedB�uchi automaton constructed above.7.2.2 MSC satisfactionIn order to use MSC as a property speci�cation language in relation to SDL models, the con-ditions in which an SDL model satis�es an MSC must be clearly de�ned. In the following, wediscuss the principles of the de�nition of a satisfaction relationship, on the following axes:1. the correspondence between MSC instances and SDL model components,2. the correspondence between events speci�ed in an MSC and events occurring in an SDLmodel,3. the correspondence between MSC traces and SDL runs,4. the relation between the set of traces de�ned by an MSC, and the set of runs of an SDLmodel.Some of the ideas discussed in the sequel are inspired from the de�nition of MSC satisfac-tion used in the ObjectGEODE simulation and veri�cation tool [TEL00a]. Nevertheless, thesatisfaction relations considered in the tool are more restrictive and do not take into accountthe timing aspects.SDL agents and MSC instancesIf an MSC speci�cation M describes a property of an SDL system S, then there must be acorrespondence between instances of M and the distinct components of S to which they refer.As distinct components are modeled through agents in SDL, it is natural to assert that theinstances of M should correspond to agents from S. This corresponds to the intended usage ofMSC as explained in the standard.Because agents are organized hierarchically, an instance of M designating an agent will alsodesignate all its sub-agents. Events appearing on the instance correspond to events occurring inthe agent itself or in the sub-agents. The environment (border) ofM designates the environmentof SSDL events and MSC eventsThere is an intuitive correspondence between SDL events and MSC events, as the two languageswere originally designed in order to be used jointly:{ Message sending corresponds to an SDL signal output. Message receipt may correspondseither to the receipt or to the consumption of a signal by an SDL agent. In the following,we consider that it corresponds to the consumption, i.e. to the execution of a matchinginput (or priority input) clause.{ A timer operation (set, reset) speci�ed in an MSC corresponds to the execution of a match-ing timer operation in the SDL model. A timer timeout corresponds to the consumptionof the matching timer signal.

134 Chapter 7. Timed property description and verification using MSC and GOAL{ Instance creations, instance stops, method calls correspond to the analogous events in theSDL model.{ Actions and conditions are not matched against events in the SDL model.SDL runs and MSC tracesFor discussing the correspondence between SDL runs and MSC traces, we will consider thetimed automata-based semantics of SDL discussed in x6.4. Thus, a run is a sequence of statesand transitions: � = q�0 Æ0�! q�0 + Æ0 t0�! q�1 Æ1�! q�1 + Æ1 t2�! q�2 : : : , where t0; t1; ::: denotediscrete transitions (either SDL transitions, or implicit signal delivery or timeout transitions)and Æ0; Æ1; ::: denote time transitions.As speci�ed by the timed semantics of MSC, an MSC trace is a sequence of discrete eventsseparated by relative time durations = (e0; Æ00; e1; Æ01; e2; Æ02; :::). The correspondence between� and depends on two aspects:1. the correspondence between the events generated by discrete transitions t0; t1; ::: from �,and the events of , (e0; e1; :::). The correspondence may not be one-to-one, as there maybe transitions generating 0 or multiple events.2. the correspondence between the relative delays Æ0; Æ1; ::: from � and the relative delaysÆ00; Æ01; ::: from . Again, the correspondence may not be one-to-one, and depends on thecorrespondence between transitions and events. For example, if several events ei; :::; ej aregenerated by the same transition tk, the delays Æi; :::; Æj�1 must be 0.We can de�ne the correspondence between sequences of discrete events generated during anSDL model run, and (untimed) traces of events speci�ed by an MSC, in several ways:{ If we consider that the MSC de�nes complete traces, then a run � of the SDL model isinscribed in the MSC if there is a trace of the MSC which contains exactly the discreteevents from �, in the same order.Alternatively, if we consider that the MSC de�nes complete traces with respect to a set ofobservable events E, then � is inscribed in the MSC if, by removing from � the events thatare not in the observable set E, there is a trace of the MSC which contains exactly theremaining events of �, in the same order.{ If we consider that the MSC de�nes incomplete traces, then � is inscribed in the MSC ifthere is a trace of the MSC such that all the events of appear in � in the same order,but � may contain additional events not appearing in .Relation between sets of runs and sets of tracesGlobally, the satisfaction relation between an SDL model and an MSC speci�cation may bede�ned in several ways, such as:1. the SDL model S satis�es the MSC speci�cation M (S �M) if all runs of S are inscribedin M , or2. S �M if there is a run of S which is inscribed in M , or3. S �M if no run of S is inscribed in M .

7.2. MSC 135Depending on the exact relation that is considered, an MSC may represent either a safetyproperty, or a combined safety and a liveness property. For example, in case of the third relationdescribed above, the MSC represents a purely safety property (the events in the MSC must notoccur). In cases 1 and 2, the MSC has both a safety and a liveness part: the safety part isthat events not speci�ed in the MSC must not occur, and the liveness is that, eventually, all theevents speci�ed in the MSC must occur. For this reason, in general an MSC may be interpretedas a liveness timed property automaton.7.2.3 Timed MSC model checkingThe correspondence between MSC events and events occurring in the SDL model, describedinformally in the previous section, may be formalized as a correspondence function of the kindused in timed property automata (x7.1.2). This allows the interpretation of the timed automatonof an MSC as a TPA referring to the timed automaton of an SDLmodel. Thus, the veri�cation ofMSC satisfaction may in principle be performed using the model checking techniques describedfor TPA.However, in the previous paragraph we showed that several kinds of MSC satisfaction rela-tions may be useful. The veri�cation of each kind of relation requires small modi�cations of theautomaton corresponding to the MSC, discussed below.We examine here the model checking method for one particular kind of MSC satisfactionrelation, the methods for other types of relations being somewhat similar. We consider a relationin which MSCs represent complete event traces (that is, other events except those speci�ed bythe MSC are not allowed to occur in runs complying to the MSC). Moreover, by this relation, anSDL model is considered to satisfy an MSC if all the runs of the SDL model are either inscribedin the MSC (in the sense discussed in the previous section), or do not contain the events thatappear in the beginning of the MSC (that is, they leave the TPA corresponding to the MSC inthe initial state).In order to verify this satisfaction relation, we have to modify the TPA corresponding tothe MSC to ensure that traces containing additional observable events not appearing in theoriginal MSC are rejected. Thus, in every state of the timed automaton, several additionaltransitions towards a new sink state (unexpected) are introduced. The transitions correspondto all observable events that are not expected in that state (or are expected with a di�erenttiming condition), according to the MSC speci�cation. For example, in Fig. 7.3 we consider thestate \srv.2,CACK.init.resp,client1.1" of the automaton from Fig. 7.2. Assuming that the set ofobservable events is formed only of the events appearing in the MSC, i.e. inputs and outputs ofthe signals CR,CACK and StartSession, the transitions that are added in the state are representedin the Fig. 7.3.Another modi�cation of the automaton concerns the initial state, which is also marked as �nalstate. Thus, if during the synchronous execution of the SDLmodel and the MSC automaton, theMSC remains perpetually in the initial state along a run, that run will be considered compliantto the MSC (according to the de�nition of the B�uchi acceptance condition of TPA).With these modi�cations of the automaton corresponding to the MSC, the satisfaction of theMSC by an SDL model may be veri�ed using the method for checking TPA liveness satisfaction.(We note however that small modi�cations of the algorithm for constructing the weak synchro-nized product between an SDL speci�cation and an MSC property automaton are necessary,in order to accommodate the fact that one SDL transition may generate several events, andtherefore it may trigger several transitions in the MSC automaton.)

136 Chapter 7. Timed property description and verification using MSC and GOAL
out CR(name1)

in CR(name1)

srv.2

CACK.init.resp

client1.1

out CACK

srv.2

client1.2

srv.end

CACK.init.resp

StartSession.init.resp

client1.1

in CACK

/ [0 < x1 <= 2]

out StartSession

/ [x2 = 0 v x2 > 5]

unexpected

in StartSession

out CACK

out StartSession

/ [0 < x2 <= 5]

in CACK

/ [x1 = 0 v x1 > 2]
Figure 7.3: Augmenting the timed automaton for ensuring completion of tracesOther variants of MSC satisfaction may be veri�ed similarly, by using a di�erent method ofaugmenting the automaton (e.g. if the MSC speci�cation is regarded as an incomplete trace,then unexpected events should not lead to the sink state). Throughout this work, we have onlyused the satisfaction relation described above, and we do not discuss further the other types ofrelations.7.3 GOALGOAL observers, in the form de�ned in Chapter 4, cannot be used for the speci�cation andveri�cation of quantitative timing properties because they lack constructs for observing thetiming of events. As we noted in x4.2.3, the value of the global SDL clock now may be testedby an observer, but due to the analysis method used by the ObjectGEODE tool this cannot beused in formal veri�cation.In consequence, in this section we examine a series of extensions to the GOAL languagewhich enable the veri�cation of properties involving time. The extensions are similar to thosemade for SDL, and introduce primitives taken from timed automata. The resulted languagemay be given a semantics in terms of timed property automata, de�ned in the beginning of thischapter.7.3.1 Extensions for speci�cation of timing constraintsThe execution model of GOAL and the satisfaction relation between SDL models and GOALobservers are similar to those of timed property automata. Therefore, the GOAL extensions forobserving timing proposed in this section are based on the mechanisms used in TPA { clocksand transition guards involving conditions on clocks.Thus, an extended GOAL observer may declare explicit clocks, using the Clock data typeintroduced in SDL. The transition code of an observer may contain statements involving clocks,like in SDL: clock creation (using mkClock), reset (using resetClock) and assignments of clockvariables.The transition clauses of an extended observer may be guarded (using the provided clause)with clock constraints, of the forms allowed in SDL and in timed automata. The constraintsmay test the value of clocks of the observer or that of clocks belonging to the SDL model.

7.3. GOAL 137

Figure 7.4: Timed safety property expressed in GOAL

Figure 7.5: GOAL observer for checking non-zenoness in liveness modeLike in TPA, urgencies are not allowed in GOAL and all transitions are considered lazy.The purpose of this restriction is to disallow observers to block time progress in the productautomaton, as this would cut out valid behaviors of the SDL model from the state space of theproduct.Fig. 7.4 contains an example of timed safety property of SpaceWire links (see the SpaceWireexample in x6.2.4) expressed in GOAL with the extensions introduced above. The property maybe expressed as follows: after a reset or a fault, a SpaceWire link is re-established in at most30�s3. We specify this property as a safety observer based on the assumption that the SpaceWiremodel does not allow zeno runs (see the discussion on bounded response properties at page 128).Fig. 7.5 shows an observer which can be used to detect zeno runs in liveness mode: on eachzeno run, the observer will eventually remain in the wait state forever, which will trigger thenon-satisfaction of the observer. This observer is a direct transcription of the TPA in Fig. 7.1-c.3This property should hold in the SpaceWire model, provided that the physical link is not damaged and thelink is not reset a second time. These provisions may be ensured by other means in the ObjectGEODE veri�cationtool (e.g. using transition �lters).

138 Chapter 7. Timed property description and verification using MSC and GOAL7.3.2 Semantics and model checking of timed observersThe semantics of extended GOAL observers may be de�ned in terms of TPA. We do not intendto provide a complete de�nition of the semantics of extended GOAL observers here, but ratherto outline the principles of this de�nition:{ The mapping of global states and transitions of a GOAL observer into timed automatastates/transitions is similar to that explained in x6.4 in the case of SDL.{ The correspondence between events occurring in the SDL model, and events speci�ed inGOAL transition clauses, which is at the basis of the execution model of GOAL (in thestandard version), may be formalized as a correspondence function of the kind used in thede�nition of TPA. Thus, the correspondence function � : Q0 � E ! E0 [f�g for GOALobservers may be de�ned as follows:{ If a transition t0 from the TPA of the observer, starting in a state q0, is triggered by awhen clause4, then for every transitions t from the TA of the SDL system producingthe observed event, we have �(q0; t) = t0. By de�nition, GOAL observers must bedeterministic, which means that there is at most one t0 starting in q0 and satisfyingthe above conditions.{ If a transition t0 from the TPA of the observer, staring in a state q0, is triggered bya provided clause5, then for every transitions t from the TA of the SDL systemwhich leads to a global SDL state in which the provided condition holds, we have�(q0; t) = t0.{ For all other pairs of SDL transitions t and GOAL states q0, we have �(q0; t) = �.{ The satisfaction relation between SDL models and GOAL observers is similar to the sat-isfaction relations de�ned for TPA. Thus, properties are speci�ed in GOAL by annotatingstates as error or success states. The safety and liveness veri�cation of GOAL satisfaction(as described in x4.2.2) correspond respectively to the veri�cation of safety and livenesssatisfaction relations for TPA. The veri�cation is based on building a product between theSDL model's state space and the GOAL observer's state space, which is similar to theweak synchronized product de�ned for TPA:{ GOAL transitions always synchronize with an SDL transition; the reverse is not true.{ Synchronization is based on the correspondence relationship between SDL transitionsand GOAL transitions.{ Synchronization with a GOAL observer does not restrain the set of behaviors of theSDL model (synchronization is weak).As in the case of MSC, a transition in the SDL model may produce several observable events.Taking them into account requires small modi�cations of the de�nition of the weak synchronizedproduct, so that the observer may take several steps with a single step of the SDL model.With the semantics of GOAL observers de�ned in terms of timed property automata, thesatisfaction of an observer by an SDL model may be veri�ed using the techniques applicable to4When is used for observing discrete events in the SDL model (outputs, inputs, transitions �ring, etc.). Seethe de�nition of GOAL in x4.2 and [TEL00a].5Provided is used for observing elements of the state of the SDL model (variables, queues, etc.). See thede�nition of GOAL in x4.2 and [TEL00a].

7.4. Discussion 139TPA, discussed in x7.1.3. The tool presented in the next chapter uses the simulation graph of theweak synchronized product between the observer TPA and the SDL model TA, as abstractionfor verifying observer satisfaction. However, neither the SDL model TA nor the observer TPAare built explicitly by the tool; instead, the tool builds directly the simulation graph of theproduct and checks properties (reachability and liveness) on the
y.7.4 DiscussionWe have approached the problem of specifying and verifying quantitative temporal properties ofSDL models using the MSC and GOAL languages. Our study shows that a few timing-relatedextensions make GOAL into an expressive and
exible language for specifying properties. Onthe other hand, MSC proves to be less
exible for specifying properties. Even if timing-relatedextensions are not needed a priori because MSC-2000 contains constructs for specifying timing,the constraints expressible in MSC (based on time intervals) may be less powerful than theexplicit-clock approach adopted in GOAL. Moreover, we have shown that several de�nitions forthe notion of MSC satisfaction are possible and equally justi�ed, and extensions of the languagewould be needed in order to let the user specify the exact meaning of satisfaction.Related workAs GOAL is a proprietary language, there is no previous work on the speci�cation of timingproperties in it. However, the language is by nature related to other operational propertyspeci�cation languages such as (timed) B�uchi automata [Alu91], from which we have taken ourinspiration in de�ning the extensions.On the side of MSC, even if much research has been dedicated to the analysis of MSC spec-i�cations themselves, there are few results on using MSC as a property language in relation toother system description formalisms. A notable approach is represented by the Live SequenceCharts, an MSC variant proposed in [DH98]. LSCs provide a de�nition for the notion of sat-isfaction based on a set of language extensions, which basically allow the distinction betweenpossible and necessary behavior, but also include facilities like activation conditions for portionsof an MSC. The extensions introduced by LSC solve some of the problems with MSC pointed outin this work. However, [DH98] does not take into consideration timing issues in the de�nitionof LSC semantics.

140 Chapter 7. Timed property description and verification using MSC and GOAL

Chapter 8Timed SDL simulation andveri�cationIn this chapter we discuss a simulation and veri�cation tool built in the context of this work,which is based on SDL, MSC and GOAL, and implements the language extensions describedin the previous chapters. Our tool is based on an existing industrial SDL environment,ObjectGEODE [TEL00a], which provides many functionalities (graphical editing of SDL, MSCand GOAL, simulation, veri�cation, automated test generation, executable code generation andothers) and implements most of the features of SDL-96, MSC-96 and GOAL. The advantage ofreusing parts of an industrial environment is that the implementation of most of the featuresof the three languages, which are not a�ected by the proposed timing extensions, is obtainedwithout additional e�orts.We begin the chapter by a high-level description of the tool architecture and main function-alities, in x8.1. In x8.2 we describe the construction of the timed simulation graph, the centralfunction of our tool on which all other features are based. Finally, x8.3 examines the tool froma user point of view, discussing speci�c commands and functionalities.8.1 Tool architecture and functioningThe veri�cation tool built in the context of this work reuses the overall architecture and the mainfunctions of the ObjectGEODE simulation and veri�cation tool (Simulator). ObjectGEODE isa CASE1 environment which assists the software designer in a number of system developmenttasks, ranging from analysis and design, to validation, code generation, test generation anddocumentation. It supports several types of models, including the SDL, MSC and GOALlanguages discussed previously, as well as certain types of UML diagrams [OMG99]. A completedescription of the environment is given in [TEL00a] and on the tool website2.In this context, the Simulator provides the following functions:{ Simulation of SDL models, with debugging features similar to those o�ered in most mod-ern programming environments (step-by-step execution, (conditional) breakpoints, datawatch, etc.). Some advanced debugging features are available:{ reverse execution (undo/redo),1Computer Aided Software Engineering2http://www.telelogic.com/ObjectGeode 141

142 Chapter 8. Timed SDL simulation and verification{ scenario archiving and rerun,{ automatic stimulation of open models with signals,{ automatic guidance through transition �lters,{ production of customized graphical traces in MSC,{ model coverage analysis,{ interactive or random scheduling of �red transitions.{ Veri�cation functions, using an exhaustive exploration of the model state space:{ deadlock detection,{ con�gurable dynamic error detection (e.g. lost or unexpected signals),{ checking satisfaction of properties written in MSC or GOAL.Both simulation and veri�cation functions are based on the construction of the state space(simulation graph) of the model. They di�er in the order in which this state space is constructed.In simulation, only the states along the executed scenario (which may be guided interactivelyby the user, or constructed at random) are built, while in veri�cation, a larger part of the statespace is constructed (in depth-�rst or breadth-�rst order). Veri�cation of properties is done onthe
y and the entire state space needs to be built only in some cases.The exploration of the state space relies on a representation of the global state of the SDLmodel (and the associated MSC and GOAL observers), comprising the values of all variables inthe model (and in observers), the discrete states of all agents (and observers), and the contentsof signal queues. The successors of a state are computed in several steps:1. Evaluation of SDL transitions which are �reable in the current state of the model, andselection of a transition to be �red (depending on the execution mode: interactive, ran-dom, veri�cation). In the commercial version of the tool, the list of �reable transitionsmay contain either explicit discrete transitions (SDL model transitions), implicit discretetransitions (timer expiration, signal discard, etc.), or time transitions. In the extended ver-sion of the tool presented here, time transitions are handled implicitly, as an abstractionsimilar to the timed automata simulation graph is used; therefore, only discrete transitions(explicit or implicit) appear in this list.2. Execution of the actions speci�ed by the transition, on the current state of the SDL model.A new state of the SDL model is thus obtained. The observable events occurring duringthe transition are recorded and used in the next step.3. Execution of transitions in the associated MSC and GOAL observers, triggered by theevents recorded in the previous step. A new state for each MSC and GOAL observer isthus obtained. These are merged with the state of the SDL model, to obtain a new globalstate.Other actions may be executed in parallel with these steps, to accomplish di�erent functionalitiesof the Simulator: transition �ltering (during the �rst step), test for stop conditions (after step3), update of code coverage tables (during step 2), etc.The software components involved in the simulation of a model are shown in Fig. 8.1. TheSDL model and the MSC and GOAL properties are compiled in an executable format, in whichSDL transitions for example are transformed into routines that rely on a set of action primitives(corresponding to SDL actions) implemented in a model-independent library (Simulator library

8.2. The timed simulation graph 143
SDL

Model

SDL

Model

MSC

property

SDL

Model

GOAL

property

Simulator

Compiler

Simulator Library

Verification

& other

functions

SDL abstract

machine

states

coding

action

execution

simulation results,

traces, scenarios

simulation results:

traces, scenarios,

errors,...

Simulation graph:

states/transitions

Simulator

Binary

state

structure

transition

code

Figure 8.1: Simulation tool architecturein Fig. 8.1). This library also contains the de�nitions of the generic data structures used forcoding global model states, as well as the implementation of the auxiliary functionalities of theSimulator (such as veri�cation procedures). Furthermore, the simulator binary interacts with auser interface component, through which the user guides the simulation session and obtains theresults.As noted before, the central function of the simulator is the construction of the state space.Implementing the language extensions and the veri�cation techniques described in the previ-ous chapters will impact both the data representation of the state space and the constructionprocedures. The next section examines these aspects.8.2 The timed simulation graphThe tool built in the context of this work uses an abstraction similar to the simulation graph oftimed automata for handling the clocks of the SDL model (and of the MSC or GOAL observers).The states manipulated by the extended simulator are symbolic states of the form (q; S), whereq is a global state of the SDL system identical to the global states manipulated by the standardsimulator. S is a zone of the clock space (see x5.4), representing the set of clock valuationsreachable by the scenario executed so far (i.e. the path from the initial state to the currentstate, in the state space). Thus, a simulation state (q; S) represents a set of explicit model states(q;v) which are reachable from the initial state by a same sequence of discrete transitions, andwhich share the same discrete part.Transitions in this simulation graph correspond only to discrete transitions of the SDL model(i.e. there are no time transitions). The successor of a simulation state (q; S) after execution ofa discrete transition e, is computed by the extended Simulator as time-succ(disc-succ(e; (q; S))),where the operators time-succ and disc-succ were de�ned for timed automata in x5.4.In the following, we discuss the data representation of simulation states, and the e�ectivemethod for computing the successors of a state.

144 Chapter 8. Timed SDL simulation and verification
2 4 51457 � 11 x1

x2
Figure 8.2: Bi-dimensional clock zone8.2.1 Representation of statesFor encoding the discrete part of a simulation state (q; S), the same representation as in thestandard version of the simulator is used. For representing clock zones, we use the di�erencebounds matrices (DBM) proposed in [Dil89, ACD93].A DBM is a square matrix, which can encode a conjunction of atomic clock conditions(convex polyhedron in the clock space). A DBM with (n + 1)2 elements is used for encodinga polyhedron in an n-dimensional clock space. The elements of a DBM are pairs of the form(c;�), with c 2 Z[f1g and �2 f<;�g.Let fx1; :::; xng be the set of clock over which a DBM M is de�ned, and M(i; j) denote theelement ofM at coordinates i; j. We assume that the rows and columns ofM are numbered from0 to n. For all i 6= 0 and j 6= 0, M(i; j) encodes the upper constraint on the clock di�erencexi � xj : if M(i; j) = (c;�) then xi � xj � c. Column 0 and row 0 are used to encode theconstraints of individual clocks: if M(i; 0) = (c;�) and M(0; i) = (c0;�0) then �c0 �0 xi � c.Take for example the zone � in a bi-dimensional clock space, given by the following con-straints: x1 > 2, 1 < x2 � 7 and �4 � x2 � x1 � 3. The zone is represented in Fig. 8.2. TheDBM that encodes this zone is: x1 x2(0;�) (�2; <) (�1; <)x1 (11;�) (0;�) (4;�)x2 (7;�) (3;�) (0;�)We note that a same convex polyhedron may be represented by several DBMs, if some ofthe comparisons are useless. In the above example, the inequality x1le11 may be inferred fromx2 � 7 and x1 � x2 � 4. Any DBM representing the latter inequalities, and an additionalinequality x1 � c with c � 11 will represent correctly the same polyhedron �, regardless of theactual value of c. This is because the intersection of the conditions represented in all such DBMsis the same.However, a canonical form for DBMs may be de�ned, such that every convex polyhedronis represented by a unique DBM. Such a canonical form, and an algorithm for bringing anarbitrary DBM to the canonical form are presented in [Tri98]. The canonical form is important,as its existence simpli�es the test of equality for polyhedra (which is reduced to plain equalityof DBMs).All operations on convex polyhedra needed for the construction of a timed automata sim-ulation graph (intersection, test for inclusion, projections, etc.) can be easily implementedusing DBMs. For this reason, many tools including Kronos [Yov97, DOTY95], Uppaal[LPY97, BLL+96] and IF [BFG+99, Boz99] use this data structure.

8.2. The timed simulation graph 145The drawback of DBMs is they cannot represent non-convex polyhedra, which arise in theanalysis of timed automata with urgency, and consequently in the analysis of extended SDLspeci�cations. As non-convex polyhedra may be represented with unions of convex polyhedra,they are manipulated in the simulator using lists of DBMs. This representation is not canon-ical, which complicates the implementation of the equality test for non-convex polyhedra, andpenalizes the performance of the tool in certain cases.8.2.2 Transition stepsIn this section we present the algorithm used to construct successors of a simulation state (q; S).For the beginning, we will consider the case of an SDL model which is simulated without anassociated MSC or GOAL observer.Auxiliary polyhedra operationsThe computation of successors of a simulation state equates to the computation of the list ofenabled transitions, followed by the computation of time-succ(disc-succ(e; (q; S))) for each en-abled transition e. However, the de�nitions of time-succ and disc-succ (x5.4) are descriptive,and do not provide an operational procedure for computing these operations. In the following,we de�ne several operations on clock polyhedra, which are used in addition to usual operations(intersection, union, complementation) in the computation of the time-succ and disc-succ oper-ations. In all operations, we consider only clock valuations yielding positive values (in R+), asit is the case for all clocks appearing in extended SDL models.1. Orthogonal projections. Let � be a polyhedron on the clock set X , and y 2 X a clock. Theorthogonal projection of X parallel with the axis of y is the polyhedron�[y := 0] = �v 2 RX+ jv(y) = 0 ^ (9v0 2 �:8x 2 X n fyg: v(x) = v0(x))	The operation is used to implement clock reset in the construction of the simulation graph.Fig. 8.3-b shows the result of the application of this operation on a polyhedron in a 2-clockspace (represented in Fig. 8.3-a):� = fv 2 Rfx;yg+ j 2 � v(x) � 8 ^ 1 � v(y) � 7 ^ �4 � v(y)� v(x) � 3 g�[y := 0] = fv 2 Rfx;yg+ j 2 � v(x) � 8 ^ v(y) = 0 g2. Forward diagonal projection. The forward diagonal projection of a polyhedron � gives theclock valuations reachable from valuations of � by letting time pass with whatever amount:% � = �v 2 RX+ j 9v0 2 �:9Æ 2 R+ :8x 2 X : v(x) = v0(x) + Æ 	The operation is used to implement time progress in the simulation graph. The result of% � for the polyhedron taken as example above is represented in Fig. 8.3-c:% � = fv 2 Rfx;yg+ j 2 � v(x) ^ 1 � v(y) ^ �4 � v(y) � v(x) � 3 g3. Backward diagonal projection. The backward diagonal projection of � contains the clockvaluations from which the valuations of � are reachable by letting time pass with whateveramount: . � = �v 2 RX+ j 9v0 2 �:9Æ 2 R+ :8x 2 X : v(x) = v0(x)� Æ 	

146 Chapter 8. Timed SDL simulation and verification
2 8 x

y
�[y := 0]

2 x
y
28 �[y := x] 8

2 4 5 x
y
1457 � 8 8 x

y7 . � 432 x
y
15 % �

2 4 5 8 x
y
1457 open-inf(�) 2 8175 5 6

6
close(�; 6)

y
x

(a) (b) (c) (d)

(e) (f) (g)Figure 8.3: Operation on clock polyhedraFor our example, the result of this operation is (see Fig. 8.3-d):. � = fv 2 Rfx;yg+ j 0 � v(x) � 8 ^ 0 � v(y) � 7 ^ �4 � v(y)� v(x) � 3 g4. Clock to clock assignment. This operation is used to implement assignments between clocksin the simulation graph. For a polyhedron �, the result of an assignment y := x is de�nedas follows:�[y := x] = �v 2 RX+ jv(y) = v(x) ^ (9v0 2 �:8x 2 X n fyg: v(x) = v0(x))	For our example, the result of this operation is (see Fig. 8.3-e):�[y := x] = fv 2 Rfx;yg+ j 2 � v(x) � 8 ^ 2 � v(y) � 8 ^ v(y) = v(x) g5. Inferior opening. This operation calculates the largest polyhedron � 0 � � which is open,in the topological sense, on the faces determined by lower clock bounds:open-inf(�) = fv 2 � j 9Æ 2 R+ : Æ > 0 ^ v � Æ 2 � gNote that if all the lower clock bounds of a polyhedron � involve strict inequalities, thenopen-inf(�) = �. In the above de�nition we use v � Æ to denote the valuation v0 withv0(x) = v(x) � Æ for all clocks x.The result of the application of this operator on the example taken before is shown inFig. 8.3-f.

8.2. The timed simulation graph 1476. c-closure. This operation is used to compute the closure of the polyhedron � with respectto the region equivalence relationship 'c de�ned in x5.4. The operation is used in order torender the number of regions (and zones) �nite. The de�nition of c-closure with respectto a constant c is: close(�; c) = �v 2 RX+ j 9v0 2 �:v 'c v0 	An example of the partitioning of the clock space RX+ into equivalence classes with respectto 'c was given in Fig. 5.2. In Fig. 8.3-g, we represent the polyhedron close(�; 6), as wellas the lines that partition the space in equivalence classes (dotted). Note that the c-closureoperation may yield a non-convex polyhedron even if the initial polyhedron is convex.7. Increasing/decreasing the dimension of the clock space. These operations take as parametera polyhedron in an n-dimensional space, and yield a polyhedron in a space of dimensionn+ 1 or n� 1.Let � 2 RX , and x 62 X . We de�ne3:�[" x] = fv 2 RX[fxg jvjX 2 � ^ v(x) = 0 gLet � 2 RX , and x 2 X . We de�ne:�[# x] = fv 2 RXnfxg j 9v0 2 �:v = v0jXnfxg gAll the above operations may be easily implemented using the DBM representation of poly-hedra. A more detailed discussion on the properties of some of these operations, and theirimplementation using DBMs can be found in [Tri98]. Some additional operations are intro-duced here, compared to [Tri98]: the clock assignment, the inferior opening, and the dimensionincreasing/decreasing operators. Their implementation with DBMs does not pose diÆculties.Implementation of state operatorsThe state operators time-succ and disc-succ may be expressed as combinations of operations onpolyhedra, taking simulation state zones and transition guards as operators. In this section weintroduce the formulas for calculating time-succ and disc-succ, which are used by the simulationtool in the construction of the simulation graph.We remind the de�nition of disc-succ for timed automata:disc-succ(e; (q; S)) = (q0; fv0 j 9v 2 S: (q;v) e�! (q0;v0)g)where e = (q; �; u; a;X; q0) is a transition between q and q0.In the SDL simulator, the discrete destination state q0 is obtained from the discrete sourcestate q, by applying the rules of the dynamic semantics of SDL. However, for obtaining thezone S0 = fv0 j 9v 2 S: (q;v) e�! (q0;v0)g from the initial zone S, several polyhedra operationsare used.Let X = fx1; :::; xkg be the clocks reset during the transition e. For timed automata asde�ned in Chapter 5, S0 is given by:S0 = (S \ �)[x1 := 0][x2 := 0]:::[xk := 0]3By vjC we denote the restriction of a function (v) on a subset of its domain (C)

148 Chapter 8. Timed SDL simulation and verificationThe intersection S \ � yields the valuations v 2 S such that e is enabled in the automaton state(q;v). The orthogonal projections following the intersection take into account clock resets.This formula was previously described for timed automata without urgency in [Tri98]. Itapplies in the same way in our framework based on timed automata with urgency. For thisreason we do not include here a proof of correctness. We note however that, in the simulationtool described in this work, the additional clock operations de�ned in SDL have been taken intoaccount:{ Clock assignments, implemented using the clock assignment operator [x := y]{ Clock creation and deletion, implemented using the operators for increasing/descreasingthe dimension of the clock space: [" x] and [# x].In the following, we examine the computation of time-succ in timed automata with urgency,which is is slightly more complicated as it has to take into account the speci�c time progressconditions using urgencies. For simplicity and precision, we will use the timed automata nota-tions instead of those speci�c to the SDL semantics. We remind the de�nition of time-succ:time-succ((q; S)) = (q; fv0 j 9v 2 S; Æ 2 R: (q;v) Æ�! (q;v0)g)We rewrite the time progress conditions of timed automata with urgency, given in Chapter5 on page 84, by making some variable changes: (q;v) Æ�! (q;v0) i� v0 = v + Æ and:1. 8e = (q; �; u; a;X; q0) transition starting from q such that u = eager, 8Æ0 2 (0; Æ], v0�Æ0 62 �.2. 8e = (q; �; u; a;X; q0) transition starting from q such that u = delayable, 8Æ0; Æ00 such that0 � Æ00 < Æ0 � Æ, (v0 � Æ0 2 �) v0 � Æ00 2 �).Let S0 denote the zone fv0 j 9v 2 S; Æ 2 R: (q;v) Æ�! (q;v0)g from the de�nition oftime-succ, which we want to characterize using the polyhedra operations de�ned previously.We will de�ne the operators restrict-eager(S; �) and restrict-delayable(S; �), which yield the timesuccessors of a zone S restricted by a time progress condition as imposed by one eager, andrespectively delayable transition having the guard �. The idea is that S0 is the intersection ofthese restrictions, restricted with the guards of all discrete transitions e leaving from the stateq. For obtaining the expression of restrict-eager(S; �), we consider the valuations v 2 S andtheir possible time successors. Depending on the position of v in S, we have the following threecases:1. if v 2 �, then the eager transition with the guard � is enabled in v, and therefore timemay not progress at all from v.The restricted time successors of v are: restrict-eager(fvg; �) = fvg.2. if v 2 (. �)n�, then time may progress from v but there is a point at which the successorsof v intersect the guard �, and from which time may no longer progress.The restricted time successors of v are: restrict-eager(fvg; �) = (% fvg) \ ((. �) nopen-inf(�)).3. if v 62 . �, then time may progress inde�nitely from v.The restricted time successors of v are: restrict-eager(fvg; �) =% fvg.

8.2. The timed simulation graph 149
������
������
������
������
������
������
������

������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��
��
��
�� ������������

������
������
������
������
������
������
������

������
������
������
������
������
������
������
��
��
��
��

y
xx

y

(a) (b) (c)
S�y
xS�

Figure 8.4: Urgency restriction operators.The de�nition of restrict-eager(S; �) is then:restrict-eager(S; �) = (S \ �) [(% (S \ (. � n �))) \ (. � n open-inf(�)) [(% (Sn . �))In Fig. 8.4-b we show an example of application of the restrict-eager operator, for a squarezone S and a square guard � (represented in Fig. 8.4-a). The zones that correspond to cases 1,2 and 3 above are the crosshatched zone, the zone �lled with vertical lines, and respectively thezone �lled with oblique lines.We proceed in the same manner for obtaining the expression of restrict-delayable(S; �). Letv 2 S.1. if v 2. �, the there is a point at which the successors of v intersect the guard �. Timemay progress as long as the successors remain in �.The restricted time successors of v are restrict-delayable(fvg; �) = (% fvg) \ (. �).2. if v 62. �, then time may progress inde�nitely from v.The restricted time successors of v are restrict-delayable(fvg; �) =% fvg.The de�nition of restrict-delayable for the entire zone S is then:restrict-delayable(S; �) = (% (S \ (. �)) \ (. �)) [(% (Sn . �))In Fig. 8.4-c we show an example of application of the restrict-delayable operator, for thesame zone S and guard � as in the example before. The zones that correspond to cases 1 and 2above are the crosshatched zone, and respectively the zone �lled with oblique lines.The characterization of time-succ((q; S)) is given by the following property:Lemma 8.1 Let q be a discrete state of a timed automaton, and e1; :::; el be the discrete tran-sitions originating from s, with the guards (polyhedra) denoted respectively by �1; :::; �l.

150 Chapter 8. Timed SDL simulation and verificationThen time-succ((q; S)) = (q; S0), where S0 is given by:S0 =% S \0BB@ \i2f1;:::;lgei is eager restrict-eager(S; �i) \ \i2f1;:::;lgei is delayable restrict-delayable(S; �i)1CCAProof. The proof can be found in Appendix B.Successors computation algorithmWe describe below the algorithm used by the simulation tool to compute the successors of asimulation state (q; S). The algorithm is based on the semantic description of SDL given inx6.4, and on the successors computation formulas introduced in the previous section. It consistsof the following steps:1. Evaluation of �reable transitions. The transitions of the SDL model which ful�ll thediscrete conditions (i.e. not related to clocks) to be �red, are gathered in a list t1; :::; tn.They depend only on the discrete part q of the state.Let g1; :::; gn be the clock guards of these transitions. A transition ti is enabled in thesymbolic state (q; S) if it is enabled in at least one explicit state (q;v) contained in thesymbolic state. This is tested by the condition gi \ S 6= ;. Let t01; :::; t0k be the transitionsfor which this condition holds (enabled transitions), and g01; :::; g0k be their respective clockguards.In the symbolic state (q; S), certain explicit states (q;v) may constitute deadlocks. Theyare the states in which no transition from t01; :::; t0k is enabled, and in which no transitionbecomes enabled by letting time pass. The deadlocks form a zone characterized by thefollowing expression: S n Skj=1(. g0j). Therefore, in the construction of the simulationgraph, if S n Skj=1(. g0j) 6= ; then the simulator will signal the existence of deadlocks.2. Transition �ring. For each �reable transition t0i in the list computed before, the followingsteps are taken:(a) The state (q0; S0) = disc-succ(t0i; (q; S)) is computed. As noted in the previous sectionon page 147, this step consists of the following operations:i. The SDL statements speci�ed by the transition t0i are executed on the discretepart of the state (q; S), obtaining a new discrete state q0. S remains unchangedin this step.ii. S00 = S \ g0i is computed. (q; S00) if the part of the symbolic state (q; S) on whichthe discrete transition t0i is e�ectively enabled.iii. The clock operations (resets, assignments, creation, deletion) speci�ed by thetransition t0i are successively executed on the zone S00. If o1,o2,...,ok are thepolyhedra operations corresponding to these SDL clock operations as explainedon page 147, then the following polyhedra are successively computed: S01 =o1(S00); :::; S0k = ok(Sk�1).S0 is the last computed polyhedron, S0k.(b) The state (q0; S00) = time-succ((q0; S0)) is computed. The computation uses the for-mula given in Lemma 8.1, and consists of the following steps:

8.3. User-level features 151i. S000 =% S0 is computed.ii. The list of discrete, timeout, and signal delivery transitions enabled on a partof (q0; S000) is obtained, in a step similar to Step 1. Let t001; :::; t00l be the enabledtransitions, and g001 ; :::; g00l their clock guards (explicit guards for SDL transitions,implicit guards for timeout and signal delivery transitions, as explained in thetimed semantics of SDL).iii. For each eager transition or timeout transition t00i in the enabled list, S000 is inter-sected with restrict-eager(S0; g00i). The result is kept in S000 .iv. For each delayable transition or signal delivery transition t00i in the enabled list,S000 is intersected with restrict-delayable(S0; g00i). The result is kept in S000 .S00 is the last value of S000 .The state (q0; S00) is marked as a successor of (q; S) by the transition t0i in the simulationgraph. If the simulation graph is not �nite otherwise, closure with respect to the maximalconstant c used in clock comparisons in the SDL speci�cation (or in the MSC and GOALobservers) can be �rst applied to the zone S00 (S00 := close(S00; c)).8.2.3 MSC and GOAL speci�cationsThe handling of MSC and GOAL observers in parallel with an SDL speci�cation induces somemodi�cations in the successor computation algorithm presented in the previous section. Thecomputations related to observers take place between steps 2.a and 2.b.Intuitively, based on the state (q0; S0) and on the events generated by the previous discretestep t0i, the simulator evaluates the �reable transitions of each observer. For each observer,there may be several �reable transitions u1; :::; uk , with the guards h1; :::; hk , but the parts ofthe simulation state (q0; S0) on which these are �reable (i.e. hi \ S0; i = 1; k) must be disjoint.This condition ensures that the behavior of the observer is deterministic for every explicit state(q0;v) 2 (q0; S0), which is essential in the de�nition of timed property automata.The state (q0; S0) is partitioned in (at most) k + 1 parts: (q0; h1 \ S0),...,(q0; hk \ S0) and(q0; S0 nSkj=1 hj), each part generating a di�erent successor due to the observer transition. Oneach part (q0; hj \ S0), the result of triggering the observer transition is computed, in a stepsimilar to the step 2.a of the algorithm from the previous section. The step 2.b, computing thetemporal successors (time-succ) is subsequently applied to the k + 1 resulted states, and therewill be k + 1 successors of the initial state (q; S) in the simulation graph.Moreover, if there are several observers executed in parallel with a speci�cation, the stateis partitioned for the �rst observer, each substate is partitioned for the second observer, and soon.8.3 User-level featuresThe simulation tool provides essentially the same interface as the commercial version of theSimulator [TEL00a]. The tool may be used in the two modes presented in x8.1: simulation(user-controlled or random) and veri�cation (with �nite or B�uchi acceptance conditions).Interactive commands and presentation of resultsIn simulation mode, the user guides interactively the execution of the model. A number ofadditional commands related to the language extensions are available for:

152 Chapter 8. Timed SDL simulation and verification{ visualizing the clock zone of the current simulation state. The command clocks prints theclock constraints de�ning the zone associated to the current simulation state. For example,the output of this command during the simulation of the SpaceWire system presented inx6.2.4 may look like this:> clocks0 <= iface1!SM!rc <= 104400 <= iface2!SM!rc <= 77800 <= iface1!SM!rc - iface2!SM!rc <= 2660{ measuring the time span between two events in interactive simulation. It is diÆcult (orsometimes impossible) to derive information about the time span between two simulationevents by examining the clock zones in the two states. For this reason, the simulator allowsthe user to create and destroy chronometers, which are used for measuring time in suchsituations. A chronometer behaves like an SDL clock, except that it is introduced fromthe simulation console. By consulting the clock zone after several simulation steps, theconstraints on the chronometer indicate the lower and upper limits of the elapsed timeinterval.A typical scenario for taking measurements is shown below:> addclock chron -- add chronometer, start interactive measuringadded chronometer chron from console... -- simulation steps> clocks chron -- consult chronometer15360 <= chron <= 23260> delclock chron -- remove chronometerdeleted chronometer chron from console{ visualizing the contents of delaying channels queues. The command dchannels printsinformation about the signals in transit through a channel, as shown in the example below:> dchannelscontents of channel physical_link direction towards iface2 =1 =sender = iface1!TX(1)name = NCharNChar =p1 = datachar{ controlling the behavior of some extensions, such as lossy channels.Veri�cation featuresIn veri�cation mode, the simulation graph is built (entirely or partially) without the interventionof the user, in a pre-established order of exploration (depth-�rst or breadth-�rst). The followingtypes of properties are checked on the
y:

8.3. User-level features 153{ Absence of deadlocks. The conditions in which deadlocks are signaled have been discussedin Step 1 of the successors computation algorithm, on page 150.{ Invariance properties. These properties are given by propositional logic formulas that musthold in each state of the system. A formula is formed of atoms � which can test:1. The discrete state of the SDL system, such as the value of a variable, the length of aqueue, etc. In this case, the satisfaction of � by (q; S) is decided based on the discretepart q.2. The values of clocks, using the same form of atomic clock comparisons as in SDL tran-sition guards. The satisfaction of such conditions � by (q; S) is veri�ed by checkingthe inclusion of the zone S in the polyhedron represented by the condition �.{ Linear properties speci�ed in MSC or GOAL. The veri�cation methods for MSC andGOAL properties have been discussed in Chapter 7.

154 Chapter 8. Timed SDL simulation and verification

Part IIIApplications, Conclusions andPerspectives

155

Chapter 9Case studiesWe have performed several case studies for validating the concepts and tools developed in thecontext of this work. Some of the examples that have been considered are benchmark examples,frequently used in the timed veri�cation literature, such as the train-gate-controller system(described in [Alu91] and [Tri98]) or the Bounded Retransmission Protocol (BRP has been usedas a benchmark example for several veri�cation tools [GvdP96, HS96, Mat96]; time-speci�caspects of the protocol have been studied in [DKRT97], using a timed automata based formalismand the Uppaal tool [LPY97, BLL+98]). These case studies have given good results concerningthe expressivity of the formalisms (SDL for describing the models, and GOAL and MSC fordescribing properties) and the power of the analysis methods that are used.Several case studies using real-life system speci�cations have also been considered. Thereliable multicast transport protocol RMTP-II [PMR+00, WPT99] is currently being modeledat France Telecom R&D in the context of the INTERVAL project1, using a set of SDL extensionssimilar to those proposed in this thesis, for evaluation purposes. Besides a good expressivenessof the proposed SDL extensions, the study has also pointed out some shortcomings of theextensions, such as the impossibility to use time measurements in auto-adaptive systems. Partialresults obtained in another study, concerning a multimedia synchronization protocol by Ericsson,con�rm these conclusions.In the following, we will describe in more detail a study based on the SpaceWire protocol[sWG00]. In x9.1 we give an informal description of the protocol, taken from the protocolstandard draft. In x9.2 we outline the problems encountered when specifying the protocol inSDL, and show how the extensions proposed in this thesis help in building a more precisespeci�cation. x9.3 shows how timed functional properties of the protocol are described andveri�ed using GOAL and MSC. Finally, in x9.4 we draw conclusions from the mentioned casestudies.9.1 The SpaceWire protocolSpaceWire [sWG00] is a protocol stack used by the European Space Agency to handle payloaddata on-board a spacecraft. The purpose of SpaceWire is to provide a uni�ed high-speed in-frastructure for connecting together sensors, processing elements, mass memory units and othersub-systems. The standard covers several protocol layers, from the physical link up to the net-1European project INTERVAL (IST-1999-11557): Formal Design, Validation and Testing of Real-TimeTelecommunications Systems. http://www.cordis.lu/ist/projects/99-11557.htm157

158 Chapter 9. Case studies

Figure 9.1: SpaceWire protocol layers and their functionalitywork level. In our case study, we have focused on the exchange level, which corresponds to thedata link level in the OSI stack. Parts of this speci�cation were used throughout the previouschapters of this document.In Fig. 9.1 we outline the layers of the SpaceWire protocol, and the functions ful�lled byeach layer. The Exchange Level is implemented by a link interface, which makes the connectionbetween a host system (directly or through the SpaceWire Network Level) and a physical link(through an additional bit encoding layer { the Character Level). Two link interfaces exchangefull characters (as represented by the Character Level) over an unreliable full-duplex point-to-point link.The functionality provided by an Exchange Level link interface is:1. Connection establishment. Upon initialization, error or a soft reset (received from thehost system), a link interface executes a reset cycle which is described further in thissection. The reset cycle is partly time-controlled, and its purpose is to synchronize thelink interfaces at the two ends, and to bring both of them back in the connected state.2. Error detection through parity checking. Parity checking is actually handled by the under-lying layer (Character Level), the Exchange Level only re-initializes the connection upona parity error. No re-transmission functionality is provided.3. Disconnection detection by continuous transmission of control characters on the transmit-ting side, and timeout detection on the receiving side.4. Flow control. In order to avoid bu�er over
ows, each link interface will keep a creditcounter, which represents the maximum number of data characters it is allowed to sendto the other side. The counter is increased when the other side signals (using a controlcharacter) that new places are available in its receiving bu�er, and decremented whenevera data character is sent over.As de�ned by the standard, a link interface has three components: a transmitter (TX),a receiver (RX) and a state machine (SM). In the following, we show how this functionalitydescribed above is achieved by the components link interface.

9.1. The SpaceWire protocol 159The transmitter (TX)The transmitter is responsible for sending data and control characters over the link, accordingto the data received from the host system and to the instructions from the SM. There are twokinds of control characters used by the Exchange Level:{ the NULL character, which is sent continually by the TX as long as the connection isestablished and there are no other characters to be sent. The NULL character is also usedfor synchronization in the initial phases of the connection.{ the FCT character, which is used for
ow control. The FCT is used in order to signal thatspace for 8 more characters is available in the host receiving bu�er. FCTs are sent by theTX at the request of the host system.The TX also handles
ow control information: each time the RX of an interface receives aFCT from the remote side, the FCT is forwarded to the TX, which increments a credit counterby 8. Each time the TX transmits a data character, the credit counter is decremented by 1, anddata characters are sent only as long as the credit counter is positive.The TX has 4 modes of operation:1. disabled { no character of any kind is transmitted.2. sending NULLs { in which only NULL characters are transmitted (continually) over thelink.3. sending NULLs and FCTs { in which NULL characters are transmitted (continually) overthe link, and FCTs are transmitted at the request of the host system.4. sending NULLs, FCTs and NChars { in which NULL characters are transmitted (contin-ually) over the link, and FCTs and normal data characters (NChars) are transmitted atthe request of the host system.The TX switches between these modes of operation, at the request of the SM. They are used inthe link interface initialization cycle, described further on.The receiver (RX)The function of the receiver is to forward the characters received from the link to either the SM,the TX, or the host system. Normally characters are handled as follows:{ NULLs are ignored, except for the �rst NULL received after a link re-initialization (whichis forwarded to the SM),{ FCTs are forwarded to the TX and to the SM{ Normal characters are forwarded to the host system. However, the receiver takes care sothat two end-of-packet characters are not received one after the other. If this is the case,an empty packet error is signaled to the host and to the SM (the latter will consequentlyre-initialize the link).{ Characters containing parity errors are signaled to the SM which will re-initialize the link.The RX also uses a disconnection timer, to detect link problems. Whenever a period of 850nselapses without a character being received, this is signaled to the SM which will re-initialize thelink. The disconnection detection mechanism is enabled when the �rst character is received.The RX has only two functioning modes:

160 Chapter 9. Case studies
ErrorReset

TX disabled

RX disabled

ErrorWait

TX disabled

RX enabled

Ready

TX disabled

RX enabled

Started

TX sending NULLs

RX enabled

Connecting

TX sending

NULLs/FCTs

RX enabled

Run

TX sending NULLs/

FCTs/NChars

RX enabled

after 5.12 to 7.78
µs

after 10.24 to 15.48
µs

if LinkStart or

(AutoStart and gotNULL)

after 10.24 to 15.48
µs

after 10.24 to 15.48
µs

if gotNULL

if gotFCT

ResetLink

Figure 9.2: SpaceWire link interface initialization cycle1. disabled { all characters are ignored2. enabled { characters are handled as shown above. Additionally, the RX ignores all thecharacters received before the �rst NULL character after a link initialization.The state machine (SM)The main function of the state machine is to provide the synchronization logic for link estab-lishment. When a link is established, the SM's of the interfaces at the two ends remain in thesame state without taking any action (until an error occurs or the respective interface is resetby the host system).The reset cycle executed by a link interface (at initialization time, or after an error or a softreset) is depicted in Fig. 9.2. The phases (states) of the cycle are:1. ErrorReset { This state is entered at initialization time, after an error or after soft reset.In this state, the SM will disable both the TX and the RX. This state is normally leftafter a 6.4�s, but the standard allows a jitter, so the actual value may be between 5.12�sand 7:78�s.During this period, if the remote interface was still connected it will detect a disconnection(as no NULL or other character is transmitted for more than 850ns), and will initiate thereset cycle.2. ErrorWait { In this state, the RX is enabled, and it begins listening for NULL characters.If a NULL character is received, the gotNULL condition (used in state Started) is setto true. The state is left after a nominal delay of 12.8�s (that is between 10.24�s and15.48�s with the jitter). The delays in ErrorReset and ErrorWait are chosen so thatreceivers at both ends are enabled before either end begins transmission.3. Ready { This is a transient state which is left as soon as the link may be initialized. Alink interface may run in two modes: LinkStart { in which the interface does not haveto wait for an external event in order to be initialized, and AutoStart { which is a slave

9.2. SDL modeling and expressivity problems 161

Figure 9.3: SDL modeling of a SpaceWire link interfacemode, in which the link is initialized when the �rst NULL is received. The condition forpassing from Ready to Started is therefore: (LinkStart or (AutoStart and gotNULL)).4. Started { In this state, the TX switched to sending NULLs. If gotNULL is already true,or as soon as the �rst NULL is received, the SM is switched to state Connecting. If noNULL is received within 10.24 to 15.48�s , the interface is reset again.5. Connecting { In this state, the transmission of FCTs is allowed, and the interface waitsfor a FCT from the remote side. The FCT means that the remote side is ready to receivedata characters, and therefore the interface may be switched to Run. If this condition isnot met within 10.24 to 15.48�s, the link is reset again.6. Run { This is the normal operation state, in which all control and data characters maybe sent. This state is left only if the host resets the link, or if an error occurs.Additionally to the transitions represented in Fig. 9.2, transitions to the ErrorReset statemay be taken in any state upon the receipt of a character containing a parity error, or the receiptof an unexpected character (NChar in a state di�erent from Run, FCT in a state di�erent fromRun or Connecting).9.2 SDL modeling and expressivity problemsAlthough the Exchange Level of the SpaceWire protocol is designed to be implementable inhardware, the signaling between the components of a SpaceWire interface is asynchronous, andSDL is a suitable choice for modeling and validating the functional and timing aspects of theprotocol. In the following we discuss the SDL modeling of a SpaceWire link interface, thevalidation model built around it, and we outline some of the problems occurring if the standardversion of the language is used for modeling.

162 Chapter 9. Case studiesThe link interface (Fig. 9.3) is modeled as a block agent, with three component processescorresponding respectively to the transmitter (TX), the receiver (RX) and the state machine(SM). On one side, the link interface is connected to the physical link through the bit encod-ing level, which is abstracted away our modeling. Thus, two link interfaces connected togetherexchange full characters, represented by the SDL signals NULL, FCT, NChar, and ParityEr-rorChar. ParityErrorChar is introduced to represent characters received with a parity error.Moreover, as the functioning of the protocol does not depend on the content of data characters(NChar), the only information carried by NChar signals is whether the character is a normaldata character or an end-of-packet (EOP,EEP) character.On the other side, the link interface communicates with the host system through severalgates:{ RHI2host { provides a receiving interface by which NChars are received, and credit signals(more8) are sent.{ TIH2host { provides a transmit interface by which NChars are sent, and by which theinterface signals to the host system when it is ready to transmit (RDY).{ control { provides an interface for link control, transferring signals for: resetting the link,establishing the link operation mode, signaling link errors.The speci�cation of TX, RX and SM are shown in Fig. 9.4-9.6. Their behavior correspondsin a straightforward manner to that described by the standard:{ The TX has four states corresponding to the four operating modes described in the pro-tocol standard. An additional state (stopped0) is necessary in order to
ush the signalqueue when the TX is reset. This action is currently not prescribed by the standard, butduring the veri�cation we discovered that the protocol functions incorrectly if signals arepreserved in the queue after a reset.The manipulation of the credit counters used for
ow control is speci�ed on the transitionsfrom state TX.Communication delays, which are important for the timing of the protocol, are speci�edby the standard and depend on speed of the link, which may be 100, 200 or 400 Mbps.In the SDL speci�cation we have considered the case of a link operating at 100 Mbps,and we have taken the nanosecond as time unit. The communication delays could not bemodeled using the extensions for delaying channels proposed in Chapter 6 because, on onehand, characters have di�erent lengths (a NChar has 10 bits, a NULL has 8 bits, and anFCT has 4 bits), and on the other hand the TX should be blocked while transmitting acharacter, which is not the case if a delaying channel is used. Communication errors arealso modeled explicitly in the TX, as the assumption about the physical SpaceWire linkis that single-bit errors may occur and are detected using a parity bit.{ The RX has a state (NotEnabled) corresponding to the disabled operating mode (seeprevious section), and two states (WaitNull and Idle) corresponding to the enabled mode.In WaitNull, the RX waits for the �rst NULL character received after a link reset. Innormal operation mode (Idle), the RX handles all types of characters that may be receivedfrom the lower layer.The disconnection timeout is modeled using a clock (dt) and a delayable transition, becausethe standard allows a range of values between 740 and 1080ns for the timeout.

9.2. SDL modeling and expressivity problems 163

Figure 9.4: SDL model for the TX

164 Chapter 9. Case studies

Figure 9.5: SDL model for the RX

9.2. SDL modeling and expressivity problems 165

Figure 9.6: SDL model for the SM

166 Chapter 9. Case studies{ The SM process has 6 states corresponding to the operating modes described in the pre-vious section. The transitions correspond directly to the transitions shown in Fig. 9.2.The time-triggered transitions speci�ed in the standard are modeled using delayable tran-sitions, in order to capture the allowed non-determinism.The standard semantics of SDL, which makes no assumption about the processing timesof agents, cannot be used for validating the SpaceWire speci�cation. The reason is that theprotocol relies on strict reaction times of each component, and has no mechanism for detectingmalfunctions due to slow reactions of certain components. Using the standard semantics ofSDL, nothing can be ensured concerning the functioning of the link (e.g. it cannot be ensuredthat, in the absence of errors, the link will eventually be established, as it could take an in�nitetime for the RX at one end to detect the �rst NULL character received).The semantics of SDL provided by most simulation and veri�cation tools is closer to theneeds of this speci�cation, since assuming 0-reaction time is reasonable for this speci�cation.However, this semantics is not suÆcient for validating the functioning of a link in all cases,because the SpaceWire standard allows large ranges for every timer or duration used in thespeci�cation. Using the standard constructs of SDL, only one combination of time values usedin the SM's may be validated at a time.9.3 Veri�cationWe have used the SDL speci�cation of SpaceWire presented in the previous section in two ways:{ First, we exploit the capability of GOAL observers to generate traces, in order to makeend-to-end time measurements for speci�c functions of the protocol.{ In a second phase, we use the timing information acquired before to construct and verifycombined functional and timing properties of the protocol.The validation modelFor validating the functioning of a link interface, we had to model the environment in whichthe link operates. The SDL model built for validation purposes includes two link interfacesconnected through a physical link, as well as the two host systems controlling the interfaces.The structure of the validation model is shown in Fig. 9.7.For the physical link, since bit errors and communication delays are modeled in the TX, weonly need to model the possibility for the link to break up; this is characterized by the completeloss of signal for an undetermined amount of time, which we may model using the lossy channelconstruct.For the hosts, we must assume the weakest hypotheses about their behavior, in order toobtain results that hold in most real case. The behavior of hosts in the veri�cation model isshown in Fig. 9.8. At initialization, a host establishes the operating mode of the link (AutoStartor LinkStart). If LinkStart is chosen, then the host may initialize the link after an indeterminateamount of time; this is modeled using a lazy transition. After the initialization, the host sendswithin a bounded amount of time a credit signal (more8), then passes in a normal operationmode (represented by state RecvTrans).In order to verify the
ow control mechanism, the host too keeps a credit counter (cpt),which is increased when a more8 is sent, and decreased when a NChar is received. If this

9.3. Verification 167

Figure 9.7: The SpaceWire validation modelcounter reaches a value below 0, it means that a bu�er over
ow has occurred in the host.Normally, the protocol should ensure that this does not happen.The host also performs several actions at randomly chosen moments:{ it sends data characters at random (after having received a RDY signal from the linkinterface),{ it sends more8 signals at random. To limit the explored model, we allow this only whencpt = 0, so cpt is never greater than 8.{ it may reset the link at random.These actions are modeled using lazy transitions, to allow them to happen at arbitrary moments.Time measurementsThe global correct operation of a SpaceWire link is a complex property, that depends on theful�llment of several simpler properties concerning each of the four basic functionalities of theprotocol enumerated on page 158. While the functional properties that the protocol must satisfy(related to each functionality) are easily deduced from the standard, there are no user-de�nedrequirements concerning timing. For this reason, in our case study we started by making timemeasurements for the basic functions of the protocol, and we used the resulted values to constructcorrectness properties.From the user's point of view, an interesting characteristic of a SpaceWire link is the min-imal/maximal time it takes for the connection to be established after a reset or an error. Thisdepends on the operation mode of the link interfaces at the two ends. In the following, we showhow measurements were made in the case of two link interfaces, one operating in AutoStartmode and the other operating in LinkStart mode, in the absence of transmission errors.

168 Chapter 9. Case studies

Figure 9.8: The speci�cation of a hostUsing the existing mechanisms of the ObjectGEODE simulation tool (notably, transition�lters), we guide the exploration of the SDL model so that the above hypotheses are met. Theobserver in Fig. 9.9 is then used to measure the time between the sending of the ResetLink signalby the host functioning in LinkStart mode, and the moment when the state Run is reached byboth interfaces (and therefore the connection is established). The writeln(z) statement in theGOAL observer outputs the minimal and maximal bounds on the clock z, as speci�ed by theclock zone of the current state. By performing an exhaustive exploration of the state space, wewill obtain several minimal and maximal bounds, corresponding to all scenarios through whichthe connection is established. The global minimal and maximal bounds may then be computed.With the hypotheses assumed before, we obtain a minimal value of 15560ns, and a maximalvalue of 24390ns for the connection establishment time. However, during this experiment wediscovered that the host system has to satisfy a number of timing constraints to ensure theestablishment of the connection in a bounded time:{ Each host should send a �rst credit signal (more8) within a bounded amount of time after

9.3. Verification 169

Figure 9.9: Observer for measuring connection timethe (re-)initialization of a link interface. Initially we modeled the sending of the �rst more8signal with a lazy transition. However, in that case a link interface may never sent a FCTsignal over the link, causing the opposite interface to be unable to take the transition fromthe Connecting to the Run state.{ After a link reset, a host should let enough time for the TX to be reset, before sendingthe credit signal (more8). The reason is that, if the TX is busy sending a character whenit receives a RexetTX signal, the reset will be taken into account only after the currentcharacter is transmitted. If in the meantime a more8 is received, it will be lost during thereset process that follows. Therefore, the more8 signal should be sent after at least themaximal character transmission time (100ns on a 100Mbps link) from a reset.For these reasons, a credit signal is sent 200ns after every reset or initialization, in our model.The minimal and maximal times obtained above hold with this hypothesis.Other time measurements, for example concerning the connection times under di�erent as-sumptions or the error detection times, may be made using the previously described method.Veri�cation of timing propertiesWe have veri�ed several timed functional properties on the SDL speci�cation of SpaceWire. Wediscuss below a property referring to the establishment of a SpaceWire connection. The exactform of the property expressing correct connection establishment depends on the con�gurationof the hosts and on the errors occurring on the physical link. We consider here the case whenone host is con�gured in LinkStart mode, and the other in AutoStart, and no errors occur onthe physical link.In this case, when the host con�gured in LinkStart mode sends the ResetLink message, theconnection should occur in at most 24390ns, as indicated by the measurements described in theprevious section. This property, expressed in a variant of linear temporal logic with boundedtime operators2 would have the following form:' = � (houtput ResetLinki ! ��24390hLink Upi)In the above formula, houtput ResetLinki represents an atomic proposition which holds in thecurrent state if that follows after a transition in which the ResetLink signal was sent. hLink Upi2Such operators are used in the quantitative branching time logic TCTL [ACD93]. See also the survey [AH91]

170 Chapter 9. Case studies

Figure 9.10: Observer for verifying connection establishment in a particular con�gurationis an atomic proposition representing the states in which the connection is established. (Notethat in the classical de�nition of LTL, atomic properties like houtput ResetLinki cannot berepresented, as they depend both on the state of the model and on the previous transitionby which this state was entered. However, the de�nition of LTL formula satisfaction may beadapted to accommodate such atomic propositions.)In GOAL, the houtput ResetLinki atomic proposition is equivalent to the \when outputResetLink" observation predicate. The value of hLink Upi is given by the following conditionon the components of the SDL model state:hLink Upi � (sm1 ! state = sm1 ! run and sm2 ! state = sm2 ! run)The property ' may be expressed as a GOAL liveness property, as shown in Fig. 9.10.Other veri�ed properties refer to di�erent functions of the protocol, such as:1. Exchange of silence. As shown in the speci�cation, the re-initialization of both sides of alink after an error is based on the exchange of silence: the side detecting the error entersthe reset cycle (by the ErrorReset state); the other side will not receive any more NULLs,and will eventually detect a disconnection timeout and enter the reset cycle.This property may be expressed more formally, for example, as follows: an exchange of thesignal LinkError inside one link interface is eventually followed, within a bounded amountof time, by the exchange of a LinkError signal in the opposite link interface. The amountof time is more precisely 1160ns, which is the maximal duration of the disconnectiontimer plus the transmission time of a NULL character which may begin just before the�rst LinkError signal. In the following, we show how this kind of properties, which involveonly exchanged messages and associated timing information, may be expressed and veri�edusing MSC speci�cations.Consider the HMSC with two alternatives represented in Fig. 9.11. The �rst alternativeexpresses the fact that after the exchange of a LinkError signal in iface1, another LinkErrorsignal is exchanged in iface2 within at most 1160ns. The second alternative speci�es thesame events in the reversed order. Then, the timed property automaton corresponding tothe HMSC silence may be used for verifying correct exchange of silence, using the methoddescribed in x7.2.3 (that is, provided that the initial state of the TPA corresponding tothe HMSC is considered a success state, so that systems in which no error occurs are alsoconsidered correct).

9.3. Verification 171

msc

linkerror

linkerror

inst_1_iface1.state_machine

PROCESS
 /test/

iface1/

state_machine

(1)

inst_1_machine1.host

PROCESS
 /

test/

machine1/

host(1)

inst_1_iface2.state_machine

PROCESS
 /test/

iface2/

state_machine

(1)

inst_1_machine2.host

PROCESS
 /

test/

machine2/

host(1)

(0,1160ns]

msc

linkerror

linkerror

inst_1_iface1.state_machine

PROCESS
 /test/

iface1/

state_machine

(1)

inst_1_machine1.host

PROCESS
 /

test/

machine1/

host(1)

inst_1_iface2.state_machine

PROCESS
 /test/

iface2/

state_machine

(1)

inst_1_machine2.host

PROCESS
 /

test/

machine2/

host(1)

(0,1160ns]

exch_silence2

exch_silence1

exch_silence1
 exch_silence2

Figure 9.11: MSC property expressing correct exchange of silence2. Flow control. The correct functioning of the
ow control scheme of SpaceWire does notinvolve timing. The property that has to be satis�ed is that the hosts never reach theBu�erOver
ow state. This is a simple safety property that may be veri�ed using onlyinvariants, supported by the ObjectGEODE veri�cation tool.The property is satis�ed if no error or only bit (parity) errors occur on the physicallink. However, if the link is completely interrupted for a period less than that of thedisconnection timer, after which the link comes back into operation, this error is notdetected and does not produce a re-initialization. In this case, if a FCT character is lostwhile the link is down, the
ow control scheme may no longer function correctly.

172 Chapter 9. Case studies9.4 ConclusionsThe case studies performed show that the language extensions introduced in this work are ableto capture timing information both in the models and when writing temporal properties. Theyhave also pointed out some of the limits of the model, related to:1. the abstraction level : in some cases, the primitives are too low level, requiring a more com-plicated modeling. This is the case with the modeling of transmission delays in SpaceWire,or with the modeling of congestion (dynamically changing execution times) in other mod-els.2. the expressivity of the primitives: as pointed out by the RMTP-II case study mentionedin the beginning of this chapter, systems which adapt their behavior based on results oftime measurements cannot be modeled using the primitives introduced in this document.On the tool side, the case studies have pointed out the necessity for applying state spacereduction techniques in case of large speci�cations. For example, we have been able to analyzethe SpaceWire model only after (manually) performing a live variable analysis and reduction.Several other types of static analysis and reduction techniques are suggested in [Boz99] for aformalism similar to SDL (IF). They provide very good reduction ratios and could be easilyadapted for SDL.As such techniques are not yet integrated in our tool, we considered it premature to makeperformance comparisons between the extended ObjectGEODE veri�cation tool and other timedmodel analysis tools.

Chapter 10Conclusions and perspectivesThe work presented in this thesis deals with the integration of timed modeling and validationtechniques within the framework of SDL. The concrete results of this work are situated atseveral levels.At the system speci�cation level, we have de�ned a set of extensions which enable themodeling of timing assumptions and of non-trivial time-dependent behavior in SDL. We havealso proposed an alternative semantics of time in SDL, which allows model-based tools such assimulators and veri�ers to use more realistic assumptions about time progress, when analyzing asystem speci�cation. These assumptions are derived from the timing annotations introduced inthe speci�cation. We note that the standard semantics of SDL, which constitutes the startingpoint of the semantics described in this thesis, uses very loose assumptions about time progressand therefore cannot be used for validating quantitative timing properties.At the property speci�cation level, we have studied two languages commonly used for writingproperties of SDL models, GOAL and MSC. GOAL is an automata-like observer language usedin the ObjectGEODE tool [TEL00a] for specifying properties of SDL systems, as well as forcontrolling the simulation and veri�cation process. In this thesis we have proposed a concise setof language extensions which enable the speci�cation of quantitative timing properties in GOAL.We have also studied its semantics, and the satisfaction relationship between SDL models andGOAL properties. In order to provide a sound semantic basis for these, we have de�ned anabstract model of properties, the timed property automata (TPA), and its relation to timedautomata (which form the semantic basis of SDL in our framework).On the side of MSC, we have been confronted with problems of a di�erent nature. MSCis a standard language for representing system execution traces. MSC is usually employedfor modeling requirements, representing selected traces, etc., as an informative counterpart toa system speci�cation. Although very expressive, the language cannot be used as a formalproperty speci�cation language, for two reasons: it does not have a formal semantics in itslatest revision (MSC-2000) which includes constructs for modeling timing constraints, and itlacks an interpretation as a property language (that is, a clearly de�ned satisfaction relationshipbetween system models and MSC speci�cations). The results of our study cover both directionsmentioned before. We propose a semantics for a (regular) subset of MSC-2000 which includestiming aspects. This semantics is based on timed automata, and is inspired by the (non-timed)Petri Net semantics of MSC proposed in [GPR93]. We presented in this document only themain lines of the semantics, without completely formalizing the de�nition. Concerning thesatisfaction relationships between system models and MSC speci�cations, we discuss severalalternative de�nitions for them. 173

174 Chapter 10. Conclusions and perspectivesAt the level of analysis methods and algorithms, we have �rst studied the model checkingproblem for timed property automata. The obtained results show what abstractions may be usedfor deciding TPA satisfaction, and how classic B�uchi automata-based model checking algorithmsmay be adapted for verifying TPA properties. These results, projected at the level of GOALand MSC, provide model checking methods for these two languages.An important result of this work concerns the abstraction used for TPA model checking.This abstraction, a variant of the timed automata simulation graph, is more complicated thanthe original version presented in [Tri98], as it has to accommodate several new constructs allowedin SDL models. We provide both an algorithm for building the extended simulation graph, anda correctness proof for the formulas used in the algorithm.In order to assess the power of the language extensions and of the analysis techniques pro-posed in this work, we have implemented them in a tool prototype derived from an industrialSDL simulation and veri�cation tool. The advantage of starting from a full-
edged tool is thatthe implementation of constructs existing in the standard SDL language may be reused, whichdiminishes the number of limitations of the tool and eases experimentation. A number of newfeatures implemented in the tool have been inspired by the case studies on which the tool wasapplied.The case studies have shown that the SDL language extensions are capable of capturing manyforms of timing constraints appearing in real-time system speci�cations. Additionally, GOALand MSC prove to be very intuitive formalisms for describing quantitative timing properties.While GOAL is very
exible, however, the lack of a standard interpretation of MSC as propertylanguage is a shortcoming.The application of the tool on case studies con�rms that the proposed analysis methods allowthe derivation of interesting timing information, such as minimal/maximal delays between dif-ferent events occurring in a system. An example is the SpaceWire study presented in Chapter 9.This case study shows that an accurate modeling of the system timing may provide additionalinsight in the functioning of the system, and may for example reveal hidden timing dependenciesbetween system components.The case studies have also pointed out some limitations of the proposed techniques. Thelanguage extensions made here prove to be low level in some cases, and unable to expresscertain forms of timing constraints, as explained in Chapter 9. The analysis techniques also aresometimes expensive in terms of computation, especially in the case of systems in which theanalysis yields non-convex clock polyhedra.PerspectivesThere are several directions on which this work may be continued, for achieving a wider inte-gration of timing modeling and validation methods in industrial development frameworks.Higher level modeling constructs. When experimenting with the SDL language extensionsproposed in this thesis, we realized that they are sometimes ill adapted and counterintuitive fora user who is not accustomed with the underlying semantic concepts. For example, the urgencyconcept provides a
exible way of specifying the moment when an event (e.g. a transition)occurs in a system, but the rules for deriving the urgency information from the high-level systemrequirements are diÆcult to formalize and may be misleading for the SDLmodeler. On the otherhand, some extensions introduced here are too basic and not
exible enough. It is the case for

175channel speci�cations, which cannot model for example delays depending on the type of thesignal, nor other types of transmission errors except signal loss.For this reason, a promising work direction is the de�nition of a set of higher-level constructsfor modeling timing information, to be included in SDL, based on the same semantic conceptsas the primitives described in this work. These should be closer to the abstraction level of SDL,and should re
ect more directly the kinds of (timing) information usually appearing in real-timesystem requirements.Improvement of veri�cation techniques. As noted in the conclusion of Chapter 9, there isa practical necessity to apply state space reduction techniques in connection with the veri�cationmethod proposed in this work. A reduction method that may be easily adapted in this frameworkis the elimination of inactive variables. This method is likely to produce good results in the caseof SDL, as the language de�nes several implicit components of the model state (e.g. the senderimplicit variable attached to each SDL agent) which contribute to the explosion of the statespace even when they are not used in a model.Other reduction methods include partial orders, which attempt to avoid the explorationof unnecessary interleavings of independent transitions. Such methods have been successfullyapplied in the analysis of non-timed systems. However, their results in the case of timed modelsare less spectacular. A reason for this is that the time progress condition in a timed model,like the SDL model proposed in this work, is a global condition depending on the state ofall system components, which reduces the overall independence between transitions of di�erentcomponents. Nevertheless, recent research results [BJLY98, Pag96, Min99] set hopes for asuccessful application of partial order techniques on timed models.Application of new validation methods. A direction in which we plan to pursuit thisresearch is the application of other validation techniques on timed models. We are thinkingprimarily at testing, which is at the moment the most used validation method in industrialdevelopment.A research �eld that has been continually developing over the past decade is automated testgeneration from formal system speci�cations. The ObjectGEODE framework, on which the toolpresented in this thesis is based, includes a test generation tool (TestComposer, [KJG99, KO99])which is based on the exploration of the state space of an SDL model, using a technique similarto that of a veri�cation tool. Currently, the tests generated by the tool contain informationonly on the discrete events exchanged between system components and the environment. Weare thinking about extending the tool to include selected timing information in the generatedtests. The main problem is to provide a
exible mechanism through which the user might selectthe timing information that is actually important for testing, from the quantity of informationthat a timed state space exploration provides.On the side of test speci�cation and execution, the available techniques are better preparedfor tackling the testing of timed systems. In our previous work [OK99] we studied the problemof specifying timing information in a visual MSC-based test speci�cation formalism, and took anapproach similar to that of the standard test description language TTCN [ISO92]. However, weare aware of ongoing research aiming to improve the support for testing real-time requirementsin TTCN [WG97, HKN01].Integration within other languages. The spectrum of languages preponderantly used inthe industrial production of real-time systems is continually changing, and newer languages

176 Chapter 10. Conclusions and perspectivesare becoming de facto standards. This is the case of the Uni�ed Modeling Language (UML,[OMG99]), which has a growing importance in all branches of system modeling. Hence, thepossibility to adapt the modeling and analysis techniques presented in this work to new languagesis an important issue.A preliminary study [Obe00] we have performed concerning the application of these methodsto UML shows no apparent incompatibility. UML uses a state machine based approach for spec-ifying the behavior of system components, which can accommodate the constructs for specifyingtiming information introduced here. Moreover, the proposed UML pro�le for schedulability,performance and time [tadwg00] introduces some of the necessary modeling concepts, such astime values (that may be attached to certain constructs in the model), time events, etc., withouthowever giving a clear semantics for these.We also note that, because UML has several types of diagrams presenting di�erent viewsof a system, it is more diÆcult to make a formal analysis of a system speci�cation. Thisassertion is supported by the fact that all approaches to de�ne a formal semantics for UML ofwhich we are aware (see the overview in [Sta01]) tackle only a part of the language. Also, thelanguage de�nition still contains a number of de�ciencies. In this context, we have worked onthe clari�cation of the concurrency model of UML [OS99], but other points need to be workedout in order to obtain speci�cations amenable to formal analysis. Among them, we mention: thesemantics of actions, the semantics of time and the level of atomicity of transitions and actions,the construction of the initial system state, the exact semantics of communication betweenobjects.Nevertheless, as many e�orts in the industry, academia and standardization bodies are putinto making UML more formal and precise, the perspective of doing model-based timing analysison UML models should become realistic in the long run.

Bibliography[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model checking in densereal time. Information and Computation, (104):2{34, 1993.[ACH93] Rajeev Alur, Costas Courcoubetis, and T. Henzinger. Computing accumulateddelays in real-time systems. In Proceedings of the Fifth Conference on Computer-Aided Veri�cation, number 693 in LNCS. Springer-Verlag, 1993.[ACH+95] Rajeev Alur, Costas Coucoubetis, Nicolas Halbwachs, Thomas A. Henzinger,P.H. Ho, X. Nicolin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. Thealgorithmic analysis of hybrid systems. Theoretical Computer Science, (138):3{34, 1995.[ACHH93] Rajeev Alur, Costas Courcoubetis, T. A. Henzinger, and Pei-Hsin Ho. Hybridautomata: an algorithmic approach to the speci�cation and analysis of hybridsystems. In Hybrid Systems II, volume 736 of LNCS. Springer Verlag, 1993.[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-puter Science, (126):183{235, 1994.[AH91] Rajeev Alur and Thomas A. Henzinger. Logics and models of real-time: A survey.In Real-Time: Theory in Practice, volume 600 of LNCS. Springer Verlag, June1991.[AHP96] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for messagesequence charts. In T. Margaria and B. Ste�en, editors, Tools and Algorithms forthe Construction and Analysis of Systems, volume 1055 of LNCS, pages 35{48.Springer Verlag, 1996.[ALH95] B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL behaviorswith GEODE. In R. Braek and A. Sarma, editors, SDL'95 with MSC in CASE.Elsevier Science B.V., 1995.[Alu91] Rajeev Alur. Techniques for Automatic Veri�cation of Real Time Systems. PhDthesis, Department of Computer Science, Stanford University, 1991.[Ame87] Pierre America. POOL-T: A parallel object-oriented language. In AkinoriYonezawa and Mario Tokoro, editors, Object Oriented Concurrent Programming,pages 199{220. MIT Press, 1987.[AMP98] Eugene Asarin, Oded Maler, and Amir Pnueli. On the discretisation of delays intimed automata and digital circuits. In Proceedings of CONCUR'98, 1998.177

178 BIBLIOGRAPHY[AS87] B. Alpern and F.B. Schneider. Recognizing safety and liveness. DistributedComputing, 2(3):117{126, 1987.[B�60] J. B�uchi. On a decision method in restricted second order arithmetic. In Pro-ceedings of the International Congress on Logic, Methodology and Philosophy ofScience, pages 1{11. Stanford University Press, 1960.[BAL97] H. Ben-Abdallah and S. Leue. Expressing and analyzing timing constraints inmessage sequence chart speci�cations. Technical Report 97-04, University ofWaterloo, 1997.[BAMP83] Moti Ben-Ari, Zohar Manna, and Amir Pnueli. The temporal logic of branchingtime. Acta Informatica, 20:207{226, 1983.[BER94] Ahmed Bouajjani, R. Echahed, and R. Robbana. Verifying invariance propertiesof timed systems with duration variables. In Formal Techniques in Real-Timeand Fault-Tolerant Systems, volume 863 of LNCS. Springer Verlag, 1994.[BFG+99] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, andJoseph Sifakis. IF: An intermediate representation for SDL and its applica-tions. In R. Dssouli, G.v. Bochmann, and Y. Lahav, editors, SDL '99. The NextMilenium. Proceedings of the 9th SDL Forum, Montreal, Canada, 1999. Elsevier.[BGK+00] Marius Bozga, Susanne Graf, Alain Kerbrat, Laurent Mounier, Iulian Ober, andDaniel Vincent. SDL for real-time: What is missing? In The 2nd Workshop onSDL and MSC, Grenoble, France, 2000.[BGM+01] Marius Bozga, Susanne Graf, Laurent Mounier, Iulian Ober, Jean-Luc Roux,and Daniel Vincent. Timed extensions for SDL. In Proceedings of the 10th SDLForum, LNCS, Copenhagen, 2001. Springer Verlag.[BGMS98] M. Bozga, S. Graf, L. Mounier, and Joseph Sifakis. The intermediate represen-tation IF. Technical report, Verimag, 1998.[BHS91] Ferenc Belina, Dieter Hogrefe, and Amardeo Sarma. SDL With Applications fromProtocol Speci�cation. The BCS practitioner series. Prentice Hall, 1991.[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial orderreductions for timed systems. In Proceedings of CONCUR'98, volume 1466 ofLNCS. Springer Verlag, 1998.[BLL+96] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Y. UPPAAL in1995. In T. Margaria and B. Ste�en, editors, Proceedings of Workshop on Toolsand Algorithms for the Construction and Analysis of Systems, volume 1055 ofLNCS, Passau, Germany, March 1996. Springer-Verlag.[BLL+98] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, W. Yi, and Carsten Weise.New generation of UPPAAL. In Proceedings of the International Workshop onSoftware Tools for Technology Transfer, Aalborg, Denmark, July 1998.

BIBLIOGRAPHY 179[BMU98] J.A. Bergstra, C.A. Middelburg, and Y.S. Usenko. Discrete time process algebraand the semantics of SDL. Technical Report SEN-R9809, CWI, Amsterdam,1998.[Bor98] S�ebastien Bornot. De la composition de syst�emes temporis�es. PhD thesis, Uni-versit�e Joseph Fourier, Grenoble, France, 1998. In French.[Boy01] Marc Boyer. Contribution �a la mod�elisation des syst�emes �a temps contraint etapplication au multim�edia. PhD thesis, Universit�e Toulouse III, 2001.[Boz99] Marius Bozga. V�eri�cation Symbolique pour les Protocoles de Communication.PhD thesis, Univ. Joseph Fourier, Grenoble, December 1999. In French.[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Uni�ed Modeling Lan-guage User Guide. Object Technology Series. Addison-Wesley, October 1998.[Bro91] Manfred Broy. Towards a formal foundation of the speci�cation and descriptionlanguage SDL. Formal Aspects of Computing, (3), 1991.[BS97] S�ebastien Bornot and Joseph Sifakis. Relating time progress and deadlines inhybrid systems. In International Workshop HART'97, volume 1201 of LNCS.Springer-Verlag, 1997.[BST98] S�ebastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency intimed systems. In Compositionality { the signi�cant di�erence, volume 1536 ofLNCS. Springer Verlag, 1998.[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theo-retical Computer Science, (18), 1990.[BW95] Alan Burns and Andy Wellings. HRT-HOOD: A Structured Design Method forHard Real-Time Ada Systems. Elsevier Science, 1995.[CD94] Steve Cook and John D. Daniels. Designing Object Systems: Object-OrientedModelling with Syntropy. Object-Oriented Series. Prentice Hall, 1994.[Cer92] Karlis Cerans. Algorithmic Problems in Analysis of Real Time System Speci�ca-tions. PhD thesis, University of Latvia, Riga, Latvia, 1992.[CES86] E. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-stateconcurrent systems using temporal logic speci�cations. ACM TOPLAS, 8(2),1986.[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MITPress, Cambridge, Massachusetts, 1999.[CHR92] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Infor-mation Processing Letters, 40(5):269{276, 1992.[CR96] Denis Caromel and Yves Roudier. Reactive programming in Ei�el//. In Jean-Pierre Briot, Jean-Marc Geib, and Akinori Yonezawa, editors, Proccedings ofOBPDC'95. Object-Based Parallel and Distributed Computation, volume 1107 ofLNCS, pages 125{147. Springer-Verlag, 1996.

180 BIBLIOGRAPHY[CVWY92] Costas Courcoubetis, Moshe Vardi, Pierre Wolper, and M. Yannakakis. MemoryeÆcient algorithms for the veri�cation of temporal properties. Methods in SystemDesign, 1:275{288, 1992.[DH98] W. Damm and D. Harel. LSCs: Breathing life into message sequence charts.Technical Report CS98-09, The Weizmann Institute of Science, Rehovot, Israel,April 1998.[DHHMC95a] Marc Diefenbruch, E. Heck, J�org Hintelmann, and Bruno M�uller-Clostermann.Performance evaluation of SDL systems adjunct by queueing models. In R. Braekand A. Sarma, editors, Proceedings of SDL Forum'95. Elsevier Science B.V., 1995.[DHHMC95b] Marc Diefenbruch, Elke Heck, Jorg Hintelmann, and Bruno M�uller-Clostermann.Performance evaluation of SDL systems adjunct by queueing models. In R. Braekand A. Sarma, editors, SDL'95 With MSC in CASE, Proceedings of the SeventhSDL Forum, pages 231{242, Oslo, Norway, September 1995. Elsevier.[Die97] Marc Diefenbruch. Queuing SDL: A language for the functional and quantita-tive speci�cation of distributed systems. Technical report, Universit�at Essen,Germany, February 1997.[Dil89] David L Dill. Timing assumptions and veri�cation of �nite-state concurrentsystems. In Joseph Sifakis, editor, Automatic Veri�cation Methods for FiniteState Systems, volume 407 of LNCS, pages 197{212. Springer-Verlag, 1989.[DKRT97] Pedro R. D'Argenio, Joost-Peter Katoen, Theo C. Ruys, and Jan Tretmans. Thebounded retransmission protocol must be on time! Technical Report CTIT 97-03,Univ. of Twente, 1997.[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The toolKRONOS. In DIMACS Workshop on Veri�cation and Control of Hybrid Sys-tems, volume 1066 of Lecture Notes in Computer Science. Springer Verlag, Oc-tober 1995.[Dou98] Bruce P. Douglass. Real-Time UML: Developing EÆcient Objects for EmbeddedSystems. Object Technology Series. Addison Wesley, 1998.[Dou99] Bruce P. Douglass. Doing Hard Time: Developing Real-Time Systems with UML,Objects, Frameworks and Patterns. Object Technology Series. Addison Wesley,1999.[EHS97] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL: Formal Object-Oriented Language for Communicating Systems. Prentice Hall, 1997.[Eng96] John English. Ada 95: The Craft of Object-Oriented Programming. Prentice Hall,October 1996.[ETS00] ETSI/MTS. Methods for testing and speci�cation(MTS); the tree and tabu-lar combined notation version 3. ETSI recommendation DES/MTS{63{(1{3),November 2000.

BIBLIOGRAPHY 181[FDT95] Joachim Fischer, E. Dimitrov, and U. Taubert. Analysis and formal veri�cationof SDL-92. speci�cation using extended petri nets. Technical report, HumboldtUniversit�at, Berlin, 1995.[FG97] Hans Fleischhack and Bernd Grahlmann. A compositional petri net semanticsfor SDL. Technical Report HIB 18/97, Universit�at Hildesheim, 1997.[GGP99] Uwe Gl�asser, Reinhard Gotzhein, and Andreas Prinz. Towards a new formalSDL semantics based on abstract state machines. In Rachida Dssouli, Gregor.v. Bochmann, and Yair Lahav, editors, SDL '99 { The next milenium, pages171{190. Elsevier, 1999.[God91] Jens C. Godskesen. An operational semantic model for basic SDL. TechnicalReport TFL-RR 1991-2, Tele Danmark Research, August 1991.[GPR93] J. Grabowski, P.Graubmann, and E. Rudolph. Towards a petri net based seman-tics de�nition for message sequence charts. In O. Faergemand and A. Sarma,editors, SDL'93 Using Objects. Proceedings of the 6th SDL Forum, Amsterdam,1993. Elsevier Science.[GR89] Adele Goldberg and David Robson. Smalltalk 80 : The Language. Addison-Wesley, June 1989.[Gro89] Roland Groz. V�eri�cation de propri�et�es logiques des protocoles et syst�emesr�epartis par observation de simulations. PhD thesis, Universit�e de Rennes I,Janvier 1989.[Gur88] Yuri Gurevich. Logic and the Challenge of Computer Science. In E. B�orger,editor, Current Trends in Theoretical Computer Science, pages 1{57. ComputerScience Press, 1988.[Gur95] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor,Speci�cation and Validation Methods, pages 9{36. Oxford University Press, 1995.[Gur97] Yuri Gurevich. 1997 draft of the ASM guide. Technical Report CSE-TR-336-97,University of Michigan, EECS Department, 1997.[GvdP96] J.F. Groote and J. van de Pol. A bounded retransmission protocol for largedata packets. In M. Wirsing and M. Nivat, editors, Algebraic Methodology andSoftware Technology, volume 1101 of LNCS. Springer Verlag, 1996.[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science ofComputer Programming, (8):231{274, 1987.[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc. 11th IEEESymposium on Logic in Computer Science, 1996.[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybridsystems. Software Tools for Technology Transfer, 1(1+2):110{22, 1997.[HKN01] Dieter Hogrefe, Beat Koch, and Helmut Neukirchen. Some implications of msc,sdl and ttcn time extensions for computer-aided test generation. In Proceedingsof the 10th SDL-Forum, LNCS, Copenhagen, June 2001. Springer Verlag.

182 BIBLIOGRAPHY[HKPV98] Thomas A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidableabout hybrid automata? Journal of Computer and System Sciences, (58):94{124,1998.[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digitalclocks? In Proceedings of ICALP'92, volume 623 of LNCS. Springer Verlag, 1992.[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.[HP88] Derek J. Hatley and Imtiaz A. Pirbhai. Strategies for Real-Time System Speci�-cation. Dorset House, 1988.[HPY96] Gerard J. Holzmann, Doron Peled, and M. Yannakakis. On nested depth �rstsearch. In AMS, editor, Second SPIN Workshop, pages 23{32, 1996.[HS96] K. Havelund and N. Shankar. Experiments in theorem prooving and modelchecking for protocol veri�cation. In M-C. Glaudel and J. Woodcock, editors,FME'96: Industrial Bene�t and Advance in Formal Methods, volume 1051 ofLNCS. Springer Verlag, 1996.[ISO89a] ISO/IEC. Estelle{ a formal description technique based on an extended statetransition model. ISO 9074:1989, International Organization for Standardization{ Information processing systems { Open Systems Interconnection, 1989.[ISO89b] ISO/IEC. Lotos{ a formal description technique based on the temporal orderingof observational behavior. ISO 8807:1989, International Organization for Stan-dardization { Information processing systems { Open Systems Interconnection,1989.[ISO92] ISO/IEC. Conformance testing methodology and framework. part 3: The treeand tabular combined notation (ttcn). ISO/IEC 9646-3, International Organi-zation for Standardization { Information processing systems { Open SystemsInterconnection, 1992.[ISO96] ISO/IEC. Vienna Development Method { Speci�cation Language { Part 1: Baselanguage. ISO/IEC 13817-1, International Organization for Standardization { In-formation technology { Programming languages, their environments and systemsoftware interfaces, December 1996.[IT97] ITU-T. Supplement 1 to recommendation z.100 - SDL + methodology: Use ofMSC and SDL (with ASN.1), May 1997.[IT99a] ITU-T. Languages for telecommunications applications { Message SequenceCharts (MSC). ITU-T Revised Recommendation Z.120, November 1999.[IT99b] ITU-T. Languages for telecommunications applications { Speci�cation and De-scription Language (SDL). ITU-T Revised Recommendation Z.100, 1999.[IT99c] ITU-T. SDL formal de�nition. ITU-T Revised Recommendation Z.100 { AnnexF, 1999.

BIBLIOGRAPHY 183[Kan92] Krishna Kant. Introduction To Computer System Performance Evaluation.McGraw-Hill, 1992.[KJG99] Alain Kerbrat, Thierry J�eron, and Roland Groz. Automated test generation fromSDL speci�cations. In R. Dssouli, G.V. Bochmann, and Y. Lahav, editors, Pro-ceedings of the 9th SDL Forum, pages 135{51, Montreal, Canada, 1999. ElsevierScience.[KM95] Niels Ferdinand Karstensen and Simon Mork. Duration calculus semantics forSDL. Master's thesis, Technical University of Denmark, Lyngby, Denmark, 1995.[KO99] Alain Kerbrat and Iulian Ober. Automated test generation from SDL/UML spec-i�cations. In The 12th International Software Quality Week, San Jose, California,May 1999.[KPSY93] Yonit Kesten, Amir Pnueli, Joseph Sifakis, and Sergio Yovine. Integration graphs:A class of decidable hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn,and H. Rischel, editors, Hybrid Systems, number 736 in LNCS. Springer-Verlag,1993.[KRPO93] Mark H. Klein, Thomas Ralya, Bill Pollak, and Ray Obenza. A Practitioner'sHandbook for Real-Time Analysis : Guide to Rate Monotonic Analysis for Real-Time Systems. Kluwer International Series in Engineering. Kluwer AcademicPublishers, 1993.[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transac-tions on Software Engineering, 3(2):125{143, 1977.[LL93] P.B. Ladkin and S. Leue. What do message sequence charts mean? In R.L.Tenney, P.D. Amer, and M. Uyar, editors, Proceedings of the 6th InternationalConference on Formal Description Techniques, Amsterdam, 1993. North-Holland.[Loc98] Douglass Locke. Fundamentals of real-time. OMG document realtime/98-05-03,May 1998. Tutorial presented at the OMG Technical Committee Meeting.[LPY97] K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Springer Inter-national Journal on Software Tools for Technology Transfer, (1(1+2)), 1997.[Mam00] Zoubir Mammeri. SDL. Mod�elisation de protocoles et syst�emes r�eactifs. HermesScience, 2000. In French.[Mat96] R. Mateescu. Formal description and analysis of a bounded retransmission pro-tocol. In Z. Brezocnik and T. Kapus, editors, Proceedings of COST 247: In-ternational Workshop on Applied Formal Methods in System Design. TechnicalReport, Univ. of Maribor, Slovenia, 1996. Also available as INRIA TechnicalReport No. 2965.[Mey95] Bertrand Meyer. Ei�el: The Language. Prentice-Hall, 1995.[Mey97] Bertrand Meyer. Object Oriented Software Construction. Prentice-Hall, 2ndedition, 1997.

184 BIBLIOGRAPHY[MF76] P.M. Merlin and D.J. Faber. Recoverability of communication protocols. IEEETransactions on Communications, Com-24(9):1036{1043, September 1976.[MGHS96] Simon Mork, Jens C. Godskesen, Michael R. Hansen, and Robin Sharp. A timedsemantics for SDL. In Reinhard Gotzhein and Jan Bredereke, editors, Proceedingsof FORTE/PSTV'96, pages 295{309, Kaiserslautern, Germany, October 1996.Chapman and Hall.[Mil80] Robin Milner. A calculus of communicating systems. volume 92 of LNCS.Springer Verlag, 1980.[Min99] Marius Minea. Partial Order Reduction for Veri�cation of Timed Systems. PhDthesis, School of Computer Science, Carnegie Mellon University, December 1999.Available as technical report CMU-CS-00-102.[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Proceed-ings of REX Workshop \Real-Time: Theory in Practice", volume 600 of LNCS.Springer Verlag, June 1991.[MP00] Anca Muscholl and Doron Peled. Analyzing message sequence charts. In Univer-sit�e de Grenoble, editor, SDL and MSC. Proceedings of SAM'2000, 2000.[MR94] S. Mauw and M.A. Reniers. An algebraic semantics of basic message sequencecharts. The Computer Journal, 37(4), 1994.[MR96] S. Mauw and M.A. Reniers. The formalization of mesage sequence charts. Com-puter Networks and ISDN Systems, 28(12), 1996.[MT00] Andreas Mitschele-Thiel. Systems Engineering with SDL. Developing Perfor-mance Critical Communication Systems. J. Wiley, 2000.[Nic92] X. Nicollin. ATP: une alg�ebre pour la sp�eci�cation et l'analyse des syst�emestemps r�eel. PhD thesis, INP Grenoble, 1992. In French.[NOSY93] Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. An approachto the description and analysis of hybrid systems. In Hybrid Systems II, volume736 of LNCS. Springer Verlag, 1993.[NS91] Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed processalgebras. In Proceedings of REX Workshop \Real-Time: Theory in Practice",volume 600 of LNCS, pages 526{548. Springer Verlag, June 1991.[NSY91] Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. From atp to timed graphsand hybrid systems. In Proceedings of REX Workshop \Real-Time: Theory inPractice", volume 600 of LNCS. Springer Verlag, June 1991.[Obe99] Iulian Ober. Extending SDL with timed automata concepts. Technical report,VERILOG, 1999.[Obe00] Iulian Ober. UML and the tasks speci�c to real-time development. PositionPaper in the UML'2000 Workshop on Formal Design Techniques for Real-TimeUML, October 2000.

BIBLIOGRAPHY 185[OFMP+94] Anders Olsen, Ove Faergemand, Birger Moller-Pedersen, Rick Reed, and J.R.W.Smith. Systems Engineering Using SDL{92. North Holland - Elsevier Science,1994.[OK99] Iulian Ober and Alain Kerbrat. Speci�cation and execution of tests using tMSC.In J. Wu, S.T. Chanson, and Q. Gao, editors, Proceedings of FORTE/PSTV'99,pages 453{468. Kluwer Academic Publishers, 1999.[OK01] Iulian Ober and Alain Kerbrat. Veri�cation of quantitative temporal properties ofSDL speci�cations. In Proceedings of the 10th SDL Forum, LNCS, Copenhagen,2001. Springer Verlag.[OMG99] OMG. Uni�ed modeling language speci�cation, v. 1.3. OMG ducument ad/99-06-09, June 1999.[OS99] Iulian Ober and Ileana Stan. On the concurrent object model of UML. InProceedings of EUROPAR'99, LNCS. Springer Verlag, 1999.[OSY94] Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. Using abstractions for theveri�cation of linear hybrid systems. In Proceedings of 6th Computer-Aided Veri-�cation, volume 818 of Lecture Notes in Computer Science, California, July 1994.Springer-Verlag.[Pag96] Florence Pagani. Partial orders and veri�cation of real-time systems. In B. Jon-sson and J. Parrow, editors, Formal Techniques in Real-Time and Fault-TolerantSystems, pages 327{46, Uppsala,Sweden, September 1996. Springer-Verlag.[Pap92] Michael Papathomas. Language Design Rationale and Semantic Framework forConcurrent Object Oriented Programming. PhD thesis, Universit�e de Gen�eve,1992.[Per90] Jean-Paul Perez. Syst�emes temps r�eel. Informatique Industrielle. Dunod, 1990.In French.[Pet81] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,Englewood Cli�s, 1981.[PL93] P.B.Ladkin and S. Leue. Interpreting message sequence charts. Technical ReportTR101, Department of Computing Science, University of Stirling, 1993.[PMR+00] Sanjoy Paul, T. Montgomery, N. Rastogi, J. Conlan, and T. Yeh. The rmtp-iiprotocol. IETF Draft draft-whetten-rmtp-ii-00, 2000.[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th IEEE Symposium onFoundations of Computer Science. IEEE, 1977.[QS82] J.P. Queille and Joseph Sifakis. Speci�cation and veri�cation of concurrent sys-tems in CESAR. In International Symposium on Programming, volume 137 ofLNCS. Springer Verlag, 1982.[Ram74] Chander Ramachandani. Analysis of Asynchronous Concurrent Systems byTimed Petri Nets. PhD thesis, MIT, 1974.

186 BIBLIOGRAPHY[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, andWilliam Lorenson. Object-Oriented Modeling and Design. Prentice Hall, 1991.[RJB98] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Uni�ed Modeling Lan-guage Reference Manual. Object Technology Series. Addison-Wesley, December1998.[Rou98] Jean-Luc Roux. SDL performance analysis with ObjectGEODE. In A. Mitschele-Thiel, B. M�uller-Clostermann, and R. Reed, editors, Workshop on Performanceand Time in SDL and MSC, Erlangen, Germany, February 1998. Friedrich-Alexander Universit�at, Erlangen-N�urnberg.[Set96] Ravi Sethi. Programming Languages : Concepts and Constructs. Addison-Wesley,2nd edition, 1996.[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-OrientedModeling. Wiley Professional Computing. John Wiley, 1994.[Sha95] Alan Shaw. Reasoning about time in higher-level language software. In Sang H.Son, editor, Advances in Real-Time Systems, chapter 16, pages 374{406. PrenticeHall, 1995.[Sif77] Joseph Sifakis. Use of Petri nets for performance evaluation. In E. Beilner andE. Gelenbe, editors, Measuring, Modeling and Evaluating Computer Systems,pages 75{93. North Holland, 1977.[SR98] B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems.whitepaper, ObjecTime Ltd., March 1998.[SSR89] Roberto Saracco, J.R.W. Smith, and Rick Reed. Telecommunications SystemsEngineering Using SDL. North Holland - Elsevier Science, 1989.[Sta01] Ileana Stan. Harminization of Modeling Languages with Object Oriented Exten-sions and Executable Semantics. PhD thesis, Institut National Polytechnique deToulouse, Avril 2001.[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edi-tion, July 1997.[sWG00] SpaceWire Working Group. SpaceWire: Serial point-to-point links. Eu-ropean Space Agency document UoD-DICE-TN-9201, Issue D, May 2000.http://www.estec.esa.nl/tech/spacewire.[tadwg00] Real time analysis and design working group. Response to the omg rfp for schedu-lability, performance and time, v.1.0. OMG Document ad/00-08-04, August 2000.[Tar72] R.E. Tarjan. Depth �rst search and linear graph algorithms. SIAM Journal ofComputing, 1(2):146{160, 1972.[TEL00a] TELELOGIC A.B., Malm�o, Sweden. ObjectGEODE 4.1 Reference Manuals,2000.

BIBLIOGRAPHY 187[TEL00b] TELELOGIC A.B., Malm�o, Sweden. Telelogic TAU SDL Suite Reference Man-uals, 2000.[Tri98] Stavros Tripakis. The Formal Analysis of Timed Systems in Practice. PhD thesis,Univertit�e Joseph Fourier, Grenoble, France, 1998.[Weg87] Peter Wegner. Dimensions of object based language design. In Proceedings ofOOPSLA'87, volume 22 of ACM SIGPLAN Notices, pages 168{182, Orlando,Florida, October 1987.[WG97] Thomas Walter and Jens Grabowski. Real-time ttcn for testing real-time andmultimedia systems. In M. Kim, S. Kang, and K. Hong, editors, Testing ofCommunicating Systems, volume 10. Chapman & Hall, 1997.[WPT99] Brian Whetten, Sanjoy Paul, and Gursel Taskale. Rmtp-ii overview. White paper,Talarian Corp., September 1999.[Yov97] Sergio Yovine. KRONOS: a veri�cation tool for real-time systems. SpringerInternational Journal on Software Tools for Technology Transfer, (1(1+2)), 1997.

188 BIBLIOGRAPHY

Appendix AList of abbreviations
ASM Abstract State MachinesDBM Di�erence Bounds MatrixGOAL GEODE Observer Automata LanguageHMSC High-Level Message Sequence ChartsITU{T International Telecommunication Union, Telecommunication Standardization SectorLTS Labeled Transition SystemMSC Message Sequence ChartsSAM SDL Abstract MachineSDL Speci�cation and Description LanguageTA Timed AutomataTBA Timed B�uchi AutomataTPA Timed Property AutomataUML Uni�ed Modeling LanguageZ.100 ITU{T Recommendation Z.100 { Speci�cation and Description LanguageZ.120 ITU{T Recommendation Z.120 { Message Sequence Charts

189

190 Appendix A. List of abbreviations

Appendix BProofsProof of lemma 8.1. We prove the equality in two steps:1. (q; S0) � time-succ((q; S))Let v 2 S0. This implies the following:(a) v 2% S, and(b) 8ei eager transition originating in q, v 2 restrict-eager(S; �i), and(c) 8ei delayable transition originating in q, v 2 restrict-delayable(S; �i).We aim to prove that 9Æ 2 R+ such that v � Æ 2 S and the time progress conditions aremet for the transition (q;v � Æ) Æ�! (q;v).From (a), we have that 9Æ0 2 R+ : v� Æ0 2 S. In the following we will de�ne Æ1,...,Æl, eachÆi corresponding to a transition ei, such that the following conditions (the time progressconditions imposed by ei) are met by each Æi:(i) v � Æi 2 S.(ii) if ei is eager, then 8Æ0 2 (0; Æi], v � Æ0 62 �i.(iii) if ei is delayable, then 8Æ0; Æ00 such that 0 � Æ00 < Æ0 � Æi, (v� Æ0 2 �i) v� Æ00 2 �i).We de�ne Æ1,...,Æl as follows:{ if ei is lazy : Æi = Æ0,{ if ei is eager : from (b) we have that v 2 restrict-eager(S; �i). From the de�nition ofrestrict-eager, the following three cases are possible:v 2 S \ �i In this case, we choose Æi = 0. It is easy to see that Æi satis�es (i) and (ii)(ei being eager, (iii) does not concern Æi).v 2 (% (S \ (. �i n �i))) \ (. �i n open-inf(�i)) In this case v 2 (% (S\(. �in�i)))) v 2% S. We choose Æi arbitrary such that v� Æi 2 S (i.e. satisfying (i)). Weprove that Æi satis�es (ii).v 2 (. �i n open-inf(�i))) v 2. �i and v 62 open-inf(�i). The following twocases are possible: 191

192 Appendix B. Proofs{ v 62 �i. Since v 2. �i and �i is a convex polyhedron1, it is easy to see thatthis implies 8Æ0 2 R+ , v � Æ0 62 �i, so we have (ii).{ v 2 �i. But v 62 open-inf(�i), and from the de�nition of open-inf this impliesthat 8Æ0 2 R+ , v � Æ0 62 �i, so we have (ii).v 2% (Sn . �i) We have v 2% (Sn . �i)) v 2% S. We choose Æi arbitrary suchthat v � Æi 2 S (i.e. satisfying (i)). We prove that Æi satis�es (ii).v 2% (Sn . �i)) 8Æ0 2 R+ : v � Æ0 62. �i, whence v� Æ0 62 �i, whence (ii).{ if ei is delayable: from (c) we have that v 2 restrict-delayable(S; �i). From the de�ni-tion of restrict-delayable, the following two cases are possible:v 2 (% (S \ (. �i)) \ (. �i) In this case, v 2% (S \ (. �i))) v 2% S. Wechoose Æi arbitrarily such that v � Æi 2 S (i.e. satisfying (i)). We prove that Æisatis�es (iii) (ei being delayable, Æi is not concerned by (ii)).Since v 2. �i, it follows that 9Æ000 2 R+ such that v + Æ000 2 �i. Assume that(iii) is not satis�ed. Then, 9Æ0; Æ00: 0 � Æ00 < Æ0 � Æi such that v � Æ0 2 �i andv � Æ00 62 �i.The relative position of v� Æ0,v� Æ00 and v+ Æ000 imply that the polyhedron �i isnot convex, which contradicts the de�nition of timed automata transitions. Weconclude that (iii) is satis�ed.v 2% (Sn . �i) We have v 2% (Sn . �i)) v 2% S. We choose Æi arbitrarilysuch that v � Æi 2 S (i.e. satisfying (i)). Similarly to the eager case, we have:v 2% (Sn . �i)) 8Æ0 2 R+ : v� Æ0 62. �i, whence v� Æ0 62 �i. This means thethe premise of the implication from (iii) is false, and therefore (iii) is satis�ed.As each Æi satis�es the conditions of (i), (ii) and (iii) for the transition ei, it is easy to seethat by taking Æ = minfÆ0; Æ1; :::; Ælg, the number Æ satis�es the time progress conditionsfor all transitions e1; :::; el.Therefore, we conclude that 9Æ 2 R+ such that (q;v� Æ) 2 (q; S) and (q;v� Æ) Æ�! (q;v),which implies that (q;v) 2 time-succ((q; S)).2. time-succ((q; S)) � (q; S0)Let (q;v) 2 time-succ((q; S)). This implies that 9Æ: (q;v�Æ) Æ�! (q;v), which by de�nitionmeans that:(a) 9Æ such that v � Æ 2 S, and(b) 8ei eager transition starting from q, 8Æ0 2 (0; Æ], v � Æ0 62 �i, and(c) 8ei delayable transition starting from q, 8Æ0; Æ00 such that 0 � Æ00 < Æ0 � Æ, (v � Æ0 2�i) v � Æ00 2 �i).From (a), it follows that v 2% S. In order to prove that v 2 S0, we show that for everytransition ei starting from q:(i) if ei is eager, then v 2 restrict-eager(S; �i),1If � is convex, then % �\ . � = �.

193(ii) if ei is delayable, then v 2 restrict-delayable(S; �i),If ei is eager, we distinguish the following cases:{ v � Æ 2 �i.If Æ 6= 0, by taking Æ0 = Æ in (b), we get v� Æ 62 �i, which contradicts the hypothesis.Therefore, Æ = 0, and v = v � Æ 2 S \ �i, which by de�nition implies (i).{ v � Æ 2 (. �i n �i).Then v� Æ 2 S \ (. �i n �i), which implies v 2% (S \ (. �i n �i)). We further needto prove that v 2 (. �i n open-inf(�i)), which we do in two steps:{ v � Æ 2. �i n �i) v � Æ 2. �i) 9Æ00 such that (v � Æ) + Æ00 2 �i.Since (v � Æ) 62 �i, we have that Æ00 6= 0. Assume that 0 < Æ00 < Æ. Then(v � Æ) + Æ00 = v � (Æ � Æ00) 2 �i and 0 < (Æ � Æ00) < Æ which contradicts (b).The above considerations imply Æ00 � Æ. But since v + (Æ00 � Æ) 2 �i, this impliesv 2. �i.{ To prove that v 62 open-inf(�i), we proceed by negation.Assume that v 2 open-inf(�i). Then, by de�nition, 9Æ0 > 0: v� Æ0 2 �i. As v 2 �iand v � Æ 62 �i, from the convexity of �i it results that 0 < Æ0 < Æ. However, thiscontradicts (b), and therefore v 62 open-inf(�i) holds.We conclude that in this case v 2% (S \ (. �i n �i)) \ (. �i n open-inf(�i)), whichby de�nition implies (i).{ v � Æ 62. �i.Since v � Æ 2 S and v � Æ 62. �i, it results that v � Æ 2 (Sn . �i), which impliesthat v 2% (Sn . �i). By de�nition, this implies (i).If ei is delayable, we distinguish the following cases:{ v � Æ 2. �i.v � Æ 2. �i and v � Æ 2 S imply that v 2% (S\ . �i). We further prove thatv 2. �i. We distinguish two cases:{ v � Æ 2 �i or 9Æ0; 0 � Æ0 < Æ such that v � Æ0 2 �i. In this case, from (c) bychoosing Æ00 = 0, we have v 2 �i, which implies v 2. �i.{ 8Æ0 2 [0; Æ]; v � Æ0 62 �i.But v�Æ 2. �i implies that 9Æ00 such that (v�Æ)+Æ00 2 �i. The above hypothesisimplies however that Æ00 > Æ, and therefore v 2. �i.The above considerations lead to v 2% (S\ . �i); \ . �i, which by de�nitionimplies (ii).{ v � Æ 62. �i.Since v � Æ 2 S and v � Æ 62. �i, it results that v � Æ 2 (Sn . �i), which impliesthat v 2% (Sn . �i). By de�nition, this implies (ii).To conclude, we have proved that (q;v) 2 time-succ((q; S))) v 2 S0, and therefore thesought inclusion holds.

