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Résumé: Ce travail porte sur les techniques de description et de validation d’une catégorie de systemes
temps-réel, dont le comportement est controlé ou conditionné par le temps (systémes temporisés). La vali-
dation de ces systeémes nécessite la prise en compte simultanée des aspects temporels et comportementaux.
Pour cette raison, nous nous intéressons a ’extension des formalismes de description du comportement
avec des informations temporelles, et & la mise en oeuvre des techniques d’analyse associées.

Le langage cible choisi est LDS, dont 1'usage est trés répandu dans l'industrie, et qui présente d’autres
avantages: il est standardisé, il a une sémantique formelle, et il bénéficie d’outils avancés de validation
par simulation ou vérification. Pour intégrer les extensions temporelles, nous avons pris comme modele
et base sémantique les automates temporisés.

Nous proposons un ensemble d’extensions du langage LDS, qui permet de décrire le comportement
dépendant du temps ainsi que les hypotheses temporelles sous lesquelles le systeme fonctionne. Les exten-
sions sont formalisées en ASM, en complément de la sémantique normalisée de LDS. Nous établissons le
lien entre LDS et le modele des automates temporisés, ce qui nous permet ensuite d’adapter des méthodes
d’analyse spécifiques.

Nous étudions également deux langages utilisés pour la description des propriétés des modeles LDS: MSC
et GOAL. Dans le cas de GOAL, des extensions sont introduites pour exprimer des propriétés temporelles
quantitatives. Dans le cas de MSC, nous proposons une sémantique pour les aspects temporels de MSC-
2000. Pour les deux langages, nous étudions des méthodes de vérification par model-checking.

Nous présentons la mise en oeuvre des techniques étudiés dans un outil de simulation et vérification, qui
a permis de montrer I'intérét mais aussi les limites d’utilisation des ces techniques sur un ensemble de
cas d’étude.

Mots clé : systemes temporisés, SDL, MSC, Automates Temporisés, ASM, sémantique opérationnelle,
vérification par model checking

Abstract: This work deals with the description and validation of a category of real-time systems, whose
behaviour is controlled or conditioned by time (timed systems). The validation of this kind of systems
must take into account both behavioural and timing aspects. For this reason, we are interested in
extending the behavioural description formalisms with timing information, and in subsequently applying
timing analysis techniques.

The study focuses on the SDL language, because it is widespread in the real-time systems industry
and presents several other advantages: it is standardised, it has a formal semantics, and benefits from
advanced validation tools. We integrate constructs for capturing timing information, as well as timing
analysis methods in the framework of SDL, by taking timed automata as model and semantic basis.

We propose a set of extensions of SDL, which allow the description of time-dependent behaviour and of
timing hypotheses under which a system works. The extensions are given a formal semantics in ASM,
which complements the standard SDL semantics. We also describe the link between SDL and the timed
automata model, which allows timed automata analysis techniques to be adapted to SDL.

In this framework, we use two additional languages for expressing quantitative temporal properties related
to SDL models: MSC and GOAL. For GOAL, we propose a set of extensions that allow modeling
information about time. For MSC, we discuss a timed semantics that encompasses the new timing
constructs of MSC-2000. For both languages we examine the problem of property verification by model
checking.

The thesis ends with the description of a simulation and verification tool built in the context of this work,
and presents some case studies used to validate the proposed concepts and techniques.

Keywords : timed systems, SDL, MSC, Timed Automata, ASM, operational semantics, model checking
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Chapter 1

Résumé

1.1 Introduction

Cette thése porte sur les techniques de description et de validation du comportement d’une
catégorie de systémes temps-réel, que nous appelons systémes temporisés. Conformément &
une définition généralement acceptée, les systemes temps-réel sont des systemes dont le fonc-
tionnement correct dépend de la satisfaction de certaines contraintes temporelles. Parmi ces
systemes, nous désignons comme temporisés ceux dont le comportement est controlé ou
conditionné par le temps, & la différence des systémes ou le temps apparat seulement par
I'intermédiaire des facteurs de performance.

Une méthode de validation des systémes temps-réel doit tenir compte a la fois des con-
traintes fonctionnelles et des contraintes temporelles appliquées au systeme. Néanmoins, pour
la majorité des systemes temps-réel, les deux aspects peuvent étre traités séparément, par ex-
emple en utilisant des modeles spécifiques pour chacun d’eux. Plusieurs classes de modeles et
de méthodes d’analyse, portant sur un aspect particulier du systeme modélisé, sont habituelle-
ment utilisées dans I'ingénierie des systemes temps-réel. Nous mentionnerons en particulier les
modéles d’ordonnancement et les modéles de performance. Les modéles d’ordonnancement (voir
la monographie [KRPO93]) visent & étudier les aspects de compétition pour les ressources (y
compris le temps de calcul), et peuvent fournir une base pour la validation du comportement
temporel d’un systeme. Cependant, ils ne sont pas applicables aux systémes complexes dont le
fonctionnement dépend du temps (tels que les systémes temporisés). Les modéles de perfor-
mance visent a décrire les systemes d’un point de vue probabiliste, et peuvent étre utilisés pour
la validation des contraintes de performance; cependant, leur capacité a décrire le comportement
du systeme reste limitée.

Dans le cas des systemes temporisés, examinés dans cette these, les aspects comportemen-
taux et les aspects temporels d’un systéme ne peuvent étre séparés, et une méthode de validation
doit porter sur un modele hybride incluant les deux. Pour cette raison, nous nous intéressons
aux modeles fonctionnels (comportementaux) d’un systéme, et & leur extension avec des con-
structions pour exprimer les informations temporelles. Plus précisément, nous étudions les
méthodes formelles de description et de validation, s’appuyant sur des langages formalisés tels
que LDS [IT99b], et sur des méthodes de validation telles que la simulation ou la vérification
par model-checking [QS82, CES86].

Le point de départ de cette theése est I’écart que nous avons constaté entre I’état de 'art
et ’état de la pratique industrielle dans le domaine de la spécification et de la vérification des
systémes temporisés. D’une part, plusieurs langages de modélisation, tels que LDS [IT99b],

11
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HRT-HOOD [BW95], ROOM [SGW94] ou UML avec des extensions temps-réel [Dou99, Dou98,
SR98], sont utilisés dans 'industrie. Les concepts de modélisation utilisés dans ces langages ont
beaucoup évolué, mais les méthodes d’analyse employées dans les outils industriels ne couvrent
pas les derniéres avancées de la recherche. Du coté de la recherche, il y a beaucoup de modeles
abstraits, tels que les automates temporisés [ACD93, AD94], les extensions temporisées des
réseaux de Petri [MF76, Sif77, Ram74] ou encore les extensions des algebres des processus
[NS91], qui ont été développés en parallele avec des méthodes d’analyse telles que la simulation,
le model-checking, et la réécriture. Cependant, I’acceptation des modeles, des méthodes et des
outils académiques par l'industrie se fait lentement, & cause de leur complexité et du support
limité qu’ils offrent pour la conception des systemes complexes.

En partant de ce constat, 'objectif de la thése est d’intégrer dans le langage LDS les tech-
niques de modélisation et d’analyse récemment développées dans le domaine des automates
temporisés, et d’étendre les outils associés. Nous avons choisi LDS car c’est un langage large-
ment répandu dans 'industrie temps-réel. Les autres avantages de LDS sont le fait qu’il soit
standardisé, qu’il bénéficie d’'une sémantique formelle, et que les outils de validation basés sur
LDS sont plus proches de I’état de 'art dans le domaine. Le choix des automates temporisés
comme base théorique pour les extensions temporelles de LDS se justifie par le fait que de
nombreux travaux de recherche récents ont concerné ce modeéle, et par conséquent beaucoup de
problémes théoriques (liées a la décidabilité du modele, aux extensions possibles, aux problemes
de model-checking, etc.) ont été étudiés.

1.1.1 Contributions de la these
Les résultats de cette these peuvent étre situés sur trois niveaux:

— Au niveau du langage LDS, avec des propositions d’extension et une sémantique du temps
adaptée aux besoins de ’analyse temporisée,

— Au niveau des langages d’expression de propriétés, complémentaires a LDS,

— Au niveau des méthodes et des outils de simulation et de vérification.

Nous présentons les résultats plus en détail dans la suite de cette section.

Extensions du langage LDS

Nous commenons cette thése avec une description de I'existant, et en particulier nous analysons la
faon dont LDS couvre la description des informations temporelles agissant sur le comportement
des systémes modélisés. Nous identifions ainsi certaines lacunes dans la définition de LDS,
vis-a-vis des aspects temporels mentionnés.

Ce probléme de modélisation est abordé dans le Chapitre 6, ol nous proposons une série
d’extensions du langage, capables de représenter l'information descriptive sur le temps. Les
extensions proposées permettent de décrire un comportement dépendant du temps, ainsi que les
hypotheses temporelles sous lesquelles le systeme fonctionne, ceci directement dans LDS. Ces
informations peuvent ensuite étre utilisées par des outils d’analyse temporelle, tels que ceux
développés dans le cadre de ce travail (présentés plus loin).

Les résultats que nous présentons ici ont été décrits dans nos papiers récents [BGKT00,
BGM™01]. Avec un group de partenaires industriels et universitaires, nous sommes en train de
raffiner et consolider ’ensemble des extensions de LDS pour le soumettre & 'I'TU en vue de leur
normalisation.
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Sémantique du temps en LDS

La définition standard de LDS comporte une sémantique formelle [IT99c], qui fournit une cor-
respondance entre ’ensemble des spécifications LDS et un ensemble d’objets mathématiques,
ainsi qu’une interprétation mathématique de la notion d’exécution d’un systéme LDS. Dans
la deuxiéme partie du Chapitre 6, nous présentons la sémantique des extensions du langage,
ainsi qu'une sémantique appropriée de la notion de temps, dans le méme formalisme ASM que
[IT99c]|. Cette sémantique précise la définition des extensions et fait la liaison avec les méthodes
d’analyse utilisées ensuite sur des spécifications étendues.

Spécification des propriétés temporelles quantitatives

L’application des méthodes de validation choisies dans ce travail nécessite un formalisme de
description des propriétés temporelles quantitatives. Nous avons considéré pour ce role deux
langages, couramment utilisés avec LDS: GOAL et MSC.

GOAL [ALH95] est un langage d’observation défini par rapport & LDS et implémenté par
loutil ObjectGEODE [TEL00Oa]. Dans le Chapitre 7 nous nous intéressons a la description des
propriétés temporelles quantitatives avec GOAL, et nous décrivons un ensemble d’extensions de
GOAL A& cet effet.

Dans le cas de MSC, certaines constructions pour exprimer des contraintes temporelles ex-
istent dans la derniére version du langage, MSC-2000 [IT99a], mais ces constructions n’ont pas
encore une sémantique formelle. Nous proposons une sémantique temporisée pour un sous-
ensemble de MSC-2000, basée sur les automates temporisés. Nous analysons également le
probléme de la satisfaction d’une propriété MSC par une spécification LDS.

Les deux langages mentionnés ci-dessus sont des langages orientés événement. Pour valider
des propriétés décrites avec ces deux langages, il faut d’abord leur donner une base formelle; nous
définissons donc un formalisme abstrait orienté événement, basé sur les automates temporisés,
que nous appelons automate de propriétés temporelles (TPA). Dans le Chapitre 7 nous étudions
également les problémes de vérification (model-checking) posés par 'introduction des TPA.

Méthodes et outils de simulation et de vérification

La derniere partie du travail présenté dans cette these concerne les méthodes de simulation et de
vérification de spécifications LDS étendues et des propriétés exprimées en GOAL et MSC. Cette
partie a abouti & la réalisation d’un outil, dérivé d’un produit industriel (ObjectGEODE). Du
point de vue théorique, la partie importante de ’outil est ’algorithme d’exploration symbolique
de lespace d’états d’un systéme LDS étendu (et des propriétés annexes). Nous définissons
Ialgorithme par les formules de calcul des successeurs d’un état symbolique. Un algorithme
similaire & été présenté antérieurement dans [Boz99]; cependant, & notre connaissance, c’est la
premiere fois que ’ensemble de formules de calcul des successeurs est caractérisé formellement
et accompagné d’une preuve mathématique.

1.1.2 Organisation du document

La premiére partie présente I'état de 'art dans le domaine de la spécification et de la validation
des systémes temporisés. Nous décrivons le langage LDS (Chapitre 3), les langages MSC et
GOAL (Chapitre 4), et le modele des automates temporisés (Chapitre 5).
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La deuxieme partie présente les extensions temporisées des langages, les méthodes d’analyse
et les outils développés dans le cadre de ce travail. Le Chapitre 6 présente les extensions apportées
a LDS, et étudie leur impact sur la sémantique formelle de LDS. Le Chapitre 7 introduit le
formalisme des TPA’s, puis les extensions et la sémantique des langages GOAL et MSC. Le
Chapitre 8 porte sur les méthodes d’analyse des spécifications LDS, MSC et GOAL, et sur le
développement des outils support.

La partie finale du document contient une étude de cas (Chapitre 9) et les conclusions tirés
de ce travail (Chapitre 10).

1.2 Présentation de ’existant

1.2.1 Spécification des systémes temporisés en LDS

Ce travail débute par une étude de LDS, du point de vue des constructions du langage, et du
point de vue de la sémantique. Cette étude s’appuie sur la version 2000 du langage [IT99b], et
sur la sémantique formelle de LDS décrite en ASM [IT99c]. L’étude réalisée couvre la majorité
des concepts de LDS-2000 (relatifs & I'architecture, a la communication, & la description du
comportement, et aux données), ainsi que le formalisme ASM et la sémantique statique et
dynamique du langage. Dans la suite du paragraphe, nous allons présenter les conclusions de
cette étude concernant ’expression du comportement temporisé, et la sémantique du temps, qui
sont essentielles pour le reste du travail réalisé dans cette these.

Description du comportement temporisé en LDS-2000

LDS définit des constructions qui permettent la description du comportement temporisé. Il
existe deux types de données relatifs au temps dans LDS: Time et Duration. Les valeurs du
type Time représentent des moments sur une échelle de temps depuis l'initialisation du systeme,
tandis que les valeurs du type Duration représentent des distances relatives (différences) entre
moments sur I’échelle absolue. Des opérateurs spécifiques sur les valeurs de ces types (addition
de temps et de durées, multiplication de durées, etc.) sont prédéfinis dans le langage.

Le temps présent (i.e. écoulé depuis Dinitialisation du systéme) est consultable par
I'intermédiaire de ’opérateur prédéfini now. La maniére dont le temps s’écoule n’est pas définie
dans LDS: la seule hypothése qui est faite sur les valeurs de now, est que leur évaluation suc-
cessive donne toujours des valeurs croissantes.

Ainsi le comportement dépendant du temps peut étre décrit des deux maniéres: soit en
utilisant la valeur de now dans des tests ou des expressions de tirage de transitions, soit en
utilisant des temporisations.

Les temporisations sont des objets spéciaux du langage LDS, qui ont des attributs spécifiques
comme les données (e.g. état d’activité), mais aussi un comportement prédéfini (indépendant
du comportement des agents du systeme LDS). Une temporisation peut étre définie par un
agent LDS (avec le mot clé timer); 'agent peut ensuite armer la temporisation avec une date
d’échéance (par 'opération set), la désarmer (par 'opération reset), ou consulter son état (par
l'opération active). Le comportement d’une temporisation est le suivant: la temporisation est
inactive tant qu’elle n’a pas été armée. Une fois que la temporisation est armée, elle devient
active et attend l'arrivée de son échéance. Quand I’échéance arrive, la temporisation expire et
un signal est déposé dans la file d’attente de son agent propriétaire. Si la temporisation est
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désarmée avant que ’échéance n’arrive ou avant que le signal correspondant ne soit consommé,
elle redevient inactive et tout signal correspondant est effacé de la file d’attente.

Il est important de noter le fait que l'expiration d’une temporisation produit un signal
asynchrone, qui passe toujours par la file d’attente de son agent propriétaire. Par conséquent,
quand un signal issu d'une temporisation est consommé, la seule hypothese garantie par la
sémantique de LDS est que 1’échéance de la temporisation a eu lieu. En principe, on ne peut
rien supposer a propos du temps passé depuis I’échéance. Cette hypothése minimale est correcte
du point de vue des implémentations d’un systéme LDS, mais présente un certain nombre
d’inconvénients quand la spécification LDS est utilisée a des fins de simulation ou de vérification.

Description vs. spécification

Comme décrit dans 'introduction de la norme Z.100 [IT99b], LDS vise & la fois la spécification
de haut niveau, et la programmation ( description) des systémes. Les deux objectifs du langage
sont parfois conflictuels, et le cOté programmation a été prioritaire dans sa définition. Pour cette
raison, LDS est un langage de conception assez complet, mais il manque certaines constructions
pour la modélisation de haut niveau, nécessaires dans les phases initiales de spécification d’un
systeme. Certaines des extensions proposées dans cette thése permettent donc la spécification
abstraite:

— du comportement des canaux, avec des attributs tels que le taux de perte, les délais
minimaux/maximaux, etc.

— des temps d’exécution,

— du comportement (temporisé) de 'environnement du systéme.

Les constructions proposées seront présentées plus en détail dans la suite du résumsé.

Sémantique et raisonnement sur le temps

La sémantique du temps dans LDS est présentée en termes formels dans la these. Nous dressons
ici un résumé des caractéristiques principales de cette sémantique:

— Les actions individuelles LDS (affectation, envoi de signal, etc.) sont atomiques et prennent
un temps nul pour s’exécuter. La granularité de 'atomicité des actions composées et des
transitions est ’action individuelle.

— L’évaluation des expressions n’est pas atomique. Par conséquent, la valeur de now peut
varier pendant I’évaluation d’une expression, ce qui peut influencer sur le résultat de
I’expression.

— En général, une quantité non-déterminée de temps peut s’écouler entre ’exécution de deux
actions ou de deux transitions

— Une conséquence directe du point antérieur est qu’un message correspondant a une tem-
porisation peut ne pas étre pris en compte pendant une certaine durée (non-déterminée)
apres son envoi.

Avec ces hypotheéses minimalistes, il est difficile de garantir une propriété sur le comporte-
ment d’un systeme dans le temps. D’autre part, beaucoup de comportements peu réalistes sont
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considérés comme acceptables par la sémantique. Ce probleme a déja été signalé par d’autres au-
teurs [Boz99, MGHS96] et il est examiné en détail dans nos travaux récents [BGK 00, BGM101].

Le probléme signalé ici pose de sérieuses difficultés aux outils de simulation et de vérification
basés sur LDS. Une solution souvent employée par les outils est de considérer une sémantique
du temps completement différente de celle de la norme, basée sur des suppositions réductrices,
telles que: chaque action prend un temps nul, le temps est controlé et s’écoule seulement quand
le systéme n’a rien & exécuter, etc. Cette solution tombe dans l'autre extréme, et peut cacher
des scénarios d’exécution réalistes du systeme.

En complément des extensions du LDS présentées auparavant, nous proposons aussi une
sémantique alternative du temps, qui résout les problémes mentionnés ci-dessus. L’idée de
cette sémantique est d’inclure des informations sur le progrés du temps, inspirées du modele
des automates temporisés, dans la spécification LDS, et de les utiliser ensuite pour controler le
progres du temps dans la simulation ou la vérification.

1.2.2 Spécification de propriétés en MSC et GOAL

Un aspect central de la technique de validation basée sur les modeles considérée dans cette these
est la spécification des contraintes et des propriétés sur le modele LDS. Nous avons choisi deux
langages couramment utilisés avec LDS pour la spécification de propriétés: MSC et GOAL. Ces
deux langages sont décrits en détail dans le mémoire; nous faisons ici une breve présentation
des deux langages, et donnons des conclusions concernant leur utilisation pour la spécification
de contraintes temporelles.

MSC

MSC est un langage normalisé par 'ITU (norme Z.120, [IT99a]), utilisé pour représenter des
traces d’exécution des systemes distribués en termes de messages échangés entre les entités du
systeme ou avec I'environnement. Les composantes principales d’une spécification MSC sont
les instances (représentant des entités ou des groupes d’entités d’un systéme) et les messages
(qui peuvent représenter diverses modalités de communication, dépendant du systéme considéré).
D’autres types d’événements peuvent étre spécifiés dans les traces MSC, tels que des événements
concernant les temporisations (set, reset, timeout), des actions ou des conditions (informelles).
Le langage a aussi des constructions pour structurer (composer) les spécifications. Les types
de composition possibles sont: l'alternative entre plusieurs MSC, la composition parallele (par
entrelacement d’événements) de plusieurs MSC, la répétition ou l’exécution optionnelle d’une
MSC.

La derniere version du langage (MSC-2000) propose plusieurs constructions pour exprimer
des conditions sur le temps. On peut essentiellement exprimer des contraintes relatives, qui
spécifient la durée passée entre deux évenements, et des contraintes absolues qui spécifient le
moment auquel un événement peut survenir. Les deux types de contraintes sont spécifiés au
moyen d’une limite inférieure et d’une limite supérieure, qui sont soit des valeurs constantes de
temps, soit des expressions plus complexes du type Time. Dans le deuxiéme cas, les expressions
peuvent porter sur des résultats de mesures de temps. On peut mesurer en effet, par des
constructions spécifiques de MSC-2000, soit le temps auquel un événement survient soit le délai
relatif entre deux évenements.

Dans notre travail, nous avons jugé suffisantes les constructions proposées dans MSC-2000
pour exprimer des contraintes temporelles. Il existe néanmoins plusieurs raisons pour lesquelles
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la notation MSC-2000 ne peut, en ’état actuel, étre utilisée pour la spécification et la vérification
des propriétés temporelles des systemes LDS:

— La sémantique de MSC-2000 n’est pas formellement définie dans la norme.

— Il n’y a pas de relation de conformité formellement définie entre des spécifications LDS et
des spécifications MSC. Cette relation a été juge en dehors de l'objet de la norme Z.120.

— Certaines des constructions de MSC-2000 (notamment les mesures de temps) sont trop
expressives et il n’y a pas de méthode de vérification qui puisse les prendre en compte.

Dans la these, nous nous sommes intéressés a ces problémes, et nous avons proposé des
solutions qui sont présentées plus loin.

GOAL

GOAL [ALH95] est un langage d’observation supporté par l'outil ObjectGEODE [TELO0Oa].
Pour plus de détail sur les langages d’observation le lecteur peut consulter les travaux de [Gro89].

Par définition, GOAL a un domaine d’applicabilité plus limité que les MSC, n’étant pas un
langage de haut niveau pour spécifier des propriétés abstraites. Le langage est utilisé pour ex-
primer et vérifier des propriétés comportementales d’un systeme LDS, et pour guider le processus
de simulation et de vérification.

GOAL est un langage orienté évenements, et basé sur des automates. La spécification
d’un observateur GOAL ressemble & une machine & états d’un agent LDS. Les transitions de
I’observateur sont tirées par des événements se produisant dans la spécification LDS associée,
qui peuvent étre des échanges de messages, la création ou 'arrét des agents, le tir de certaines
transitions, etc. Les états d’un observateur peuvent étre de trois types: succés, échec ou or-
dinaire, et correspondent a la satisfaction ou a la non-satisfaction de la propriété spécifiée par
I’observateur.

Dans la thése, nous avons mis en évidence deux problémes relatifs & 1'utilisation de GOAL
comme langage de représentation/validation de propriétés temporelles quantitatives:

— L’absence de constructions permettant ’expression des conditions sur le temps.

— L’absence d’une sémantique temporisée.

Les solutions proposées dans la thése pour résoudre ces problemes sont présentées plus loin.

1.2.3 Spécification et vérification avec des automates temporisés

Pour compenser les points faibles de LDS, MSC et GOAL, en termes de sémantique temporisée
et de méthodes d’analyse, nous nous intéressons a l’application des techniques d’automates
temporisés en conjonction avec ces langages.

Le modeéle des automates temporisés est un modele de machines a états étendu avec des
constructions pour la spécification des contraintes temporelles. Les éléments essentiels d’un
automate temporisé sont des états discrets, des transitions, et des horloges qui mesurent le temps.
Pour faciliter la spécification des contraintes complexes, un automate peut utiliser plusieurs
horloges qui avancent toutes a la méme vitesse, mais qui peuvent étre remises a zéro ou consultées
séparément.

Le comportement dépendant du temps est spécifié en imposant aux transitions des gardes
qui portent sur les valeurs d’horloges. Le modele limite les formes acceptées dans ces gardes,
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pour préserver la décidabilité du modele: seules les comparaisons d’horloges avec des constantes
(entieres) ou les comparaisons de différences de deux horloges avec des constantes sont valides.

La sémantique d’un automate temporisé est donnée par un graphe sémantique en temps
continu: I’état dynamique d’un automate comprend un état discret (partie de la spécification de
lautomate), et une valeur réelle pour chaque horloge du systéme. Dynamiquement, un automate
peut exécuter deux types de transitions: des transitions discrétes (voir la spécification d’un
automate), et des transitions temporelles qui signifient le progres du temps. Les transitions
temporelles ne servent qu’a avancer le temps, i.e. & augmenter (uniformément) la valeur de
toutes les horloges. En revanche le temps ne progresse pas durant les transitions discrétes, i.e.
la valeur de chaque horloge reste la méme ou est remise & zéro (dans le cas d’un reset spécifié
sur la transition).

Une exécution d’un automate temporisé est donc une succession (finie ou infinie) de transi-
tions temporelles et de transitions discretes en alternance. Pour pouvoir modéliser des actions
(transitions) qui arrivent & un moment précis, le progrés du temps durant exécution est par
définition relié & I’exécution de I'automate, au moyen des conditions de progrés du temps. Ces
conditions dépendent de la valeur d’un attribut de chaque transition de I'automate, appelé wur-
gence . L’urgence de chaque transition peut avoir les valeurs suivantes: eager , delayable, lazy.
Briévement, la signification des valeurs d’urgence est la suivante:

— Des qu’une transition eager est tirable, le temps ne peut pas progresser. La transition
eager ou toute autre transition discrete tirable doit alors étre tirée.

— Quand une transition delayable est tirable, elle empéche le temps de progresser au-dela de
la borne supérieure de sa garde. Les conditions de progres du temps sont composées, de
faon que la condition la plus restrictive s’applique.

— Les transitions lazy n’imposent aucune condition sur le progres du temps.

Méthodes d’analyse et probléemes décidables

Plusieurs problémes importants pour la validation du comportement sont décidables sur le
modele d’automates temporisés, et des méthodes d’analyse efficaces sont disponibles. On peut
par exemple décider de 'atteignabilité d’un état de 'automate, ce qui implique la décidabilité
de la vérification des diverses propriétés d’invariance ou de sureté. Les problémes de satisfac-
tion des propriétés spécifiées dans diverses extensions de logiques temporelles (ou dans d’autres
formalismes tels que les automates temporisés avec des conditions d’acceptation de Biichi) sont
aussi décidables, et il existe des méthodes de vérification concretes pour ces problémes.

L’analyse des automates temporisés utilise des abstractions, notamment des représentations
symboliques du graphe sémantique d’un automate, pour pallier au fait que le graphe sémantique
est habituellement infini et non-dénombrable. Dans le mémoire de thése, nous présentons deux
abstractions, le graphe de régions et le graphe de simulation qui seront ensuite appliquées &
I’analyse du langage LDS étendu.

Le modéle des automates temporisés que nous avons choisi pour notre travail impose des
restrictions de modélisation, cependant il donne une limite supérieure de complexité des modeles
temporisés analysables, dans le sens ou plusieurs extensions de ce modele ont été étudiées avec des
résultats essentiellement négatifs concernant la décidabilité et les méthodes d’analyse applicables
(voir dans le mémoire de these). Pour cette raison, nous considérons que les restrictions du
modele, qui vont se refléter plus tard au niveau du langage LDS étendu, sont inévitables pour
préserver I'analysabilité des spécifications LDS.



1.3. EXTENSIONS DES LANGAGES ET METHODES DE VALIDATION 19

Idées sur les extensions temporelles et la sémantique de LDS

Comparé avec LDS, les automates temporisés apportent plusieurs idées qui facilitent la
spécification du comportement temporisé et le raisonnement temporisé basé sur le modele:

— Les horloges et les gardes donnent un moyen flexible d’exprimer des contraintes temporelles
complexes. Elles peuvent étre introduites comme un complément aux constructions exis-
tantes de LDS (now, temporisations).

— Les conditions de progrées du temps limitent les comportements possibles d’un modele,
et permettent de spécifier quels sont les comportements raisonnables du point de vue
temporel. Les urgences peuvent étre utilisées pour spécifier des actions qui sont exécutées
a un moment précis ou dans un intervalle précis de temps, ce qui n’est pas possible en
LDS standard.

— Les conditions sur le temps (i.e. sur les valeurs d’horloges) ont des formes restreintes, ce
qui permet analyse et la vérification automatique des propriétés. En revanche, en LDS
standard la complexité des conditions sur now n’est pas contrainte, et il n’existe pas de
méthodes d’analyse applicables dans le cas général.

1.3 Extensions des langages et méthodes de validation

1.3.1 Extensions de LDS

Notre travail sur ’extension de LDS comporte principalement deux parties: les extensions des
constructions du langage pour décrire des informations temporelles, et extension /modification
de la sémantique formelle.

Extensions pour la représentation des informations temporelles

Les extensions que nous proposons pour LDS sont en partie des constructions inspirées directe-
ment du modele des automates temporisés, et en partie des extensions de plus haut niveau
pour la spécification des informations tels que le temps d’exécution des actions, le temps de
transmission des signaux, etc.

Horloges, gardes, urgences. Nous proposons une définition des horloges en tant que
mécanisme de base pour mesurer et contraindre la progression du temps. Techniquement,
les horloges sont introduites en LDS par l'intermédiaire d’un type de données (Clock). Les
opérations habituelles (création, reset, comparaison avec un entier, différence de deux Clocks )
sont définies sur les valeurs de ce type.

Les comparaisons de Clocks ou de différences de deux Clocks avec un entier peuvent étre
utilisées dans la spécification de la garde d’un transition LDS (la notion de garde existe déja
dans LDS, avec le mot clé provided). De plus, cette extension de LDS permet la spécification
d’une urgence (eager, delayable ou lazy) pour chaque transition.

Durées d’exécution des actions. Cette extension permet la spécification de durées
d’exécution des actions au moyen d’une borne inférieure et d’une borne supérieure. Comime
dans le modele des automates temporisés, les actions LDS s’exécutent dans un temps nul, mais
les actions qui prennent du temps sont simulées par un état implicite symbolisant I'action en
cours d’exécution, et par une transition delayable symbolisant la fin de 'exécution.
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La spécification des canaux. Les canaux LDS standards ne perdent jamais de signaux,
et les délais appliqués aux signaux transférés sont soit nuls, soit non-spécifiés. Pour valider le
comportement d’un spécification LDS standard avec des hypothéses précises sur le comportement
des canaux, l'utilisateur doit modifier le modele LDS et fournir une description impérative des
canaux comme agents, avec tous les inconvénients inhérents, qui sont présentés dans la these.
De plus, a cause de la sémantique non-contrainte du temps dans LDS, le comportement précis
des canaux ne peut étre garanti.

L’extension proposée dans la thése permet de spécifier un taux de perte et des bornes mini-
males et maximales pour les délais appliqués aux signaux transmis sur un canal. On définit deux
types de délais pour les canaux: cumulatifs et non-cumulatifs. Dans le cas de délais cumulatifs,
les temps d’arrivée des signaux qui préceédent un signal sont rajoutés au temps d’arrivée du
signal concerné. Dans le cas de délais non-cumulatifs, le temps d’arrivée d’un signal est compris
strictement entre les bornes spécifiées sur le canal, et il est contraint par les signaux précédents
seulement par le fait que les canaux sont FIFO. Les canaux non-cumulatifs correspondent aux
liaisons qui font un traitement en parallele (ou en chane) des signaux, tandis que les canaux
cumulatifs correspondent aux liaisons ou les signaux sont transmis un par un.

Le mémoire de these illustre ces concepts sur un exemple réel, le protocole SpaceWire
[sSWGO00] développé par I’Agence Spatiale Européenne, spécifié en LDS avec les extensions
décrites ci-dessus.

Sémantique des extensions et du temps

La sémantique des extensions et une nouvelle sémantique du temps sont décrites dans la these,
en utilisant le formalisme ASM. Les définitions introduites complétent la sémantique standard de
LDS [IT99c]. Nous ne reprenons pas ici ces définition, mais nous soulignons les points difficiles
et les choix qui ont été faits.

La sémantique des canaux et des temporisations dans LDS (standard) utilise le concept de
schedule, qui sert pour retarder Parrivée d’un signal (e.g. un signal correspondant & une tempori-
sation) & son agent de destination. Nous avons étudié deux faons de traiter les temporisations et
les canaux a délai (borné) dans LDS étendu: soit en utilisant les schedules , soit en utilisant des
horloges implicites. La deuxieme alternative s’avere préférable, car elle ne s’appuie pas sur une
notion de temps absolu (comme c’est le cas dans les schedules) mais sur des mesures relatives,
ce qui permet 'application des techniques d’analyse d’automates temporisés.

Un point important de la sémantique du temps que nous proposons est la controlabilité.
En effet, le temps dans la sémantique standard de LDS est considéré comme un parametre
extérieur au systeme. Cela se reflete dans le fait que now est une fonction dite monitored dans
la sémantique ASM standard. Pour pouvoir introduire des conditions de progrées du temps
comme dans les automates temporisés, le temps doit étre un parametre contrélé par le systeme
en fonction des transitions tirables et de leur urgence.

Modifier de cette faon le statut du temps implique des nombreuses transformations dans
la sémantique associée. Nous avons introduit un nouvel agent responsable de ’avancement du
temps et des valeurs d’horloges, et nous avons décrit les conditions de progres du temps en
ASM, en fonction de I’état des tous les agents LDS et de I'état des canaux a délai. Par le
fait qu’une condition de progrés du temps est une condition globale qui porte sur 1’état des
toutes les composantes d’un systéme, nous avons été obligés d’introduire des synchronisations
supplémentaires entre les agents ASM définis par la sémantique, qui sinon sont entiérement
asynchrones.



1.3. EXTENSIONS DES LANGAGES ET METHODES DE VALIDATION 21

Correspondance avec les automates temporisés

Les outils de simulation et de vérification existants basés sur LDS n’utilisent pas la sémantique
ASM, mais construisent directement un graphe d’états global du systéme en utilisant des sim-
plifications pour des raisons d’efficacité. Cette notion de graphe d’états est en fait assez proche
du modeéle sémantique des automates temporisés, et nous pouvons 1’étendre pour y inclure les
extensions proposés pour LDS (notamment les horloges). Le résultat est un graphe d’états en
temps continu qui ressemble beaucoup a celui des automates temporisés, et sur lequel nous
pouvons appliquer des techniques d’analyse spécifiques. Les composantes — états et types de
transitions — de ce graphe sont décrites dans le Chapitre 6 du mémoire.

1.3.2 Description et vérification des propriétés temporisées avec MSC et
GOAL

Nous nous sommes intéressés aux probléemes décrits dans la section 1.2.2, qui empéchent
I'utilisation de MSC et de GOAL en tant que langages de propriétés temporisées pour les
systemes LDS. Les travaux que nous avons réalisés concernent trois niveaux: les constructions
introduites dans les langages, leur sémantique, et les méthodes de vérification automatique.

Automates de Propriétés Temporisés

Pour donner une base sémantique solide aux deux langages, nous avons défini un modeéle abstrait
de description de propriétés, calqué sur les automates temporisés, que nous appelons Automates
de Propriétés Temporisés (TPA).

Un TPA est un automate temporisé équipé d’une condition d’acceptation de type Biichi. La
différence entre les TPA et les variantes d’automates temporisés de Biichi (TBA) proposés dans
[Alu91, Tri98] est que le modele des TPA est orienté événement et non pas orienté état. Cela
signifie qu'une propriété TPA porte sur les événements qui on lieu dans le modele associé, et
non pas sur les états du modele. Cette différence est importante, dans la mesure ou MSC et
GOAL sont tous les deux des langages orientés évenement.

Dans le mémoire nous décrivons formellement le modele des TPA, et la relation de satisfaction
entre un automate temporisé et un TPA. Nous étudions aussi le probléme de la vérification de la
satisfaction, et nous proposons un algorithme basé sur I'utilisation du graphe de simulation des
automates temporisés. Cette méthode d’analyse est utilisée ensuite pour vérifier des propriétés
MSC et GOAL sur des systemes LDS étendus.

MSC

Au niveau des MSC, les deux problémes principaux sont ’absence d’une sémantique qui prenne
en compte les aspects temporels du langage, et I’absence d’une relation de satisfaction entre des
spécifications LDS et des propriétés MSC.

Nous proposons une sémantique temporisée basée sur les automates temporisés, en partant
de la sémantique non-temporisée basée sur des réseaux de Petri proposée dans [GPRI3] et
en ’étendant avec des horloges et des contraintes temporelles. Nous arrivons ainsi & traiter
la plupart des contraintes exprimables en MSC-2000. Les parties du langage pour lesquelles
nous ne pouvons pas donner une sémantique concernent notamment les mesures de temps, et
I'utilisation des variables ou parametres de type Time.
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La composition séquentielle des MSC pose aussi des problemes de décidabilité, déja signalés
par d’autres auteurs [MPO00]. Pour pouvoir utiliser les MSC dans la vérification de propriétés,
nous avons restreint la définition de la composition séquentielle, de faon a ce que le langage de
traces généré par un MSC composite soit toujours régulier.

Nous proposons aussi des définitions possibles pour la relation de satisfaction entre des
spécifications LDS et des propriétés MSC. En interprétant 'automate temporisé qui donne la
sémantique d’un MSC comme un TPA, nous avons trouvé des correspondances entre la satis-
faction des MSC et la satisfaction des TPA. Par conséquent, nous pouvons donner une méthode
concrete de vérification pour les propriétés MSC, en utilisant les mémes techniques que dans le
cas des TPA.

Des travaux effectués par d’autres auteurs visent aussi a utiliser les MSC en tant que langage
des propriétés, pour la vérification formelle. On notera principalement les travaux sur les Live
Sequence Charts (LSC, [DH98]), mais aussi les approches proposés par des outils industriels
tels que ObjectGEODE [TEL00Oa]. Cependant, aucun des travaux sur le sujet ne traite a notre
connaissance de la partie concernant le temps.

GOAL

Dans le cas de GOAL, la notion de satisfaction et la sémantique du langage sont déja définies
dans l'outil ObjectGEODE. Le langage manque cependant de constructions pour exprimer des
contraintes sur le temps, et sa sémantique doit étre adaptée a la nouvelle sémantique temporisée
de LDS définie dans cette these.

Comme constructions temporelles, nous avons proposé des concepts directement inspirés des
TPA: des horloges et de gardes. La sémantique de GOAL est relativement facile & définir en
termes de TPAs, du fait qu’il y a une relation directe entre les concepts des deux modeéles.
Méme si les extensions de GOAL sont trés légeres, les études de cas que nous avons effectuées
montrent que le langage résultant est tres flexible et permet la spécification de propriétés linéaires
complexes.

1.3.3 Simulation et vérification temporelles de LDS

Un des objectifs des extensions décrites dans les sections précédentes est de pouvoir valider le
comportement temporel des systéemes LDS, par simulation ou par vérification de propriétés.
Dans cette section nous décrivons un outil que nous avons développé a cette fin, qui se présente
comme une extension de l'outil de simulation et de vérification de ObjectGEODE [TELO0Oa],
dont il réutilise 'architecture globale et les fonctionnalités principales. L’avantage de réutiliser
un environnement industriel est que 'implémentation des constructions des langages qui ne sont
pas affectées par les extensions temporelles, est obtenue sans effort supplémentaire.

Fonctionnalités et architecture de 1’outil
L’outil offre des fonctionnalités pour:

— La simulation interactive ou aléatoire. Les fonctionnalités offertes dans ce mode de fonc-
tionnement ressemblent & celles des débuggeurs pour les langages de programmation:
exécution pas a pas, conditions d’arrét, inspection des données. Il existe aussi d’autres
fonctions spécifiques: exécution inversée, sauvegarde des scénarios d’exécution, stimulation
automatique des modeles ouverts, production des traces sous forme de MSC, analyse de
couverture du modele, etc.
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— La vérification par exploration exhaustive de I'espace d’états du modele. L’outil peut
vérifier: I'absence de blocages, I'invariance de certaines conditions logiques, ’absence de
certaines erreurs dynamiques (e.g. signaux non-attendus), et la satisfaction de propriétés
écrites en MSC ou GOAL.

Les deux modes d’utilisation sont basés sur la construction de ’espace d’états du modele,
mais le processus de construction et la taille de I'espace sont différents dans chaque cas. La
vérification d’un modele est toujours effectuée a la volée, et par conséquent ’espace d’états n’est
entierement construit que dans certains cas.

L’outil est formé de deux modules principaux: un compilateur des modeles, et une librairie
englobant les fonctionnalités génériques des simulateurs. Le compilateur prend en entrée un
modele LDS et une ou plusieurs propriétés MSC ou GOAL; il les transforme dans un format
exécutable, ou les transitions LDS, par exemple, deviennent des routines utilisant des primitives
qui implémentent les types d’actions définis dans LDS. Ces primitives font partie de la librairie,
qui englobe aussi des structures de données standard, et des fonctionnalités génériques (parcours
de l'espace d’états, configuration du modele, etc.).

Au final, le compilateur géneére un simulateur (sous forme d’un exécutable séparé) pour
chaque modele LDS. Le simulateur construit I'espace d’états du modele et implémente toutes
les fonctionnalités de simulation et de vérification décrites auparavant.

La construction du graphe de simulation temporisé

L’espace d’états construit par l'outil est une abstraction de ’espace d’états en temps continu
défini par la sémantique de LDS. Les états manipulés par le simulateur sont des états symboliques
(g, S), ou q est un état discret global du modele (n’incluant aucune information sur le temps
et les horloges). S est une zone de valeurs d’horloges atteignables dans ’état ¢, qui a la forme
d’un polyedre (éventuellement non-convexe et non-borné) dans l'espace des valeurs d’horloges
(R™, ot n est le nombre d’horloges actives dans ¢).

Les transitions de ce graphe de simulation correspondent uniquement aux transitions
discretes définies par la sémantique de LDS étendu, qui sont soit des transitions LDS explicites,
soit des transitions implicites (expiration de temporisations, arrivée de signaux retardés sur les
canaux). Pour plus de détail, le lecteur peut consulter la sémantique détaillée dans le mémoire.
Le calcul des successeurs d’un état (g, S) aprés I'exécution d’une transition e se fait en deux
étapes. On calcule d’abord les états directement atteignables en exécutant la transition e sur
chaque état explicite contenu dans I’état symbolique (¢, .S). On obtient ainsi un autre état sym-
bolique (¢', S’). A partir de ce dernier, on calcule combien de temps on peut rester dans chaque
état explicite contenu dans (¢’, S’), et on obtient ainsi 'état symbolique de destination (¢’,S").

Les deux étapes décrites ci-dessus sont appelées respectivement le calcul des successeurs
discrets et le calcul des successeurs temporels. Le calcul des successeurs est plus compliqué dans
le cas ou des propriétés GOAL ou MSC sont associées au modele LDS, car il faut tenir compte
de I’état des automates représentant ces propriétés. En particulier, il peut arriver qu’un état ait
plusieurs successeurs différents par la méme transition e, du fait que des conditions différentes
contenues dans la propriété soient satisfaites par des parties différentes d’un état symbolique.

L’algorithme de calcul des successeurs est présenté en détail dans le mémoire. Il s’appuie
sur une représentation de données spécifique (plus particulierement sur la représentation des
polyedres S par des matrices de différences bornées — DBM [Dil89, ACD93]) et sur des formules
de calcul des successeurs temporels qui réalisent des opérations élémentaires sur des polyedres.
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Une partie essentielle du travail effectué est la preuve de la validité de ces formules, présentée
dans I’Annexe B.

1.4 Application et conclusion

Nous avons validé les concepts et les outils développés dans le cadre de ce travail sur un en-
semble d’études de cas, incluant des cas d’école: un systéme de barriere de voie ferrée (utilisé
précédemment dans [Alu91] et [Tri98]), un protocole de controle de flot (BRP, étudié aussi dans
[GvdP96, HS96, Mat96, DKRT97]). Ces études de cas ont donné des bons résultats quant a
I’expressivité des extensions et a la puissance des méthodes d’analyse utilisées.

Nous avons considéré aussi des études de cas plus complexes. Dans la thése, nous présentons
I'exemple d’un protocole de liaison de données (SpaceWire, [sWGO00]) ; lapproche est aussi
expérimentée dans le cadre d’autres projets R&D en cours, sur le protocole de multicast RMTP-
2 [PMR 00, WPT99] et sur un protocole de synchronisation de flots multimédias.Ces exemples
ont montré tout le bénéfice de ’approche retenue, mais aussi certaines limites des extensions
que nous proposons, telles que 'impossibilité d’utiliser des mesures de temps dans des systeémes
adaptatifs (e.g. contraintes de temps variables en fonction de ’évolution du systeme).

L’exemple présenté dans le Chapitre 9 du mémoire montre en détail la modélisation des
contraintes temporelles contenues dans la norme SpaceWire avec les extensions LDS que nous
avons proposées. La validation du modele du point de vue temporel est aussi discutée, et nous
montrons comment la simulation peut étre exploitée pour faire des mesures de temps globales
qui seront ensuite utilisées pour écrire et vérifier des propriétés en MSC et GOAL.

En conclusion, nous avons développé un ensemble d’extensions, des méthodes d’analyse et
un outil support, permettant la description et la validation des systeémes temps réel avec des
contraintes temporelles complexes, exprimables dans le langage LDS et les langages connexes
MSC et GOAL. Les études de cas réalisées montrent que les extensions proposées sont flexibles
et intuitives, et que I'expression des propriétés pour la vérification est aisée, en comparaison
avec des langages mathématiques tels que les logiques temporelles. Les méthodes d’analyse
développées permettent la dérivation des informations temporelles pertinentes telles que les
délais minimaux/maximaux entre événements.

Dans une perspective future, ce travail peut étre continué par la recherche d’un ensemble
de concepts de plus haut niveau a intégrer dans les langages de modélisation, éventuellement
basés sur les concepts sémantiques proposés ici, qui peuvent apparatre de trop bas niveau et
compliquer la conception des modeles. D’autres axes de recherche concernent 'amélioration des
techniques de vérification (e.g. par application des méthodes de réduction de l’espace d’états),
Papplication des nouvelles méthodes de validation (e.g. génération automatique de tests) ou
Pintégration dans de nouveaux langages tels que la notation UML.



Chapter 2

Introduction

2.1 Specification and validation of timed systems

This thesis focuses on the techniques for describing and validating the behavior of a class of
real-time systems, called timed systems. According to a commonly accepted definition [Loc98,
HP88, Per90], real-time systems are systems in which correct functioning depends on meeting
time constraints. By timed systems we designate the class of real-time systems whose functioning
is controlled or conditioned by time. In this way, we differentiate timed systems from other real-
time systems in which time appears only as a performance aspect (e.g. through task deadlines,
execution times, event arrival times, etc.).

A validation method for real-time systems must take into account both functional require-
ments and time requirements. For most real-time systems, these aspects may be handled inde-
pendently, for example using different models of the system (some types of models are briefly
presented later in this section). However, in the case of timed systems the behavioral and timing
aspects may not be separated, and validation methods must work on hybrid models capturing
both facets.

There are several classes of models (and associated analysis techniques) used for the descrip-
tion and validation of real-time systems in general, each concentrating on a different aspect of
the system under modeling. Scheduling models (see the monograph [KRPO93]) are traditionally
associated with the domain of real-time system engineering. They concentrate on the problem
of resource contention in real-time systems, disregarding behavioral aspects. Computation time,
regarded as a resource, is taken into account by these models; consequently, scheduling models
can sometimes constitute the basis for temporal correctness proofs. However, such models are
usually ineffective for complex systems whose behavior depends on time (¢imed systems).

Another category of models used in real-time system engineering are performance models
[Kan92], which give a probabilistic description of a system. Such models include information
about the probabilities of discrete events, as well as time-related information. Performance
models may be used for validating (statistical) performance requirements; however, as in the
case of scheduling models, they do not provide a functional view of a system, and therefore
cannot be used for validating combined functional and timing requirements of timed systems.

In this thesis, we concentrate on a class of models that we call behavioral models. They de-
scribe a system from the functional (computational) point of view, and may additionally contain
information about timing. More precisely, we are interested in the application of formal methods
for describing timed systems, and for validating combined functional and timing properties of
systems.

25
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Figure 2.1: Behavioral specification and validation

The classical approach for system specification and validation using behavioral models is
represented in Fig. 2.1 and briefly outlined in the following. The starting point of this process are
the system requirements, which may be functional requirements (stating the functions the system
must fulfill) or non-functional requirements (stating auxiliary requirements such as throughput,
quality of service, etc.). A system model is built from these specifications through a design
process which usually requires human intervention, and which is normally organized according
to a methodology.

The scheme described above may apply to other types of models, not only to behavioral
models. The specificity of the latter is that they make a complete description of the system
functionality, and thus may be used for several purposes: model-based validation, code genera-
tion, testing.

For the model-based validation, another process takes place in parallel with the system
design: the formalization of the system properties. The inputs of this process are again the
requirements; the outputs are the properties, which are more abstract and concise than the
system model, and usually expressed in a specific language.

The validation phase that follows may involve several activities; in Fig. 2.1 we have repre-
sented two model-based validation methods, on which we focus throughout this thesis: simula-
tion and property verification. In this work we have left aside other types of validation activities,
such as testing. The simulation and verification approaches considered here have in common
the fact that both are based on the construction of an abstract semantic model of the system
(and of the properties). By simulation we understand a user-guided exploration of this semantic
model, in a manner similar to program debugging. Verification is the process through which
is is formally proved that the model satisfies the properties extracted from the requirements.
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Among the verification approaches that may be found in the literature, in this work we consider
model checking [QS82, CES86].

Regarding the application of the above scheme in the specification and validation of timed
systems, we have noticed a manifest discrepancy between the current industrial practice and the
state of the art in research. On the side of practice, there are the real-time system modeling
languages used in the industry — SDL [IT99b], HRT-HOOD [BW95], ROOM [SGW94], real-time
extensions of UML [Dou99, Dou98, SR98], etc. — in which modeling is the primary concern.
These formalisms have constantly evolved and use modern design concepts; however, the analysis
(validation) techniques used in connection with them in industrial tools have not evolved at the
same pace, and do not encompass the latest advancements in research.

On the research side, more abstract models (such as timed automata [ACD93, AD94], timed
extensions of Petri Nets [MF76, Sif77, Ram74], timed extensions of process algebras [NS91], or
timed extensions of Hoare logic [Sha95, CHR92] ) have been developed, in parallel with advanced
analysis methods based on techniques like model checking, simulation, rewriting, etc. Although
they provide powerful features, models and tools developed in the academia are less appealing
to the industrial user because of their complexity and their limited support for modern design
features.

Starting from these facts, the objective of this thesis is to integrate a set of modeling tech-
niques and analysis methods recently developed in the field of timed automata, within the frame-
work of SDL.

The reasons for choosing these two frameworks are manifold. On one side, SDL is widespread
in the real-time systems industry; it is also a standard language, with a sound semantic basis.
Finally, existing validation tools for SDL are closer to the state of the art in validation techniques,
compared to the tools that work with more informal notations such as UML and ROOM. Timed
automata [ACD93, AD94], on the other side, have been the subject of consistent research in
the recent years. As a result, many problems concerning timed automata have been studied
and given a solution: there are abstractions and algorithms for solving several model checking
problems (a recent synthesis can be found in [Tri98]), many extensions of the timed automata
model have been studied and the decidability limits are known [HKPV98].

The issues mentioned previously are treated more in-depth in the first part of this thesis,
which discusses the state of the art in the specification and validation of timed systems.

2.2 The approach and contribution of the thesis

The goal of this work is to improve the support offered by the SDL language for the abstract
modeling of timed systems, as well as for validation of timed system specifications. For that,
we have followed two main directions: one concerns the improvement of the SDL language
definition, the other concerns the application of timing analysis techniques developed within the
framework of timed automata to SDL. The results of this work are outlined in the following.

SDL language extensions. The SDL language definition [IT99b] presents the language as
a formalism for both abstract specification and complete description of system structure and
behavior. A closer look at the definition of SDL, however, shows that the programming side has
been given priority, to the detriment of abstract, non-programatic modeling. This makes SDL
interesting as a design language, but provides insufficient support for requirements capturing
and abstract modeling.
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We approach this problem in the first part of Chapter 6, and propose a series of language
extensions which are necessary to capture descriptive information (notably timing information)
in the initial phases of system modeling. The language primitives introduced in this part allow
the modeling of time-dependent behavior, as well as the introduction of annotations describing
the (timing) assumptions under which the system is functioning, directly in the SDL model.
This information may subsequently be used by timing analysis tools, such as those built in the
context of this work.

The results obtained in this part of the thesis are presented, under a slightly different form,
in [BGK 00, BGM™01]. Together with a group of partners from the industry and the academia,
we are currently working on a submission to the ITU-T standardization body, which proposes
a set of higher-level modeling constructs based on the primitives presented in Chapter 6 to be
included in the SDL standard.

Semantics of time in SDL. The standard definition of SDL [IT99b] includes a formal
semantics, which maps the set of SDL system specifications onto a set of mathematical objects,
and provides a formal interpretation for the notion of system execution. We were interested
in the impact of the extensions on the standard formal semantics of SDL, and notably in the
aspects which concern the handling of time, in order to complete the definition of the extensions
mentioned in the previous paragraph, but also in order to make the connection with the timing
analysis techniques that we apply subsequently. The result, presented in the second part of
Chapter 6, is a set of mathematical definitions that complement the standard formal semantics
of SDL [IT99c].

Timed property specification. The next step towards applying timing property validation
techniques on SDL models is the definition of a language for expressing combined functional
and timing properties. In this work we have considered two languages that have previously been
used for expressing functional properties in connection with SDL models: GOAL and MSC.

GOAL [ALH95] is an observer language used by the ObjectGEODE simulation and veri-
fication tool [TELOOa]. A synthetic work on the use of observers for expressing and verifying
functional properties of systems may be found in [Gro89], where a precursor of the GOAL lan-
guage is also defined. In Chapter 7 we discuss a set of simple extensions which allow GOAL
to express quantitative temporal properties of SDL models. The results of this work were also
presented in [OKO1].

In the same chapter, we discuss the possibility of using MSC-2000 for expressing quantitative
temporal properties of SDL models. MSC-2000 already contains a number of constructs for
capturing timing information, but lacks a formal semantic definition including the timing aspects,
essential for using the language in verification. Moreover, many model checking problems are
known to be undecidable even on the untimed restriction of the language.

The solution we propose in Chapter 7 for the problems enumerated above includes a re-
striction of the MSC-2000 language, which diminishes the expressive power of the language
but renders it decidable. For this restriction of the language, we sketch a semantics based on
timed automata, which covers the timing aspects recently added to MSC-2000. We also describe
some possible alternative definitions of the satisfaction relationship between SDL models and
MSC-2000 specifications, which can be used in verification.

Both GOAL and MSC-2000 are event-based languages, in the sense that they describe pro-
perties in terms of events happening in the associated SDL model. Since timed automata-
oriented property specification languages (such as timed extensions of temporal logics, or timed
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Biichi automata) are state-oriented, we found it necessary to define an event-oriented property
formalism at the level of timed automata, in order to provide a sound semantic basis for MSC-
2000 and GOAL as property languages. This formalism is defined in Chapter 7 together with
two types of satisfaction relations. The model checking problem for these satisfaction relations
is studied thereafter.

Simulation and verification — methods and tools. The final part of this work is concerned
with the simulation and verification methods applicable to the extended variant of SDL and to
MSC and GOAL properties. This part of the work is materialized in a simulation and verification
tool, which is derived from a commercial SDL tool (ObjectGEODE, [TELO00a]).

From the theoretical point of view, the important part in this tool is the symbolic state
space exploration algorithm. The algorithm uses an abstraction similar to the simulation graph
of timed automata defined in [Tri98], and is adapted for exploring simultaneously the SDL
model and the associated GOAL and MSC properties. An important part of the state space
exploration algorithm consists in the steps for computing:

— the discrete successors of a state, in the presence of clock operations such as reset, assign-
ment, creation and deletion.

— the temporal successors of a state, in the presence of urgency.

Although a similar algorithm has been described previously in [Boz99] in the case of a formalism
close to SDL (IF, see also [BFGT99]), this is to our knowledge the first time when a precise
characterization of the successors computation formulas is done for a formalism based on timed
automata with urgencies, and is accompanied by a correctness proof.

2.3 Organization of the document

This document is structured in three parts.

The first part presents the state of the art in the specification and validation of timed systems.
It includes three chapters which present respectively: the language for system modeling used
in this work — SDL (Chapter 3), the requirements specification languages MSC and GOAL
(Chapter 4), and the timed automata model which provides the theoretical foundations for the
timing analysis methods considered in this work (Chapter 5). The chapters are relatively self-
contained, and present their respective subject both through its definition and from the point
of view of the usage that can be made of it. In the end of each chapter, we make a synthesis of
the similar languages/models that can be found in the literature, and we attempt to justify the
choice made in this work.

The second part presents the language extensions, the analysis methods and the tools that
have been developed in the context of this work. Chapter 6 discusses the extensions proposed
for SDL, and their impact on the semantic definition of the language. Chapter 7 begins with
the definition of an abstract timed property specification formalism, defined at the level of timed
automata, called timed property automata (TPA). The TPA model forms the semantic basis
for the definition of GOAL and MSC as timed property description languages, which is done
in the rest of the chapter. Chapter 8 closes this part with a description of the simulation and
verification algorithms and tools used in connection with the extended SDL, MSC and GOAL
languages. Knowledge of the subjects presented in the first part is necessary for understanding
the three chapters of this second part.
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The final part of this document presents a case study (Chapter 9) on which we have validated
the concepts proposed in this work. Chapter 10 draws the conclusions of the work carried out
in this thesis, and presents further work directions.



Part 1

Languages and Models for
Real-Time Systems
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Chapter 3

SDL

Specification and Description Language (SDL) is a formal modeling language intended for the
specification and description of telecommunication systems. SDL is issued and maintained by
the International Telecommunication Union — Telecommunication Standardization Sector (ITU-
T), as the Recommendation Z.100 [IT99b].

The efforts for defining a specification and description language for telecommunication sys-
tems in ITU begun in the early 1970’s, as the field of telecommunication systems engineering
was experiencing a paradigm shift from the age of simple electromechanical devices to the age of
computer-driven telecommunication devices. The language was designed in order to cope with
the multiplying number of services supported by these systems, and the increasing complexity
of signaling protocols supporting these services.

The first official version of the language was issued by the ITU-T (CCITT! at the time) as
Recommendation Z.100 in 1976. It contained several pages of standardized graphical symbols
for representing event-action models, with only an implied background of Finite State Machines.
The language was further refined until its definition reached a stable form in the 1988 version
of the Recommendation 7.100. This version included many of the features still present in the
current version of the language, among which: hierarchical architecture modeling concepts, asyn-
chronous communication, a data type system, and extended finite state machines for describing
behavior. The language definition also included a formal semantics written in META-IV [ISO96].

The language is maintained on a four-year basis by the I'TU-T. Major revisions were issued in
1992 and 2000. The 1992 version added type-based modeling and object-oriented constructs to
SDL. The 2000 version introduced several implementation-oriented constructs, with the aim of
improving the coverage of all system development phases, from analysis down to implementation.
The 2000 version also added new modeling constructs inspired from modern object-oriented
modeling languages like UML [OMG99], made some steps towards simplifying the language by
removing unused or redundant concepts, and completely redefined the formal semantics of the
language using a new underlying formalism (ASM [Gur88, Gur95, Gur97)).

Several bibliographic sources provide a detailed description of SDL. The authoritative source
concerning the language itself is the ITU-T Recommendation Z.100 [IT99b]. The 1988 and 1996
versions of the language are described in [BHS91] and respectively [EHS97], with examples and
an emphasis on the specification of protocol stacks. [SSR89] describes in more detail SDL-88,
and includes some general modeling guidelines. This book has been revised for SDL-92 and
the sections on system engineering have been improved, resulting in a new book [OFMP*94].

!Comité Consultatif International Téléphonique et Télégraphique
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[Mam00] is the most recent book on SDL up to date, containing references to SDL-962.

The present chapter describes the main features of the SDL language, as defined in the latest
revision of the Recommendation Z.100, [IT99b], on which most of our subsequent work is based.
However, as tools implementing SDL-2000 are not available yet, the tools we developed in the
context of this work are based on SDL-96. For this reason, throughout this chapter we point
out the differences between the two language versions.

In §3.1 we make some general remarks about the applicability domain and the modeling
paradigm of SDL. §3.2 introduces the modeling concepts and constructs of SDL. §3.3 discusses
the semantics of SDL, with an emphasis on the time and concurrency aspects necessary for
understanding the rest of the thesis. In §3.4 we take a look at the existing types of tools for
analyzing and exploiting SDL models. Finally, in §3.5 we outline some problematic language
issues, which constitute the starting point for a part of the work presented in this thesis.

3.1 Scope and paradigm

The scope of SDL, as defined by the Z.100 Recommendation, is the specification and description
of telecommunication systems. The meaning of specification and description in [IT99b] is:

— the specification of a system is an abstract description of its required behavior.

— the description of a system is the description of its actual behavior, that is an executable
model.

In practice, the use of SDL covers several phases from the system development cycle. Also, the
modeling concepts provided by SDL can be used for modeling other types of systems besides
telecommunication systems. We paraphrase below a generic characterization of the applicability
domain of SDL given in [OFMP"94]. SDL is suited for the description of discrete reactive
systems, which are systems characterized by an intensive and discrete communication with their
environment. Both characteristics mentioned above are important:

— Reactiveness characterizes systems in which an execution is not pre-determined by some
finite amount of initial data coming from the environment. Instead, the system interacts
with an evolving environment, and performs tasks in response to stimuli coming from it.
The dominant part of the behavior of a reactive system deals with the interactions and
not with internal computation.

The opposite of reactive systems are transformational systems. In transformational sys-
tems, internal computations take up a more important part of system behavior. The ex-
ample provided in [OFMP194] for the reactive/transformational dichotomy is a telephony
switching system versus a meteorological forecast system.

A telephone switch must permanently monitor the status of the connected lines and react
to the requests initiated by phone terminals, switch operators, etc. The reactions are
usually not complex from a computational point of view; the complexity of such systems
is generated by the large number of parallel components involved, the quantity of services
they provide, and the possible interleaving of the requests.

On the other hand, a weather forecast system takes up the initial meteorological obser-
vation data, and performs complex computations in order to obtain a forecast. During

2SDL-96 contains only minor revisions to SDL-92; the core of the language remained unchanged between the
two versions.
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computation, the interaction with the environment is minimal and or not relevant com-
pared to the internal system activity.

SDL is appropriate for describing reactive systems, as the behavior of SDL system com-
ponents is given in terms of stable states and responses to stimuli. Data types, operators
and procedures written in an algorithmic language which is part of SDL, can be used to
specify the transformational aspects of behavior.

— Discreteness characterizes systems in which interaction between components or with the
environment is materialized through discrete events. Such discrete events are represented
in SDL by the signal concept.

The opposite of discrete systems are continuous systems, in which the signals by which
system components interact can be modeled as (continuous) functions over a dense time
domain. On the lowest level of abstraction, most electronic devices exhibit a continuous
behavior. SDL is not suitable for representing system at this level of abstraction; other
languages and models exist for this purpose.

SDL can capture functional information about a system both at an abstract level using
descriptive constructs (specification level, in Z.100 terminology) and at a detailed level using
imperative constructs (description level, in Z.100 terminology). As such, SDL models can be
employed in different phases of system development:

1. Analysis/specification. In this phase, abstract SDL models focusing on the functionality
provided by the system are built. Over-specification can be avoided by using informal
action specifications, allowed in SDL.

2. Design. SDL design models add details on the architecture of the system, and on the
relation between functionality and architecture. The description of functionality can also
be refined.

3. Implementation. SDL provides imperative programming constructs comparable to those
of common programming languages. Additionally, the combined use of SDL and other
programming languages and libraries is supported by the standard Z.100 and by most
SDL tools.

Implementation in SDL follows a different paradigm compared to common procedural or
object-oriented languages, by supporting parallelism and communication natively, and a
stimulus-response description of component behavior.

4. Validation. Validation of a system model can take many forms depending on the properties
that need to be ensured about the system. Since SDL is used for describing functional
aspects of a system, SDL models are especially suited for the validation of functional
properties.

Verification and testing are two examples of functional validation methods in which SDL
models can be used. Verification is a way of formally validating a property, by using a
method of formal reasoning about the SDL model. Verification supposes the existence of
a mathematical definition for the models built with SDL. Such a mathematical definition
is given by SDL’s formal semantics [IT99c].

Testing is performed directly on the implementation, by checking on a set of chosen system
executions that the system performs as expected. The SDL model of a system may be
used in this case to derive tests (manually or automatically).
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Validation of timing aspects of the functioning of real-time systems modeled in SDL is the
central theme of the present work.

SDL models have also been used for validating non-functional properties of systems, such
as performance properties [ DHHMC95b, MT00]. However, since a standard SDL model
does not contain the necessary information in order to derive performance parameters, it
must be extended with constructs specific to performance models. Such an approach has
the advantage of reducing the redundancy that otherwise exists between functional models
and performance models, but also the risk of increasing the complexity of the SDL model.

. Documentation. The SDL language provides an easily readable graphical representation

which can be used as such for documenting the architecture and functioning of a system.

The support for various development phases is not only a language issue, but also a tool

issue. The types of SDL tools supporting the activities enumerated above are discussed in §3.4.

3.2 Language concepts

3.2.1

Language definition artifacts

The SDL language definition [IT99b, IT99¢] includes the syntax, an informal semantics written
in English, and a formal semantics. The syntax has three variants:

— an abstract syntaz, which abstracts away from keywords, separators and other tokens, and

only gives the relations between language objects. For example, the abstract syntax for a
channel definition® is:

Channel-definition ::  Channel-name
[nodelay]
Channel-path-set

The definition specifies that a channel is defined by a name, an optional nodelay attribute,
and a set of channel paths. The channel paths represent the directions in which the channel
conveys messages. There can be at most two Channel-path objects in a channel definition;
this type of constraint is written in English in the abstract grammar section.

The meta-language used for describing the abstract grammar is a subset of Meta IV4
[ISO96]. The definitions resemble usual BNF grammar productions, and use operators
such as “x*” “+” “|” and “[ 1”7, as well as the “-set” operator yielding an unordered
collection of objects.

a concrete textual grammar given in extended BNF. The relation between abstract gram-
mar nodes and concrete grammar non-terminals is described in the text.

a concrete graphical grammar which specifies in a formal way the contents of SDL graphical
diagrams corresponding to different language objects. The graphical grammar is described
using a form of BNF extended with operators denoting graphical relationships: contains,
ts connected to, etc.

3A channel is a communication entity which conveys signals between two designated agents. A detailed

description of the communication facilities in SDL can be found later in this section.

*Also known as VDM-SL — Vienna Development Method Specification Language.
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The informal semantics of SDL language objects is given in plain text in Z.100. Some
language elements have stand-alone semantics, while others are only shorthand notation and
their semantics is given by expansion into elementary language constructs. For example, an
output statement which sends more than one signal is shorthand for a series of outputs, each one
sending only one message. Thus, only the dynamic semantics of outputs sending one signal has
to be defined. Abstract syntaz also is not defined for shorthand constructs.

Finally, the formal semantics is given as a separate annex of Z.100 (Annex F, [IT99c]). It
has two parts:

— A static semantics which provides well formedness rules for SDL models, written in first
order predicate calculus, as well as transformation rules for shorthand notations.

— A dynamic semantics which provides an operational description of SDL model execution,
in terms of Abstract State Machines (ASM, [Gur95, Gur97, Gur8s]).

We discuss the semantics in more detail in §3.3. The formal semantics (Annex F, [IT99c])
has lower priority with respect to the rest of the standard. This means that whenever the
informal semantics from Z.100 contradicts the Annex F, Z.100 takes precedence. The formal
semantics constitutes one of the big differences between SDL-2000 and the previous versions of
the language, in which both static and dynamic semantics were defined using Meta IV [ISO96].

3.2.2 Architecture and communication
Agents

As part of the functional description of a system, SDL supports the description of both structure
and behavior. On the structural side, SDL has facilities for describing the architecture of a
system in a hierarchical way, so that the complexity of a model can be managed one level of
detail at a time.

Thus, the system components (called agents) form an aggregation tree, in which each agent
(except the root agent which represents the entire system) is embedded in another agent from
the upper level of detail. An agent encapsulates the contained agents and provides a black-box
view for the outer agents. Communication is possible by means of asynchronous signals, either
between sibling agents, or between an agent and its contained sub-agents. An agent may act as
a router for the signals coming from or going to its sub-agents (this is usually the case for block
agents, see below).

There are two kinds of agents:

— concurrent agents, in which sub-agents execute in parallel. This does not mean that
in an implementation of the SDL system, these agents must be implemented in true
parallelism or using the operating system multitasking. The concurrency attribute is a
way of specifying that no constraint should be assumed about the possible interleaving of
the actions of the contained sub-agents.

For traditional reasons, concurrent agents are called blocks, with the exception of the top
level agent which is always concurrent and is called system.

— alternating agents, in which sub-agents execute in a mutually exclusive way: when a sub-
agent is executing a transition, every other sub-agent has to be in a stable state. The
other sub-agents remain in the respective states until the executing sub-agent finishes the
transition.
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Figure 3.1: Hierarchical description of a point-to-point link in SDL

For traditional reasons alternating agents are called processes. Processes also support
shared data, which may be used as a communication mechanism between alternating sub-
agents inside a process, in addition to the asynchronous signal passing mechanism.

An example of hierarchical system architecture is presented in Fig. 3.1. It shows the decom-
position of an SDL system modeling a point-to-point network link, into agents modeling the
hosts, the link interfaces, their sub-components, etc. More concrete examples can be found in
later chapters. In the figure, rectangles represent blocks, rounded rectangles represent processes,
and lines between agents represent the communication paths, annotated with the types of signals
they may carry. The graphical SDL symbols are shown in Fig. 3.2.

Each SDL agent can have its own behavior described through an extended state machine
(this is discussed further on in §3.2.3). Each agent also has a unique identifier, called PId, which
can be used by other agents to communicate with it by direct addressing (see next section).

There are several differences between SDL-2000 and SDL-96°, with respect to architectural
decomposition. The intention in SDL-2000 was to harmonize the two types of architecture
objects (blocks and processes):

— In SDL-96, the behavior of blocks cannot be described by means of a state machine.
Blocks do not have a PId and cannot themselves handle signals. They can only route
signals (statically) towards inner or outer system components, by describing channel inter-
connections.

— In SDL-96, blocks cannot be created and destroyed dynamically, whereas in SDL-2000
they can.

— In SDL-96, blocks and processes cannot be mixed inside a block. In SDL-2000, they can
be freely mixed.

®This stands also for previous versions of the language (SDL-88 and SDL-92). Henceforth, previous versions
are mentioned only when they differ significantly from SDL-96.
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— In SDL-96, processes cannot be refined in sub-processes. Instead, processes can be refined
into entities called services, whose behavior is described with state machines. However, a
SDL-96 service does not have its own identity (PId), and therefore signals cannot be sent
to a specific service, but only to the whole enclosing process.

Communication methods

The primary communication method between SDL agents is by asynchronous signals. Signals
are named entities which can carry data parameters. Signals are produced by an agent using an
output instruction (discussed in §3.2.3). Upon arrival to a destination agent, a signal is placed
in the input port of the agent. Each agent has an input port with a signal queue. Signals can
be consumed, saved for further use or discarded by the agent state machine. More details are
provided in §3.2.3.

Other communication means are:

— Remote procedure calls. An agent can call a remote procedure defined in another agent, if
the communication paths between the two agents are properly specified. Remote procedure
calls are actually realized by an implicit signal interchange, therefore they are only a
shorthand notation.

— Remote variables. An agent may declare a variable as “remote”, so that other agents may
consult its value using an #mport instruction. Other agents actually consult a copy of the
variable, which is updated explicitly by the exporting agent using an export instruction.
Like remote procedure calls, importing remote variables is also realized by implicit signal
interchange, so remote variables are also just shorthand notation.

— Variables shared by a process agent for the use of its sub-agents.

Signal-based communication can use either direct addressing or implicit signal routing. Di-
rect addressing is done by specifying the destination agent’s PId in the output instruction. A
route (see next section) to the destination agent capable to transport the signal must neverthe-
less exist. Implicit routing is done when no destination PId is given. In this case, if routes to
several destinations exist, one is chosen arbitrarily.

Channels and gates

Signals are conveyed through channels. A channel has two ends, each of which can be connected
to an agent. The channel can be unidirectional or bidirectional. For each direction, the channel
is considered to transport the signals reliably, i.e. without loss, corruption nor reordering. The
channel may however delay the arrival of the signals, if a nodelay clause is not present in the
channel definition.

Channels are connected to agents through gates. Conceptually, a gate is a couple of an input
port and an output port. A gate can be connected (implicitly or explicitly) to channels both on
the outer side of the agent, and on the inner side of the agent (if the agent contains sub-agents).
In this case, the gate only transfers the signals from an outer channel to an inner channel, or
vice-versa. Alternatively, a gate can be connected on the inner side directly to the agent state
machine (connection can be implicit or explicit). In this case, the gate transfers signals from
outer channels to the agent’s signal queue, and signals produced by the agent (using output
instructions) to the outer channels. Both gates and channels specify statically which signals can
be transferred in either direction.
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There are several differences between SDL-2000 and previous versions, concerning commu-
nication:

— In SDL-96 gates are used only in the definition of agent types (which are discussed further
in this section). In SDL-2000, type-based agent definitions and non type-based agent
definitions have been harmonized. As a consequence, gates can be defined in non type-
based agent definitions.

Additionally, implicit gates are sometimes created, for example when an agent defines a
channel-to-channel connection directly without defining a gate.

— SDL-2000 introduces the concept of interface. An interface is a named collection of signal
definitions, remote procedure definitions and remote variable definitions. Among others,
interfaces can be referenced in gate definitions, when specifying the signal types transferred
through the gate.

— Since SDL-96, channels are created implicitly in certain cases, e.g. when there is no
explicit connection for a gate, and there is another gate in the same scope with a matching
set of conveyed signals. This is done in order to avoid the overhead that channel definition
sometimes causes for the modeler.

Type based modeling

In this paragraph we discuss type-based modeling of agents. However, all features described
here are also available for data types, which are examined in §3.2.4.

SDL facilitates reuse by allowing type-based modeling of agents. Thus, if several agents with
identical structure and behavior appear in different places in the system (e.g. host! and host2
in Fig. 3.1), the behavior and structure of the agents can be described through a unique agent
type which is afterwards referred from the respective places. This facility exists in the language
beginning with SDL-92.

Type-based agents also facilitate reuse by including two mechanisms available in modern
object-oriented languages: type specialization and generic types. With specialization (inheri-
tance), a type can be derived from another by adding or modifying both the structure and the
behavior properties. Specific restrictions to preserve “observational” type compatibility apply.

Generic data and agent types can be defined by using context parameters. Various language
objects can be used as context parameters, including: agent types, procedures, variables, timers,
gates, exceptions, etc. When a type with context parameters is instantiated, a concrete object
of corresponding kind has to be provided for each formal context parameter of the agent type.

Agent types provide agent definition patterns, and their main use is to factor out the def-
inition of identical agents appearing in several places in a system. However, agent types also
relate to the data type system of SDL. An agent type A implicitly defines an interface type 14
(based on the signals, remote procedures, etc. that are handled by the agent type). In turn,
each interface I defines a type 17 which is a sub-type of the predefined sort PId. A variable of
type 17 contains a PId which points to an agent implementing the interface I.

By supporting data sub-typing, including for PId types, SDL supports polymorphism. More-
over, SDL provides type-safe polymorphism, as the data type system of SDL supports both
static and dynamic typing, so for example the “real” type of a PId variable can be checked at
run time. This is true for the entire type system of SDL and not only for the part referring to
PId types.

PId sub-types and the dynamic typing system are new in SDL-2000.
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3.2.3 Behavior

The previous section described the SDL constructs for architectural modeling and interfacing
between system components. In order for the system to achieve the desired functionality, the
behavior of each component (agent) has to be described. This section examines the computation
model of SDL and the SDL constructs for describing behavior.

Control

An important aspect of a functional model such as SDL is the way threads of control are
organized. Concurrent object oriented languages are usually classified in two categories with
respect to ownership of control threads [Weg87, Pap92]:

1. Orthogonal languages, in which threads of control are independent from (orthogonal to) the
object structure of the system. Usual sequential object oriented programming languages
like C++ [Str97] or Smalltalk [GR89] have orthogonal models, in the sense that execution
threads provided by the operating system can be freely used in programs.

2. Languages with active objects, in which threads of control are owned by certain objects
(active objects). Furthermore, languages with active objects can be homogeneous — with
only active objects, or heterogeneous — with both active and passive objects. Examples of
such languages are POOL-T [Ame87] or Eiffel// [CR96].

From the point of view of this classification, SDL falls into the second category. In SDL,
each agent has its own thread of control, which is created and destroyed together with the agent.
The agent state machine specifies what is executed on that thread of control. The execution is
marked by moments in which the thread is idle — when the agent is in a stable state, and by
moments in which the thread is actually executing — when the agent executes transition code.
States and transition code are described in the next paragraphs.

States

In SDL-96 state machines have a flat structure, meaning there is no hierarchical structuring of
states. A state is just a named entity, used to partition the flow of control of an agent. States
designate points in the flow of control where the agent stops and waits for a certain condition
before continuing. The condition is usually triggered by the agent’s environment (i.e. the other
agents, the underlying machine or the system’s environment):

— The arrival of a signal in the agent’s input port, tested with an input clause, and possibly
conditioned by a boolean test in a subsequent provided clause.

— The satisfaction of a logical condition, tested with a provided clause. The truth value
of the condition may depend on the agent’s environment, e.g. if the expression involves
shared variables or the value of current time (now).

The agent may also resume execution automatically, without waiting for a change in the
environment. This is done either by using a spontaneous transition clause (input none) or by
testing a condition that holds without the intervention of the environment, such as provided
true. The insertion of such states in which the execution is resumed automatically can be useful,
for example in order to provide interruption points in a computation process.
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In SDL-2000, several artifacts for state modeling have been added, although without chang-
ing the fundamental idea of state machines. The purpose of these artifacts is to facilitate the
design of large state machines. They are:

— Composite states. A composite state groups a set of semantically related states of an
agent. Composition can be used to factor out transition code: if a same transition can be
triggered from several states, these can be grouped under a same composite state and the
transition may be written only once.

Composite state entry points and exit points, history nodes and other constructs make it
easier to specify and understand the control flow in a behavior description. However, they
do not add expressive power to SDL, in a strictly semantic sense.

— State aggregation. An aggregate state is a composite state with sub-states executing in
parallel. The sub-states are also composite states, so each of them defines its own state-
transition graph. They execute in parallel by interleaving, one entire transition at a time.

Due to the interleaving semantics, an aggregate state can be transformed in a semantically
equivalent flat composite state (by considering the cartesian product of the sets of sub-
states). Therefore, state aggregation does not add expressive power to SDL, but only
offers means to express more clearly the behavior of complex agents.

— Entry and exit actions. These actions, executed at the end of transitions entering a state
or at the beginning of transitions exiting a state, are further means to factor out recurring
behavior.

Although they do not add expressiveness to the language, the mechanisms presented above
are valuable from a methodological point of view. They were initially introduced by D. Harel in
the Statecharts formalism [Har87]. The ideas originating in Statecharts were later included in
several object-oriented analysis and design methodologies [CD94, RBP91], and in the Unified
Modeling Language (UML, [OMG99]).

Transition code

An agent fulfills its functionality by executing actions during transitions from one stable state to
another. From the SDL specification point of view, transitions are not always clearly identified
entities originating in a stable state and terminating in another. This is because control flow
structuring constructs such as branching and jumps can be used in transition specification. For
this reason, we prefer the terminology transition code®.

The transition code of an agent is structured on a state/clause basis: a code sequence is
attached to a certain stable state and to a certain clause. Two types of clauses (input and
provided) have been mentioned in the previous section. Besides them, two additional clauses
are defined in SDL:

— priority input, which has the same meaning as input, except that the specified signal
does not have to be first in the agent’s signal queue (it is consumed regardless of its position
in the queue).

®For language definition simplicity, in [IT99b] transitions are considered separate entities. Branching constructs
and join points introduce pseudo-states from which transitions can originate or in which they can end.
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— save specifies that a signal is not consumed by the agent in the current state, but it is
saved in the queue for further use. In the absence of a save, if a signal is in the head of
an agent queue and there is no corresponding input clause in the current agent state, the
signal is discarded.

A save clause may not be followed by further transition code.

The graphic symbols representing clauses are shown in Fig. 3.2.

The code sequence following an input, priority input or provided clause can contain basic
statements (which have a graphical representation and existed before SDL-2000) and compound
statements written in the textual algorithmic language that was added in SDL-2000. The basic
statements are (see Fig. 3.2 for the graphical counterpart):

— Informally specified actions (task). These are actions specified informally with a string
containing plain text. Formally, they have no effect and are just a placeholder to be used
during analysis/design.

— Assignments and assignment attempts (task). Used to assign the result of an expression
to a variable, parameter, etc. Assignment attempts are specific to SDL-2000 and perform
a dynamic type checking before assignment.

— Agent creation (create). Used to create a new agent. In SDL-96, the agent can only be a
process, and the create instruction must specify the process instance set in which the new
agent is created. The process instance set specifies the channel connections of the newly
created instance (shared with already existing instances in the set).

In SDL-2000, both blocks and processes can be created dynamically. The create state-
ment may either specify an agent instance set, or just an agent type. In the latter case,
the agent instance set in which the agent is created may be chosen from the existing sets
of the same type, or a new set with implicit connections may be created if no sets of the
same type exist.

The execution of a create statement updates several implicit variables. In the initial
agent, the offspring variable holds the PId of the newly created agent. In the newly
created agent, self holds its own PId, while parent holds the PId of the agent executing
the create.

— Signal output (output). The statement creates a new signal instance, with parameter
values specified in the output statement. The signal destination may be specified by
direct addressing (using the destination agent’s PId) or indirectly (using an output gate
of the agent, and relying on the default routing mechanism of SDL— this may imply non-
deterministic choices at certain points).

In both cases, the signal is conveyed by a channel route, determined at the moment the
output is executed, and the delays and queuing order of the route apply.

The PId of the sender process is sent with the signal. When the signal is consumed by the
destination agent using an input clause, this PId is stored in the implicit variable sender
of the destination agent.

— Procedure calls (call). This statement can be used either to call a procedure on the control
thread of the current agent, or to send a remote procedure call.

In the latter case, an implicit signal representing the procedure call is sent to the remote
agent. The same conditions from the above description of output apply in this case.
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Figure 3.2: Graphical SDL symbols

Additionally, a watchdog timer may be set in parallel with the procedure call, to unlock
the caller agent in case of non-response from the remote agent.

— Timer management (set and reset). Timers are discussed in a dedicated subsequent
paragraph.

Additionally, SDL contains the following graphical control flow structuring statements:

— Decisions (decision) are used for conditional branching. The condition may be formal
or informal (written in plain text). If the decision discriminant is the keyword any, the
decision equates a non-deterministic choice between the specified decision answers.

— Jumps (join) are used for unconditional branching. Any basic statement may be preceded
by a label, which can be used in join statements.

— Return from procedure (return) can be used both in local and remote procedures, and it
can specify a return value.

— Termination of agent execution (stop), stops the execution of the agent executing the
statement.

— Raising a software exception (raise). The exception mechanism, specific to SDL-2000, is
examined in a dedicated further paragraph.
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Textual algorithmic language

As mentioned before, a textual algorithmic language has been added in SDL-2000. We do not
aim to describe this language here, but rather to give a general idea of the supported features.
The statements of this language resemble (in both a syntactic and semantic way) the statements
of the C++ programming language [Str97]. They are:

— Compound statements, with the possibility of defining variables local to the compound
statement.

— Faxpression statements. As in C and C++, the evaluation of an expression can constitute
a statement.

— Conditional statements, which provide a simpler alternative to decision statements. Tex-
tual decision statements are also supported.

— Loop statements, with flow control similar to C and C++, including break and continue
statements.

— Ezxception handling, with a construct similar to the C++ try-catch statement (try-handle,
in SDL-2000).

Additionally to the above mentioned statements, all the transition actions with graphical
representation enumerated in the previous paragraph can be included (in textual form) in a
textual algorithmic language statement.

Compound statements of the algorithmic language can be placed inside task instructions on
transition code. They can also be used for describing the body of SDL procedures.

Exception handling

A major addition to SDL-2000 is the exception mechanism. Exception handling is a useful
programming technique available in many programming languages including Ada [Eng96], C++
[Str97], Eiffel [Mey95] and others. It allows the programmer to tackle in an organized way with
exceptional situations that may appear in a software system due to either hardware or software
malfunction or mishandling. For a more comprehensive discussion on the topic of exception
handling in programming languages in general, the reader is referred to [Set96] and [Mey97].

In SDL, there is a set of predefined exceptions which are raised by the underlying abstract
SDL machine. The modeler may also define his own exception types; such software exceptions
can be raised using a raise statement.

Once raised, an exception propagates up on the procedure call stack of an agent. Exceptions
raised in remote procedures also propagate back to the caller agent. If an exception reaches the
agent level and is not handled, the further execution of the SDL system is undefined.

Exception handling is done by attaching handlers to different SDL objects. An exception
handler is a named entity containing a set of exception handle clauses. A handle clause resembles
a normal state machine input clause: it specifies the type of exception (signal) being handled
and is followed by transition code.

A handler is defined within the scope of an agent or a procedure. However, the code portions
on which a handler is active may be finer grained: the handler may be attached to the entire
state/transition graph of an agent/procedure, to a composite state, to a simple state and its
transitions, to a transition, to another handler, or to just a single action.
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Figure 3.3: The behavior of a timer T. d is a Time value for the deadline.

Describing time-related behavior

SDL provides facilities for describing time-driven behavior. This is an important feature of the
language, as SDL targets the specification and design of real-time systems. As we will see in a
later section (§3.5), the facilities for describing timing information in SDL address the design
or implementation level; however, they have a limited usability in the initial phases of system
specification, when more abstract and descriptive timing information needs to be captured.

SDL provides two predefined data types related to time, Time and Duration, and predefined
operators for handling these types (adding Time with Duration, multiplying Duration, etc.) The
current time — i.e. the time since the beginning of system execution — may be consulted using
a predefined operator, now. The manner in which time progresses during the execution of a
system is, however, left unspecified in SDL. The only assumption that can be made is that
successive evaluations of now yield (non-strictly) increasing results.

Time-driven behavior may be described either by using directly the value of now in tests or
transition triggers, or by using timers.

Timers are special objects of the SDL language. They resemble data objects from certain
points of view, but also have their (predefined) behavior which parallels the behavior of the
system agents. Each timer definition also introduces a new implicit signal type, with the same
name and parameter types as the timer.

A timer can be declared by an agent, using the timer keyword. Optionally, the definition
may contain a default relative deadline for the timer. The behavior of a timer, as described
by the SDL standard, is sketched using a simple state machine in Figure 3.3. There are three
predefined operators on timers:

— set(Time-value, timer), which arms a timer with the deadline specified by the Time value.
If time elapses beyond that deadline, and the timer is not reset in the meantime by the
agent, the underlying abstract SDL machine switches the timer to the expired state, and
puts a signal corresponding to the timer in the agent’s signal queue.

— reset(timer), which switches the timer back in an inactive state. If the timer has expired
beforehand, the signal corresponding to the timer is erased from the agent queue.

A signal returns in the inactive state either when it is reset or when the corresponding
signal is consumed from the queue by an input or a discard clause.

— active(timer), is a query operator which returns the boolean value true if the timer is in
one of the two active states shown in Fig. 3.3, and false otherwise.
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It is important to note that timer expiration signals always pass through the signal queue.
Therefore, when a timer is consumed with an input clause, the only assumption that is guaran-
teed by the semantics of SDL is that the deadline of the timer has passed. In principle, nothing
can be assumed about how much time has passed since the timer has expired. This is a comfort-
able semantics from the implementation point of view. However, it has certain disadvantages
when SDL is used for building initial abstract models of a system, as discussed further on in
83.5.

3.2.4 Data

SDL provides a data system similar to that of usual imperative programming languages. The
data system is an important part of any modeling language, since even the most simple systems
involve the manipulation of a certain amount of data. However, for the purpose of this thesis,
which focuses on the specification and validation of timing properties in real-time systems,
data in SDL is not of paramount importance. Therefore, in this section we only give a brief
introduction to the SDL data system.

Data types

SDL provides predefined types, such as Boolean, Character, Integer, Real, Time, Duration,
etc., and mechanisms to define more complex types based on simple ones. The mechanisms for
defining new types include constructs similar to what can be found in Algol-like programming
language, as well as constructs inspired from object-oriented languages.

In the first category, we mention constructs for creating record types (struct,) records with
variants (choice), enumerated types (using literals), sub-range types (syntype), or collections
of different elements types (based on several predefined collection type generators: Array, String,
Bag, Powerset, Vector). As a general note, the set of type definition constructs suported by SDL
is larger than that of most usual programming languages.

Object-oriented concepts are included in the SDL data system: a data type definition may
include operators and methods which act over values of that type, and inheritance relationships
between data types may be defined. Inheritance allows the redefinition of operators and methods,
and additions to the type structure, as in usual object-oriented languages.

As mentioned before, the data type system of SDL supports dynamic type checking and
includes PId types which provide typed references to agents.

PId sub-types, dynamic typing, as well as several other object-oriented features are newly
introduced in SDL-2000.

Variables and parameters

Data types are used in order to define variables and parameters at different levels in an SDL
description.

The notion of variable in SDL corresponds to the same notion from imperative programming
languages: variables have a name and may store a value of a certain type. Variables may
be defined in different entities: in an agent, a procedure, a composite state or a composite
algorithmic action. The lifetime of the variable is equal to the lifetime (activation time) of its
enclosing entity. The scope of the variable is the enclosing entity, and in some cases its sub-
entities. For example, a variable defined in a process agent is visible in all its sub-agents and
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in the procedures defined therein. A variable defined in an agent or procedure is visible in all
procedures recursively defined in that agent or procedure.

For complex types such as object types, both expanded variables — which contain an object
with its fields, and reference variables — which contain only a reference to an actual object, may
be defined. This facility is new in SDL-2000.

Parameters designate named data items, and are used for passing around data values in agent
creation, procedure calls or operator/method calls. The semantics of parameters is similar to
that from procedural languages.

Data types may also be used in the definition of signals, exceptions and timers. They
designate the types of data items that may be conveyed by these communication objects.

Expressions

Expressions are SDL syntactic constructs for obtaining data values. An expression may involve:

— literals designating predefined type values (e.g. 1, true, 0.5) or values of structured types
(e.g. (. true,1 .) - designating a structure with two components, a boolean and an
integer)

— variable or parameter identifiers
— calls to user defined operators, value-returning procedures and methods

— predefined operators, etc.

3.3 Semantics

SDL is an object-oriented modeling language used in the development of real-life applications.
One of the features which differentiate it from other languages from this category is the definition
of its semantics.

While other modeling languages, such as OMT [RBPT91], ROOM [SGW94] or UML
[OMG99, RJB98, BRJ98], only provide an informal semantics for the language concepts, the
definition of SDL [IT99b] contains a formal semantics for the entire language [IT99c|, i.e. a
way of mapping any SDL specification to a clearly defined mathematical object. Thus, SDL
is part of a family of standard languages with formal semantics, generically known as Formal
Description Techniques (FDT’s), family which also includes LOTOS [ISO89b] and ESTELLE
[ISO89al.

The semantics of SDL fulfills two functions:

— defines formally the notion of well-formed SDL system, and

— provides a mathematical interpretation for the notion of SDL system execution.

The two parts are relatively independent, and constitute respectively the static semantics and
the dynamic semantics of SDL.

While a formal static semantics for SDL consists only in representing the well-formedness
conditions from the informal language definition [IT99b] in a formal language such as first order
predicate calculus, the definition of a dynamic semantics implies a choice of a base formalism
which is less obvious and has more implications as to the analysis methods applicable to SDL
specifications. For this reason, several dynamic semantics for SDL have been proposed in the
literature.
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| Concrete textual grammar (BNF) |

| Abstract Syntax 0 (BNF, ASM) | C:I | WFR (PC1/ ASM)

Transformation (AS

| Expanded ASO (BNF, ASM) |

Mapping (ASM)

| AS1 (BNF, ASM) | (] | WFR (PC1 / ASM)

Figure 3.4: SDL static semantics layers.

In the 1988 version of SDL, the ITU-T standardized a semantics based on the Meta-IV
language [ISO96]. This semantics was further updated with the release of SDL-92. As SDL-
2000 brings along many changes, the ITU-T preferred to redefine the semantics from scratch
rather than update the existing semantics. Another formalism, Abstract State Machines (ASM,
[Gur88, Gur95, Gur97]) was preferred to Meta-1V for this task. In the following sections, we base
the discussion on the new semantics of SDL-2000, and we briefly mention the other proposals
found in the literature.

3.3.1 Static semantics

The goals of the static semantics are:

— to define the notion of sound SDL system, and

— to provide a basis for the definition of the dynamic semantics.

A first level of soundness, as in any language, is defined by the syntax. Z.100 [IT99b] contains
a concrete textual syntax described in usual Backus-Naur Form (BNF). There are however
additional constraints that a correct SDL system must observe, which cannot be expressed
directly through a context-free syntax. Static typing constraints or identifier scope rules are
examples of such constraints. These rules are defined in the static semantics.

Moreover, the concrete syntax of a complex language such as SDL is difficult to use directly
as a basis for the definition of the dynamic semantics. For this reason, the static semantics is
organized as a set of increasingly abstract layers, shown in Fig. 3.4.

In the less abstract layer (topmost), an SDL specification is modeled by its syntactic form.
A syntax tree can be built from the model through a compilation process. By removing the
unnecessary tokens from this tree (separators, various terminals), a more abstract tree containing
only the meaningful language objects is obtained. This abstract model of an SDL system
corresponds to the abstract syntaz level 0 (ASO) of SDL, defined by the static semantics.

Two more layers are added in order to ease the definition of the dynamic semantics. This
is done by identifying a set of basic mechanisms, for which a dynamic semantics is defined,
and translate other language constructs in terms of the basic mechanisms. For example, signal
exchange is a base mechanism in SDL, whereas remote procedure calls are actually realized by
an implicit signal exchange. Only the basic constructs are included in the layer 1 of the Abstract
Syntax (AS1), which corresponds to the bottom layer in Fig. 3.4. The static semantics gives
the rules for transforming an ASO tree with remote procedure calls in an ASO tree using only
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outputs. The ASO tree obtained after transformation, called expanded ASO tree in Fig. 3.4, is
then mapped into an AS1 tree.

The structure of ASO and AS1 trees is given in [IT99¢c| in a formalism similar to BNF.
However, the non-terminals and productions of ASO and AS1 also define ASM domains, and
respectively access functions corresponding to each kind of language object (see the introduction
to ASM in the next section). The well-formedness rules for SDL systems are then given as
formulae of the first order predicate calculus (PC1) over these functions/domains.

3.3.2 Abstract State Machines

The base formalism used for defining the dynamic semantics of SDL in Annex F of Z.100 [IT99c¢]
are the Abstract State Machines (ASM). This section is not intended as a full tutorial for ASM,
and provides only the definitions needed to understand the rest of the thesis. For a thorough
introduction to ASM, the reader is referred to [Gur95, Gur97].

For each sound SDL system, [IT99c| defines a corresponding multi-agent ASM. For simplicity,
we define first the notion of mono-agent ASM.

Definition 3.1 (Abstract State Machine) An ASM is a tuple A = (V, Sy, P) with the fol-
lowing components:

1. V denotes a wvocabulary (or signature) of domain names, function names and predicate
names.

2. Sy denotes an initial state (or interpretation) of the vocabulary V.

3. P is a program iteratively modifying the interpretation of the vocabulary V.

The meaning of the components described above is detailed in the following. Besides being
a model, ASM is also an algebraic specification formalism, with its own established syntax. The
syntax is presented in parallel with the model elements below.

Vocabulary

The vocabulary V contains domain names, function names and predicate names. Each function
or predicate has an arity, which specifies the domain names of the parameters and of the result.
Predicates always have the result in the Boolean domain.

Boolean is a special domain name defined by any ASM. Several other domains (Nat, Real) and
usual functions (arithmetic and boolean operation names) are also considered to be defined by
any ASM. Moreover, the interpretation of these “predefined” domains and functions is considered
to correspond to their standard mathematical definition.

The vocabulary of an ASM is given by declaring the domain names and function names
and arity, using the following syntax ([attributes] denote optional properties such as static,
controlled, monitored, shared, described in the following paragraphs):

[attributes] domain D

[attributes] f: Dy X Dy X ... x D, = D
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States. Initial state.

A state is a function that assigns a mathematical interpretation to each domain name and
function name in the vocabulary. The interpretation of a domain name D in a state s must be
a set, denoted s(D). For a function name f with the arity f : Dy x Dy x ... x D,, — D, the
interpretation is a function s(f) : s(D1) x s(D3) X ... x s(Dy) — s(D).

For simplicity, all the domain name interpretations (called domains henceforth) are consid-
ered to be part of an infinite set s(X), which is the interpretation of a predefined domain name
X called the base set of the ASM. s(X) contains a particular element called undefined, and
there is a predefined function name undefined :— X which denotes this element. All functions
defined by an ASM are considered total on X, and they yield undefined for all elements for
which an interpretation is not explicitly defined.

In the specification of an ASM, the initial state Sy of an ASM is given by a set of initially
clauses, as shown in the example below:

initially D = {ell,el2}
initially Vd € D : f(d) = 1

Static and dynamic names

As we mentioned before, the interpretation of some elements of the vocabulary V is fixed a
priori. For example, the interpretation of the Boolean domain name must always be a set of
two elements representing the values true and false, and the predefined boolean operator names
must have an interpretation corresponding to their mathematical definition.

Such names are called static names. Their interpretation is either fixed by the initial state
of the ASM (Sp) or predefined by the ASM framework and must not change during the execution
of the ASM (the notion of execution is defined below).

The names whose interpretation may change from one state to another are called dynamic.
Both functions and domains can be static or dynamic.

Basic and derived names

Both domains and functions may be basic or derived. Basic names have their own interpretation,

which is either predefined, or defined by the initial state Sy and modified by the ASM program.

Derived names have their interpretation derived from the interpretation of the basic names.
For example, a derived domain can be defined as:

D =def Dy X Doy
and a derived function can be defined as:
f(d : D) : D' —def g(S'Dl(d)as'DQ(d))

where g is a function defined on Dy x Ds.

In the above examples, we have used some function names that are implicitly defined for
derived domains. For example, for the product domain D above, the functions s-D; : D — Dy
and s-Ds : D — Dy are implicitly defined and can be used to extract the components of a couple
d € D. The constructor function mk-D : Dy x Dy — D builds a couple from the components.
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Programs and runs

The program P of an ASM A = (V, Sy, P) specifies how the state of the ASM is updated. There
are two kinds of elementary constructs of an ASM program:

— the location update rules, which have the following form:

f(tla 7tn) =1o

7

where f denotes a basic dynamic function and tg,t1,. .. ,t, denote terms’ constructed from

ASM function names.

To execute the above update in a state s means to transform s into a state s’ such that
s'(f)(s(t1), .-, 8(tn)) = s(to), and the interpretation of all the other elements of V' remains
the same in s’ as in s.

— the domain update rules, which have the form:

extend D with d
... // further rules
endextend

where D denotes a dynamic (basic) domain. To fire the above update in a state s means
to transform s in a state s’ in which the domain s'(D) has an additional element compared
to s(D). The new element is denoted by the term d in the update rules enclosed by
extend..endextend, so specific location updates referring to this element may be written.

More complex transition rules may be constructed recursively, based on simple location and
domain updates: conditional updates (if condition then Rulel else Rule2 endif), parallel
updates (Rulel Rule2 ...), non-deterministic updates (choose v : condition(v) Rule(v) end-
choose). However, for a given state s, a program P always resolves to a set of elementary
updates, which are executed in parallel. A soundness requirement for the ASM is that par-
allel updates are not contradictory, i.e. for each distinct location (basic dynamic function +
parameter values) there is only one update.

The executions (runs) of a single agent ASM are modeled through finite or infinite sequences

of state transitions of the form: sg £, S1 i S9 N ..., where s P, ¢ denotes the application
of the updates specified by the program P in the state s to obtain the state s'.

As it can be noticed, the execution of an ASM means iteratively applying the same program
P to the current state of the ASM, over and over again. However, as conditional updates are
possible, the same program P may specify different update sets in different states of the ASM.

Multi-agent ASM

Mono-agent ASMs define execution as a sequence of applications of the ASM’s program to the
ASM’s current state, resulting in a sequence of states. The updates are executed by an implicit
agent, which is not described explicitly in the ASM model.

In multi-agent ASMs (also called distributed ASMs), there can be several execution agents
firing state transitions simultaneously, and sharing the same ASM state. Moreover, the set of

" Terms, which are function applications, can be written either in the prefix notation shown above, in infix no-
tation (for some predefined operators), or in an alternative dotted notation, as in: ¢1. f(¢2, ..., tn). The parentheses
may be dropped for nullary functions in prefix notation and for unary functions in dotted notation.
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agents is dynamic, and the assignment of programs to agents is also dynamic. A distributed
ASM contains several domain and function names with predefined meaning:

controlled domain Agent - contains one element for each con-
currently executing agent

static domain Program - contains one identifying element
for each program description

controlled program : Agent — Program - identifies the program executed by
each agent

monitored Self : — Agent - function interpreted differently

by each agent, provides the agent
with its own identity

The concurrent execution that takes place inside a multi-agent ASM is modeled as a set of
partially ordered runs. We do not intend to provide here a thorough introduction to the execution
model of distributed ASMs. The model is detailed in [Gur95, Gur97], and several properties of
partially ordered runs are deduced therein. We only note that some of the properties stated in
[Gur95, Gur97] imply that the partial order model is equivalent to an interleaving model for the
execution of the parallel agents, in the sense that the same ASM states are reachable and the
same properties are held by the two models.

Distributed ASMs are used for the definition of the SDL semantics, as they provide a con-
venient way to cope with the inherent concurrency of SDL models. As we will show in §3.3.3,
SDL agents are modeled through ASM agents, thus taking the burden of modeling concurrency
out from the SDL semantics description.

Open specifications and real-time behavior

SDL systems are open, in the sense they can interact with an unspecified environment. ASM
specifications can model the intervention of an unspecified environment through monitored or
shared functions and domains (functions and domains which can only be updated by the ASM
agents, introduced previously, are called controlled).

A monitored function or domain is a dynamic object that can only be modified by the
environment. Thus, a monitored object can change its interpretation from state to state in an
unpredictable way (unless prevented by some integrity constraints). An ASM agent may test
the value of a monitored object, and take actions corresponding to the state of the environment
modeled by that value. However, an agent may not modify (update) the values of monitored
objects.

Shared functions and domains differ from monitored in that they can be updated both by
the environment and by the ASM agents.

Integrity constraints (written as predicate calculus formulae in the ASM specification) may
restrain the possible interventions of the environment on the shared and monitored functions.

An important case of interaction with the environment is represented by the elapse of time.
In the semantics of ASM, time is considered part of the environment and can only be consulted
but not controlled by the agents. This is modeled through a monitored function:

monitored currentTime : — Real

The integrity constraints imposed to currentTime are too complex to be expressed in pred-
icate calculus over the usual terms admitted in ASM specifications. These constraints are an
important part of the execution model of SDL. They basically impose the following conditions:
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Figure 3.5: SDL dynamic semantics

1. Monotonicity: the currentTime function changes its values monotonically increasing over

ASM runs.

2. Discreteness: for every 7 € R there is a finite number of steps made by the ASM before
currentTime becomes greater than 7.

3.3.3 Dynamic semantics

In this section we will examine the organization of the dynamic SDL semantics as described
in [IT99c] and we will discuss the semantics of concurrency and time. We conclude with some
general remarks on the suitability of ASM for describing the semantics of SDL, and on the other
semantic definition attempts that can be found in the literature.

Structure of the dynamic semantics

The approach undertaken in [IT99c] to define the dynamic semantics of SDL is sketched in
Fig. 3.5. The semantics provides the rules for building the ASM representing the semantic
model of an SDL system.

The semantic ASM is a multi-agent ASM (see previous section) comprising one ASM agent
for each living SDL agent, and one ASM agent for each agent instance set contained in the
system, at a certain moment. The behavior of each agent, prescribed by a corresponding ASM
program, comports two phases: an initialization phase and an execution phase. The entire
semantic ASM of an SDL system is executed in two phases, which correspond to the initialization
and execution of the system agent.

The programs of the semantic ASM are based on a set of ASM rules implementing the
behavior of the basic SDL objects. These rules form together a library of ASM macros®, called
the SDL Abstract Machine (SAM). The description of the SAM takes up a significant part of
the formal dynamic semantics of SDL, and includes primitives which implement:

8An ASM macro is a named update rule, that can be referenced from other macros or programs.
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— The signal flow model of SDL: signals, gates, input ports, channels and routing, timers
and exceptions.

— The agent model described above, comprising the definitions of agent domains and asso-
ciated functions (agent mode functions for modeling phases of the agent’s behavior, etc.).

— The behavior primitives, the abstract machine instructions of the SAM. This part contains
rules implementing SDL statements: assignment, call, output, create, timer set/reset, etc.

The SAM programs which specify the behavior of the semantic ASM use, directly or through
the SAM primitives, the syntactic structure of the SDL system, more precisely the AS1 syn-
tactic tree extracted from an SDL specification (see the static semantics, §3.3.1). As shown
in Fig. 3.5, the SDL structure and data parts are used directly, while the AS1 syntactic tree
nodes corresponding to the behavior description, i.e. SDL state machine transitions, need an
additional preprocessing step.

The preprocessing step, called compilation in [IT99c|, is necessary because of the limited
capability of ASM to represent sequential behavior. As shown in §3.3.2, an ASM agent functions
by repeatedly evaluating the same program over the current ASM state, and atomically updating
a set of locations as a result of this evaluation. In order to model sequential algorithms in ASM,
one has to explicitly store and use control flow information, e.g. by keeping an ASM function that
memorizes the current position in the program (program counter). This is how SDL transition
code is handled in [IT99c]. The compilation step assigns unique labels to the SDL instructions
contained on every transition in the system, used as values of the program counter.

A complete description of the components of the dynamic semantics of SDL described above
is outside the scope of this work. For that, the reader is referred to [IT99c]. Some features of the
dynamic semantics which are relevant to the present work are discussed in the next paragraph.

Semantics of concurrency

The concurrency model for SDL is derived from the concurrency model of distributed ASMs,
described in 3.3.2. As we mentioned there, the runs of a multi-agent ASM are partially ordered
sets of transitions, but the model is proved to be equivalent to a model with nondeterministic
interleaving at the level of ASM agent transitions.

On the level of SDL, this model corresponds to interleaving of individual SDL actions (task,
create, output, etc.), as all simple SDL actions are executed in one ASM step®.

The evaluation of the expressions contained in an SDL action, e.g. output or create
parameters, right-hand side of task, in not included in the unique ASM step mentioned before.
These expressions are evaluated in a series of ASM steps preceding the action. Therefore,
interleaving may occur during the parallel evaluation of expression in parallel agents. However,
as there is no communication between agents executing in parallel'®, other than by means of
SDL signals, and signals cannot influence the result of an ongoing expression evaluation, the
interleaving that may occur during parallel expression evaluation has no influence over the overall
behavior of the system.

®This concerns only simple actions (see §3.2.3). Compound actions written in the textual algorithmic language,
are mapped to structures of simple actions in the static semantics section of [IT99c]. For compound actions, the
atomicity level is that of the simple actions contained therein.

19Alternating agents contained in a process agent (see §3.2.2) are protected from parallel execution using a
mutual exclusion flag in the state of the owner agent.
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Semantics of time. Timers

As shown in §3.3.2 on page 53, time in the ASM model is considered part of the environment,
and modeled through the monitored function currentTime. There are two monitored functions
relevant for the temporal behavior of SDL systems in the dynamic semantics:

1. monitored now : — Real , is used instead of currentTime in the SDL semantics, to rep-
resent the current time. now satisfies the same constraints as currentTime (monotonicity,
discreteness), and one additional constraint:

— The value of now does not increase as long as a signal is in transit on a non-delaying
channel.

2. monitored delay: Link — Duration gives the amount of time with which a signal passing
through a Link is delayed. delay is a monitored function, so it can vary nondeterministically
during the execution of the system. It satisfies two integrity constraints:

— It always returns 0 for non-delaying channels.

— For every link [, successive evaluations of now + [.delay yield increasing values. This
constraint ensures that channels preserve the order of the conveyed signals.

Timers are managed in the SDL Abstract Machine using the concept of schedule. Each input
gate has a schedule which contains a list of signals with their corresponding arrival times. In
the ASM model, the schedule contains both the signals in transit (with the arrival time > now)
and the arrived signals (with arrival time < now). The queue of the gate, which in SDL is a
“physical” object, is merely a derived function in the ASM model: it contains the signals from
the schedule for which the arrival time is < now. For further details on the modeling of schedules
the reader is referred to [IT99c, GGP99].

The schedule provides a convenient way to handle timers: when an agent sets a timer, a
corresponding timer signal is directly put in the agent’s schedule, with an arrival time equal to
the timer deadline. Then, as soon as now becomes greater than the deadline, the timer becomes
visible in the (derived) queue of the agent.

Schedules are also used, in combination with the delay function, to model communication
channel delays.

We outline below, in less formal terms, the main characteristics of the semantics of time in
SDL implied by the ASM modeling described before:

— Individual actions on SDL transitions are atomic, and execute in 0 time.

— The evaluation of SDL expressions is not atomic, and therefore the value of the ASM
function now may vary during evaluation. This may influence the result of expressions
involving the SDL predefined expression now.

— Any amount of time may generally pass between the execution of two actions, or before a
transition is triggered.

— A timer, although visible in the queue from the moment it expires (see the explanation on
schedules, above) may be ignored by the concerned agent for an indeterminate amount of
time.
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ASM vs. other semantic approaches

It can be argued that the ASM semantics of SDL presented in the previous paragraphs, while
being formal, captures the functioning of SDL systems at the right abstraction level. Indeed,
the functioning of one ASM agent is close to that of an Extended Finite State Machine, which
is the intended behavioral model of SDL agents [OFMP+94].

Moreover, composition and communication between parallel agents is captured in ASM by
the multi-agent ASM model and by sharing parts of the state between multiple agents. This
model corresponds naturally to the semantics of SDL described informally in Z.100 [IT99b]. The
model also makes unnecessary the description of explicit composition operators, which would be
necessary in an automata-based semantics model, while still being equivalent to an asynchronous-
synchronized composition (the synchronized actions corresponding to modifications of the shared
locations of the global ASM state).

The ASM semantics of SDL also responds to a number of critiques which concerned the
previous version of the standard formal semantics (see for example [Boz99]), namely the con-
currency model, the handling of timers, etc.

Several other semantic models for SDL have been proposed in the literature. They usually
tackle only with a subset of the language. We mention some of them here, with an accent on
those concerned with the representation of timing issues.

— [KM95, MGHS96] describes two possible ways of defining a timed denotational semantics
for SDL, based on the Duration Calculus [CHR92]. The semantics of an SDL process
is a duration calculus formula satisfied by the process specification, and the semantics
of a system is obtained by the conjunction of the formulae corresponding to the system
components.

System timing hypotheses, e.g. duration of individual tasks, may be expressed similarly
with duration calculus formulae. The semantics together with the hypotheses may be used
for proving timing properties of the SDL system. However, we found no characterization
of the level of automation of this task in the literature.

The semantics given in [KM95] is restricted to a small subset of SDL (restrictions concern
architecture, behavior and data) and cannot scale up without difficulties, as noted by its
authors.

— A different approach is proposed in [BFGT99, BGMS98, Boz99], where a semantics is
given to a representative subset of SDL by translation to another formalism, IF, based
on extended communicating timed automata. The dynamic semantics of IF is described
formally in [Boz99], using a layered approach and taking as basis Labeled Transition
Systems (LTS) and Timed Automata (TA, [ACD93, AD94]). The translation of SDL to
IF is described informally in [Boz99].

The approach undertaken in [BFG199, BGMS98, Boz99] answers many problems raised
in the context of our present work, concerning the description and analysis of time-related
behavior. However, the answers are given at the level of IF rather than SDL. In contrast,
the approach presented in this thesis concentrates on providing extensions, semantics and
techniques working directly on the level of SDL and its standard ASM semantics.

— Other semantic models for SDL proposed in the literature are not particularly concerned
with timing issues. We cite here semantic definitions for SDL based on Petri Nets [FG97,
FDT95], process algebra [BMU98], finite automata [God91] and data flow models [Bro91].
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3.4 Tools

SDL models can be employed in several phases of the system development cycle, as noted in §3.1.
Specific software tools support the developer in each of this phases. In this section we review the
main types of tools for building and analyzing SDL models. The types of tools presented here
can be found in several SDL tool frameworks, but they have common characteristics beyond
framework or vendor specific issues.

— Editors and semantic checkers. SDL has a graphical syntax which makes the editor
an important part of a tool framework. Editing is usually doubled by a syntactic and
semantic checker, which ensures that the static semantics constraints of SDL are met by
a specification.

— Simulation tools perform a symbolic execution of an SDL specification, conforming more
or less to the formal dynamic semantics (§3.3.3). Simulation tools provide usual debugging
functionality (step by step execution, breakpoints, investigation of system values, etc.) as
well as more advanced features (stepping backwards, automatic stimulation of the system
with signals, random simulation, tracking of complex conditions e.g. specified through a
state machine, etc.).

Because the real execution and communication times under simulation differ from those
found in implementations, simulation tools typically use an artificial notion of time, and
control time passage during simulation. Thus, the notion of time in simulation is more
restrictive than the one specified by the formal semantics (§3.3.3). This issue is further
discussed in §3.5.

— Verification tools can be used to prove formally that an SDL system specification satis-
fies a certain behavior property. The way the property can be defined is tool-specific, and
can be a temporal logic or another formalism (Message Sequence Charts used as prop-
erty specification language, automata based languages, etc.). The verification methods
implemented by SDL tools are derived from model checking [QS82, CES86] (see also the
monographs [CGP99] and [Hol91]).

Dealing with time can be an important aspect of verification, and tools typically use a
controlled notion of time equivalent to that used by simulators.

— Code generators and deployment tools allow the developer to obtain an implemen-
tation for a specific platform automatically from the SDL specification. As SDL is an
imperative, design-oriented language, the translation of most SDL constructs into imple-
mentation objects is straightforward.

— Test generators can be used for automatically deriving test cases from an SDL model. In
this case, the SDL specification is considered a correct, high-level description of the desired
system functionality. Test cases corresponding to particular system executions are derived
using simulation techniques. Current test generation tools and simulation tools handle
system time in a similar manner. However, the test generators of which we are aware use
the information concerning time only to correctly explore the SDL system execution, and
do not generate timing information in the tests.
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3.5 Discussion

This section complements the preceding SDL language description with some general remarks on
the usability of SDL for the specification and analysis of real-time systems. The ideas outlined
here are also elaborated in [BGK™00].

Specification vs. programming in SDL

SDL has the double aim of being on one hand a high-level specification formalism, which means
it must abstract from certain implementation details, and on the other hand a programming
(or description) formalism from which direct code generation is possible. The two roles of
the language are sometimes conflicting, and in many cases the description side has been given
priority.

In consequence, SDL has several characteristics which make it interesting as a design lan-
guage for real-time systems: native asynchronous communication, timer constructs, hierarchical
organization of the specification, etc. However, for requirements and high-level system specifi-
cation, the constructs provided by SDL are mostly insufficient.

In [BGK 00, BGM*01] we proposed several extensions to SDL, necessary in order to capture
descriptive information appearing in the initial phases of system modeling:

— Assumptions or knowledge about channel reliability, with attributes like loss rate, mini-
mal/maximal delays, etc. As all other information types enumerated below, information
about channels may be available early in the development cycle, and should be captured
in the SDL model. It is useful during simulation and verification.

Currently, in order to model such information in SDL, one has to model the behavior
(losses and delays) of a channel in an imperative manner, e.g. through an SDL process.
The approach has several drawbacks enumerated in [BGK™00], but is nevertheless used in
practice whenever the characteristics of channels are essential for simulation and verifica-
tion purposes (e.g. in specifications of flow control protocols, which are designed precisely
to cope with losses and delays).

— Information about execution times, especially in abstract SDL models containing informal
action specifications.

Currently, execution times must be modeled by introducing explicit waiting (e.g. with
timers). This works for specifying minimal or exact execution times, but cannot express
maximal execution times. Using such programming concepts to model high-level descrip-
tive information about timing also changes the meaning of the model, which can prevent
it from being used for tasks such as code generation.

— Information about the behavior of the environment. In SDL, the system may communicate
with the environment, which is completely unspecified. However, in real systems some
characteristics of the environment, concerning the ordering and periodicity of signals, are
frequently known. The well-functioning of the system may rely on such assumptions on
the environment.

Some of these extensions and their possible exploitation are described in the later chapters
of this thesis.
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Reasoning about time in SDL specifications

The manner in which time progresses during the execution of a system is left unspecified in SDL.
Z.100 [IT99b] specifies that an indeterminate amount of time may elapse during the execution
of any action, and two different executions of the same action may take different amounts of
time. Moreover, any agent may be kept waiting or may be suspended indeterminately by the
system scheduler, which is not specified. The modeling of time in the formal ASM semantics
[IT99c] complies with the above informal description.

These assumptions about the behavior of an SDL system are the minimal hypotheses that
can be assumed about any implementation of the system. With such loose assumptions about
the performance of the underlying machine, many unrealistic execution scenarios of an SDL
specification are actually allowed by the semantics. The result is that it is difficult to guarantee
almost any time-related property about the system behavior. This problem, previously raised
by other authors [Boz99, MGHSY6], is also examined in [BGK'00, BGM™01].

SDL simulation and verification tools solve this problem by deviating from the standard
semantics in what concerns time. As mentioned in §3.4, in simulation and verification tools time
is a “logical” parameter, controlled by the tool. The control is based on a set of tool-specific rules
(which may be parameterized). For example, the ObjectGEODE simulator [TEL0Oa] controls
time passage by considering that actions take 0 time to execute unless otherwise specified, and
that time only passes when the system is idle (all agents are in a stable state waiting for an
external stimulus). The solution provided by tools falls in the other extreme: it idealizes the
performance of the underlying machine and may consider unrealizable certain realistic execution
scenarios.

In Chapter 6 we propose a solution for this problem, based on constructs and techniques
initially developed in the framework of timed automata. The idea is to include descriptions of
assumptions on time in the SDL model, and to use these assumptions for a controlling time
progress during simulation and verification.
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MSC and GOAL

A central aspect of the real-time systems specification and validation process adopted in this
work is the specification of timing requirements. Such requirements may serve different purposes:

— during system analysis/specification, requirements describe features of the system on a
high-level of abstraction,

— during validation, requirements describe properties of the system which have to be verified,

— for automatic test generation, requirements describe the typical functions of the system,
for which test cases have to be generated.

Requirements may be described, up to a certain limit, in SDL. However, they are usually
situated on a more abstract level for which SDL is ill adapted. For instance, a pure functional
requirement for a typical behavior of a system, such as “the system responds to a signal A with
a signal B within ... time units” is not concerned with the structure of the system, still the
structure has to be described if the requirement is written in SDL. Moreover, as noted in the
end of Chapter 3, SDL is in general ill adapted for non-imperative (i.e. declarative) description
of behavior.

In practice, specific (declarative) languages are used to specify requirements. Such languages
range from logic formalisms (first order logic, temporal logics) to automata-based languages
or trace languages. Industrial practitioners show a preference for trace-based requirements
languages, this being proved by the integration of such languages within modern analysis and
design methodologies [IT97, OMG99].

The SDL methodology guidelines [IT97] recommends the use of MSC [IT99a] as requirements
specification language in the context of designing SDL systems. We will examine also a second
language, GOAL [ALH95], as it provides a complement to MSC. GOAL is defined and supported
in the ObjectGEODE toolset [TELOOa], and is more suitable than MSC for the specification
of properties employed in formal verification. In Chapter 7, MSC and GOAL are used and
extended for expressing time-related properties of real-time systems.

4.1 MSC

Message Sequence Charts is a formal language for representing execution traces of systems in
terms of the messages exchanged between the system components or with the environment. The
MSC Language is standardized and maintained by the ITU-T as the Recommendation Z.120
[IT99a].

61
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MSC emerged from a practical need to express system execution traces in a visually intu-
itive and precise way. Many non-standard precursors of MSC (time sequence diagrams, arrow
diagrams, information flow diagrams, interworkings) were used locally in companies and stan-
dardization bodies in the telecommunication sector. The work on a standard language for
representing execution traces begun in the I'TU-T around 1990.

The first version of MSC dates from 1992, and it provides a textual and a graphical syntax,
as well as an informal semantics. The elements defined in MSC-92 — instances, messages, con-
ditions, actions, timers, process creation and process stop, coregions and sub-MSCs — remained
essentially the same in the current version of the language (M SC-2000).

Around 1993, substantial work was put into defining a formal semantics for MSC. There
were three main proposals: one based on automata [LL93, PL93], one based on Petri nets
[GPRY3], and one based on process algebra [MR94, MR96]. An improved version of the third
one is currently part of the MSC standard (Z.120 Annex B).

The 1996 version of MSC added several structural concepts — inline expressions, MSC refer-
ences and High-level MSCs (HMSC) — which facilitate the construction of large specifications.
A few basic concepts were also added: gates and general ordering arrows.

The recent interest for expressing and analyzing timing constraints with MSCs lead to a
series of new concepts, added in MSC-2000. This version also includes constructs for declaring
and manipulating data.

Paradigm and scope

A basic MSC specification essentially describes a set of instances and messages exchanged
between these instances. An MSC instance represents a component of the designed system, but
the level of granularity is undefined: the instance may correspond to an agent, a set of agents
or the entire system in an SDL specification.

Besides messages (outputs and inputs), other occurrences may be represented on an MSC
instance: timers, actions, local and global conditions. The language offers mechanisms for
building complex MSCs by composing basic MSCs.

The scope of MSC is the specification of requirements for reactive systems and system com-
ponents. Such requirements may appear in the initial phases of system development (analysis,
specification, design), they may be execution traces built for debugging purposes, or they may
be a basis for simulation, verification and test case generation.

Language definition artifacts

The MSC language definition (Z.120, [IT99a]) includes a textual syntax (MSC/PR), a graphical
syntax (MSC/GR), an informal semantics written in English and a formal semantics (Z.120
Annex B). The formal semantics is not stable yet in the current version of the language; conse-
quently, in the following we refer to the formal semantics of MSC-96.

The textual and graphical syntaxes have equivalent power of expression. The graphical form
is easily readable and it is the form in which documents are sketched and used by humans.
The textual format of MSC was designed primarily for facilitating the electronic exchange of
documents between CASE tools.! Being simpler and more consistent than the graphical syntax,
the textual syntax is also used as basis for the definition of the formal semantics.

'Computer Aided Software Engineering tools
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msc connection msc connection;
Client Client inst srv : Server, clientl : Client, client2 : Client;
Server instance srv : Server;
srv ’ client1 ‘ ’ client2 ‘ condition initial shared all;
in CR(namel)from clientl;

S \l> out CACK to clientl;
initial in CR(name2)from client2;
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CR(namel ; -
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instance client2 : Client;

Session started ...[omitted]
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endmsc ;

Figure 4.1: Basic MSC for the connection phase of the protocol

In what follows we will use a simple made-up example for presenting the MSC language
constructs. The example is a simple protocol, belonging to the application layer in the OSI
stack, in which several clients use a central server for exchanging services (the nature of which
is not defined) in a session-based fashion. The initial connection phase (with 2 clients) is shown
in Figure 4.1, in both graphic and textual format.

4.1.1 Basic MSC

A Basic MSC is a specification describing instances and events. The nature of these concepts is
explained in the following paragraphs.

Instances, events, ordering

Instances are distinct sub-parts of a system, characterized by a name and a type. The type in
MSC is just a name and it is supposed to be a meaningful information in the context of the
language in which the system is modeled. For example the type may correspond in SDL to an
agent type, agent instance set, etc.

As shown in Fig. 4.1, in graphical format, an instance is represented as a vertical bar,
beginning at the top with a rectangle containing the name of the instance and ending at the
bottom with an end symbol (or with a stop symbol as we will see later).

Various types of events may be represented on an instance. Fig. 4.1 shows message output
and message input events (emission and reception of a message are considered distinct events,
i.e. the model is asynchronous), timer events (set, reset, timeout) and global conditions.

The events drawn on an instance bar are considered ordered in time, from top to bottom.
However, the global ordering of events from multiple instances is not necessarily the visually
intuitive order. Actually, the global order of events is a partial order, defined by the local instance
orders and the causality (a message must be emitted before it is consumed).
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Thus, the MSC in Fig. 4.1 states that CR(namel) is received by srv before CR(name2), but
formally it says nothing about the order in which these two events were emitted.

The environment of an MSC is capable of emitting and accepting messages. In the graphical
form, the outer border represents the environment of an MSC, from and to which message lines
may be drawn. In the textual form, the environment is denoted by env. For example, in Fig.1
the message EnterSession is received from the user, who is part of the environment.

Messages

A message represents an asynchronous communication occurrence between two MSC instances.
The message has a name and may carry data parameters. In MSC, a message defines two events:
the output and the input. The latter may actually represent either the receipt or the handling of
the message by the destination instance, as the relation between MSC models and other models
of a system (e.g. SDL) is outside the scope of [IT99a)].

In the graphical form, a message is drawn as an arrow, which must be horizontal or heading
downwards. The way the message is drawn does not imply anything about the delay between
the emission and the reception of the message. However, the above rule is useful as it eliminates
geometrically the possibility of cyclic causality.

Lost and found messages may also be represented on MSCs. A lost message defines an
output event with no corresponding input. A found message defines an input event with no
corresponding output.

In MSC-2000, the message types and the types of parameters may be declared. However,
MSC does not describe a data definition language, so the user may use data types defined in other
languages (SDL, UML, ASN.1, etc.). Such external data types are referenced through names
that are not interpreted in the MSC semantics. Instances may own wvariables which allows for
the specification of more complex requirements, such as dependencies between parameter values
of different messages. Constructs for assigning a value to a variable may appear either in message
receipts or inside actions.

General ordering arrows and coregions

General ordering arrows are useful when we want to constrain the order of two events, which
are otherwise unrelated by the MSC partial order. For example, in Fig. 4.1, the emission of
CR(namel) by clientl is not related in any way with the emission of CR(name2) by client2. To
specify that client2 emits first, one would have to use a general ordering arrow.

Coregions are used to relax the local ordering of events on an instance. A coregion belongs to
an instance and is defined by a starting point and an ending point. The effect of a coregion is that
events represented inside the coregion boundaries may occur in any order and not necessarily in
the visual order.

Timer operations

MSC timers are inspired from the homonym concept of SDL. An instance may specify a timer
set followed either by a timer reset or by a timeout. These timer events may be represented
also individually, when the description of an instance is split into more MSCs, and the timer
constructs appear on different MSCs. A timer set by an instance may only timeout on or be
reset by the same instance.
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As noted in [BAL97], timers may be used for expressing either minimal or maximal delays
between events on a same instance. In our example in Fig. 4.1, the timer T on the instance
srv models the requirement that the server must wait for at least 5 time units for incoming
connections, and after that it may consider that subscription phase ended. Timer U on clientl
and client2 models the requirement that the connection acknowledgement must come from the
server in at most 2 time units since the connection request was sent.

Timer operations provide a very restrictive mechanism for specifying timing constraints, for
the following reasons: firstly, timers are just discrete events in the formal semantics of MSC,
with no special timing connotations. Secondly, there are constraints which cannot be represented
with timers, such as the delay between the emission and the reception of a message.

For this reason, additional timing annotations were introduced in MSC-2000. They are
discussed in a further section.

Conditions

An MSC condition construct (e.g. initial or Session started in Fig. 4.1) represents either a
significant state of an instance, or a state shared by several instances. Shared states (conditions)
are useful as they provide synchronization points between instances: a shared state introduces
a single event which is shared by all instances and thus constrains the global partial ordering of
events.

A condition is characterized only by a name, and it does not necessarily say something about
the actual state of the system in terms of variables, message queues, etc.

Actions, Method Calls, Instance Creation, Stop

Actions — containing variable assignments or uninterpreted text — may be represented on in-
stances.

A concept of method call similar to the SDL RPC was introduced in MSC-2000. A method
call begins with a message between two instances, representing the initiation of the method,
and ends with another message representing the reply. Between the two, a suspension region is
drawn on the sender, and no message, timer or other construct may appear in this region.

Creation of an instance by another instance, as well as termination of the execution of an
instance may be represented as an MSC event.

4.1.2 Structuring concepts

The MSC language defines several mechanisms for structuring complex specifications and de-
scribing non-linear control flows. These are: instance decomposition, inline MSCs, MSC refer-
ences and High-level MSCs (HMSC).

Instance decomposition

An instance from one MSC may be refined in another MSC containing sub-entities of that
instance. If an instance I from an MSC M1 is decomposed in another MSC M2, then the
environment of M2 will send and receive exactly the same messages that are received and sent
by I in M1. A similar rule applies for timer events: a timer event appearing on the decomposed
instance I in M1 must appear someplace on an instance in M2.
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Inline MSCs

Inline expressions allow to express non-linear control flows inside an MSC. They are based on
the notion of MSC composition operator. The operators are:

— alternative choice between two or more MSCs (alt operator),
— parallel execution of two or more MSC sections (par operator),
— repeated execution of an MSC section (loop operator),

— optional execution of an MSC section (opt operator)

— execution of an MSC section with an option for treating exceptions (exc operator).

On the semantics of inline operators, we note that the boundaries on an operand MSC are
not considered synchronization points for the instances involved in the MSC. Thus, for example,
if two instances I1 and I2 are described by a loop MSC M, this is equivalent to the repetition
of M an arbitrary number of times, but does not introduce synchronization points between two
successive occurrences of M. For a more complete definition, the reader is referred to [IT99a].

Gates, MSC references and HMSC

MSC references may be used to refine the behavior of one or more instances from an MSC
in another MSC. A referred MSC must contain the same instances as the referring MSC. An
advantage of using MSC references is that they can be parameterized with data.

Gates are used to clarify the connections of a referenced MSC when it is put in a larger
context. They are used to provide a mapping between the environment (bounding box) of the
referenced MSC and the instances or the environment of the referencing MSC.

Gates are inspired from the homonym concept from SDL; thus, a gate is a named interface
between an MSC and its environment. Every message or general ordering arrow coming from the
environment or going to the environment comes or goes through a gate. The gate through which
a message is transferred may be declared explicitly, or introduced implicitly (with a default name
depending on the name and direction of the transferred message).

Gates and MSC references allow for the description of High-level MSCs (HMSC). A HMSC
is a graph formed of start nodes, end nodes, conditions, MSC references and connection points.
Arrows in this graph represent the flow of control. Multiple arrows outgoing from the same
node represent alternatives. Conditions represent synchronization points for all the instances
concerned by the HMSC. Strict static requirements for well formedness are given in the language
definition, such as: there should be exactly one start node and one end node for each HMSC.
HMSCs allow a graphical representation of structured MSCs but the power of expression is the
same as that of textual composition operators (alt, loop, par, opt). An example of HMSC is
given in Fig. 4.2; it includes references to MSC that are not described here for brevity.

As for inline composition operators, we note that the sequential composition in HMSC does
not introduce implicit synchronization points between the instances concerned by the HMSC.
The semantics of the sequential composition of two MSCs is equivalent to that of the juxtapo-
sition of events from the two MSCs on respective instances.

4.1.3 Semantics and decidability

As in the case of SDL, there were multiple attempts for defining a formal semantics for MSC,
based on various formalisms. The problem is easier than in the case of SDL, because MSC
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Figure 4.2: Example of high-level MSC

is a language for describing traces and a formal semantics must only provide a mathematical
relationship between a well formed MSC and the corresponding set of acceptable traces.

The language of event traces described by a Basic MSC is a regular language, and there
are several ways in which it can be characterized formally: using finite automata [LL93, PL93],
1-safe? Petri-nets [GPR93], or process algebra terms [MR94]. The three approaches mentioned
above are briefly presented in the following paragraphs.

The language of traces defined by a High-level MSC is no longer a regular language. This
raises decidability issues which are discussed in the end of this section.

Petri-net semantics of Basic MSC

A Petri-net based semantics for MSC is described by Grabowski et. al. in [GPR93]. Fig. 4.3
shows an example of a simple Basic MSC and the corresponding labeled Petri net. We employ
the usual notation for Petri nets, in which circles denote places, rectangles denote transitions,
and arcs denote token flow.

A place represents either the state of an instance between two consecutive MSC events,
or a message that was sent and waits to be received. The labels on places correspond to their
function (in our example, labels are shown on places representing waiting instances). Transitions
represent MSC events. The initial marking puts one token in each place corresponding to the
beginning of an instance (except for dynamically created instances).

Shared MSC conditions, which provide synchronization between instances, are modeled us-
ing a unique synchronizing transition in the Petri net. A condition shared by n instances is
represented as a transition with n input arcs and n output arcs, each corresponding to one of
the n instances.

It can be easily shown that Petri nets constructed from Basic MSCs following the above rules
satisfy the 1-safeness requirement (i.e. have at most one token in each place at any time). It

2The meaning of 1-safeness is that in all reachable markings of a net, the number of tokens in any place never
exceeds one. See also [Pet81].
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Figure 4.3: Labeled Petri net corresponding to a Basic MSC

follows that the language of traces defined by the MSC is regular, since the marking automaton
of the Petri net is finite.

Automata semantics of Basic MSC

Another semantics for MSC, based on automata, was proposed by Ladkin and Leue [LL93, PL93].
The automaton they construct from an MSC specification is roughly equivalent to the marking
automaton of the Petri net proposed in [GPR93].

Process algebra semantics of Basic MSC

The standard MSC formal semantics (Z.120 Annex B) is an elaborated version of the process
algebra-based semantics of Mauw et. al [MR94, MR96]. The semantics of an MSC is given by a
term in a process algebra PApygc, which is an extension of the PA, defined in [BW90]. The
signature of PApasc contains:

— Empty process (€) and deadlock (§) symbols.
— Action constants, which are labels denoting MSC events: actions, outputs, inputs, etc.

— Operators for alternative composition (+ ), sequential composition (-), free merge (||),
left merge (|| ) and termination (/).

For a more complete description of the process algebra semantics of MSC, the reader is
referred to [MR96] and to Z.120 Annex B.

Decidability of HMSC

As defined by the standard, the upper and lower boundaries of Basic MSCs referenced from a
HMSC do not counstitute synchronization points between the represented MSC instances. This
means that, if we have a sequence of two Basic MSCs containing two instances (A and B),
there may be traces represented by the MSC in which events appearing in (the beginning of)
the second MSC on instance A, occur before events appearing in (the end of) the first MSC on
instance B.
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If we consider the Petri net semantics of MSC, which is quite intuitive for this example, the
effect of this lack of synchronization at MSC boundaries destroys the 1-safeness property of the
resulted Petri net.

Indeed, if we take a Basic MSC M containing only two instances A and B and a message
m from A to B, and a HMSC which describes an infinite loop on the BMSC M, the Petri net
corresponding to the HMSC contains places for which the marking may increase to infinity. This
corresponds to the situation where A sends the message m continually at a higher rate than B
can consume.

Because of this choice of the semantics of HMSCs, most model checking problems for HMSCs
are undecidable. An important example is the undecidability of the problem of emptiness of the
intersection of two HMSCs. For a survey of the undecidability problems of HMSCs, the reader
is referred to [MPO00].

In order to overpass the undecidability problems mentioned above, validation tools using
MSC as property specification language employ a different semantics for HMSCs. For example,
the ObjectGEODE tool on which our further work relies, considers that Basic MSC boundaries
introduce synchronization points, and thus a HMSC defines a regular language of traces and is
equivalent to an automaton. Moreover, the tool does not allow free-formed HMSCs, but uses
operators similar to the inline MSC operators described on page 66.

4.1.4 Tools

MSC models can be employed in different phases of the system development cycle, as noted
in the beginning of §4.1. Various software tools provide support for each of these phases. We
enumerate below some of the tool types which are involved in building and manipulating MSC
descriptions, in order to set the background for the work presented in subsequent chapters of
this thesis.

— Editors, syntactic and semantic checkers, used for manual editing of MSC specifica-
tions and static checking.

— Simulation and verification tools for other system models, such as SDL models. They
use MSC as an auxiliary language, and may take MSC specifications as input, or produce
them as output.

In input, an MSC specification can be used for guiding a simulation, or for verifying that
a system model is compliant to a requirement specified by the MSC. The nature of the
compliance relationship is a tool specific issue; for example, an SDL specification may be
considered compliant to an MSC either if there is an execution of the SDL specification
which produces a trace that can be found in the MSC (possibly modulo some unobservable
events) or if all executions of the SDL system produce traces from the MSC. This kind of
functionality is frequently provided by SDL simulation and verification tools.

In output, MSC may be produced automatically to represent debugging information. This
is also a frequent functionality of SDL tools.

— Test generation tools which generate tests either directly from an MSC, or from an
MSC and another formalism, such as SDL.

The MSC language is suitable, within a certain extent, for the specification of test cases for
asynchronous reactive systems. The latest version of the ISO test specification language
TTCN [ETS00] actually defines MSC as an alternative representation for test cases.
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Figure 4.4: MSC with timing annotations

In test generation tools, MSC may be used either in output, to represent the test cases, or
in input, to represent abstractly a test purpose for which test cases have to be elaborated
based on another system model (e.g. SDL).

4.1.5 Specifying timing information

As a result of an identified need in real-time systems development, the specification of timed
event traces was approached in MSC-2000:

— The semantics of MSC-2000 was adapted so that an MSC specification describes a set
of timed traces of the following form: (eq,t1, e, 9, €3,t3,...). In this trace ey, e2,e3, ... are
discrete events (outputs, inputs, actions, timers, etc.) and ¢j,t9,%3,... are relative time
durations between successive events. At the time of writing, the timed formal semantics

of MSC-2000 is not yet stable.

— Descriptive timing (constraints) may be introduced in MSC specifications. Their purpose
is to specify the possible values for the time projection of a trace (i.e. t1,t2,ts,...). The
annotations may specify either the absolute time of occurrence for an event, or the relative
delay between two arbitrary events.

Both time of occurrence and delays can be specified using a (possibly degenerated) interval
in the domain of Time values (which is not specified but can be assumed to be that of
positive reals, R, )

— Measurements allow to obtain (and store in a variable of type Time) the relative delay
between two events, or the absolute time of occurrence of an event. The measured time
may subsequently be used in a constraint.

The MSC in Fig. 4.4 shows the representation of timing measurements and constraints.
These mechanisms can be used both in Basic MSCs and in High-level MSCs; in the latter they
are attached to the beginning or the end of a referenced Basic MSC, and refer either to the first
or to the last event in that BMSC.

Note also that in the timed semantics of MSC defined informally in the standard
[IT99a], no particular timing interpretation is attached to timer constructs. Thus, timer
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sets/resets/timeouts model discrete events and do not imply anything as to the timing of their
occurrence.

The introduction of timing information in MSC raises the problem of the internal timing
consistency of an MSC specification: “can there be any trace satisfying the timing requirements
given in the MSC, or are inter-event delays contradictory?”. This problem has been studied
before, and static consistency analysis solutions based on graph theory are given in [AHP96]
and [BALI7].

The model checking problem for timing properties specified with MSCs has not been ex-
tensively explored previously. In Chapter 7 we discuss the manner in which MSCs with timing
annotations may be used to specify and verify quantitative temporal properties of real-time
systems modeled in SDL.

4.2 GOAL

Scope

GOAL [ALH95] is the requirements specification language supported by the ObjectGEODE
toolset [TELOOa]. It originates in the observer language of the Veda tool, described in [Gro89].
Its scope of applicability is more reduced than that of MSC, in the sense that its graphical
representation is not suited for capturing high-level requirements during the analysis and design
phases. GOAL is used for:

— Automatic verification of properties on SDL models. GOAL provides additional function-
ality compared to MSC in this area, as it can describe properties referring to the internal
structure (agents, states) of an SDL system, or to the value of internal data. It also defines
a clearer meaning for property satisfaction.

— Guiding simulations and the verification process by: modeling the behavior of the environ-
ment, cutting the exploration of parts of the model, injecting faults, unexpected signals,
etc., and producing customized traces and statistics.

In this work we are interested in GOAL primarily as a property specification language. In
later chapters of the thesis, we discuss extensions of GOAL for expressing timing properties of
real-time systems, as well as timed property verification methods and tools.

Paradigm

GOAL is an automata-based language. A GOAL specification, called observer, is an extended
finite automaton designed to be executed synchronously with an SDL specification, during
simulation or verification. The meaning of synchronicity is that from synchronized composition
of automata.

The transitions of the observer are triggered by events occurring in the SDL model: trans-
mission or reception of signals, firing of transitions, creation or stopping of processes, time
progression, etc. The states of the observer are classified into ordinary, error or success states
which correspond to property satisfaction or breaking.

The following sections describe the language concepts and the execution model of GOAL.
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4.2.1 Language concepts
Structure

A GOAL observer specification is similar to the behavior description of an SDL agent. The
differences are:

— An observer is a stand-alone state machine, it is not connected through signal routes or
channels with other state machines.

— Besides internal data (variables), an observer may declare and use probes. Probes are
access paths to SDL model entities, which can be used to observe or modify SDL model
objects.

— The transitions of a GOAL observer are triggered either by a provided clause (similar to
SDL continuous signals, see §3.2) or by a when clause which observes events happening in
the SDL model (see next paragraph). Input clauses are not allowed, as GOAL observers
do not communicate through signals. Additionally, in GOAL, provided clauses do not
have lower priority than when clauses.

— The transitions must not contain output, set, reset, create or stop actions, as well as
several expressions defined in SDL (self, parent, offspring, sender).

— The observer state machine must be deterministic, i.e. two transitions should not be
simultaneously enabled in a state, and transitions must not contain informal decisions or
anyvalue expressions. This is a practical rule imposed by the simulation and verification
tools to simplify state space exploration.

— Task actions on transitions can be used to modify both observer variables and SDL model
objects (SDL variables, signal queues).

— In order to describe a property with an observer, some of its control states can be declared
as error or success states.

Observation mechanisms

When clauses may be used to observe the following types of discrete events occurring in the
SDL model:

— the firing of a particular transition,
— transmission or reception of signals,
— creation or stopping of processes,

— procedure calls.

Additionally, provided clauses combined with probes may be used to observe the values of
SDL model variables, as well as time progression (by testing the value of now).

GOAL observers may be combined with a transition filter mechanism, so that the observer
may cut the exploration of a part of the state space. This is an effective state space reduction
mechanism, when a part of the state graph is not interesting for the verified property.

Fig. 4.5 shows an example of GOAL observer for the session oriented protocol introduced
in §4.1.1. It specifies that a successful initialization must take at most 5 time units, from the
moment the initialization phase begins, until the sending of the first StartSession signal. The
representation of when clauses is shown in Fig. 4.5.
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4.2.2 QObserver execution

Unlike MSCs which are descriptive, GOAL observers are executable specifications. In order to
check a property of an SDL system, an observer is executed by a simulation or verification tool
in parallel with the system.

The ObjectGEODE simulation/verification tool, which implements GOAL, uses a notion of
simulation step which normally corresponds to the execution of an SDL transition. A series
of observable events (of the kinds described in the previous section) may occur in such an
execution step. These events are tracked by the tool, and after executing the SDL step the
following operations are repeated for each tracked event:

1. The observer’s fireable transition clauses are evaluated, according to:

— the event being processed,
— the global state of the model, after execution of the simulation step.

2. If the observer does not have any fireable transitions, its state remains unchanged and the
next event is processed.

3. If the observer has more than one fireable transition, a dynamic error occurs (since the
observer must be deterministic) and observer processing stops.

4. If the observer has only one fireable transition, it is executed. If execution fails (due to a
dynamic error) then observer execution stops. If execution is completed successfully, the
next event is processed.

A simulation step (e.g. firing a SDL transition) generating several observable events may
lead to several transitions of a same observer.

Observers can be used to check automatically that a model behaves correctly, that is to say
that it meets user-defined behavior constraints. To describe a property with an observer, its
control states must be classified as ordinary, error or success states. The observer should move
to a success state whenever the expected property is met, and to an error state whenever an
unexpected behavior is observed.

Usually, error states are observer state machine sink states. Since the observers are always
executed in parallel with the model, when an observer reaches an error (respectively a success
state), the property that it verifies is false (respectively true) for the scenario that the simulator
has executed from the initial state up to the current state.
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This mechanism is sufficient for verifying safety properties using GOAL observers. Liveness
properties may also be checked using GOAL observers, in a special verification mode (liveness
mode) of the ObjectGEODE tool.

In liveness mode, observers are executed synchronously with the SDL model in the same
way, but they are regarded as Buchi automata [BBO]. The verifier looks for infinite executions
(loops) which do not contain success states (i.e. success states are viewed as progress states,
and the tool searches non-progress cycles).

4.2.3 Specifying timing properties

There are no specific constructs for measuring time passage in GOAL. As an observer is always
executed in parallel with an SDL specification, it may use the value of now to observe time
progress. This could normally suffice to express infinitely complex timing properties.

In practice, due to the manner the ObjectGEODE tool manages time, now is of no use in
GOAL specifications in verification mode. In Chapters 7 and 8 we describe several extensions of
the GOAL language and of the verification tool, which make them suitable for the verification
of quantitative temporal properties.

4.3 Expressivity of MSC and GOAL

MSC and GOAL have slightly different scopes: the former is more descriptive and oriented
towards analysis and requirements capturing, the latter is more verification-oriented. However,
both languages may be used in formal specification of properties and verification. In this section
we take a brief comparative look to the power of expression of the two languages, viewed as
property specification formalisms. We distinguish two comparison axes: the first measures the
event observation facilities, the second measures the power of the underlying semantic model of
the two languages.

4.3.1 Observation and other language facilities

GOAL is more powerful than MSC in what concerns the alphabet of events that may be observed.
MSCs observe the following event kinds:

. message outputs/inputs,

. timers set/reset/timeout,

1

2

3. procedure calls,

4. process creation/termination
5

. actions and conditions - existing SDL/MSC tools cannot actually map these to observable
events in the SDL system, so these events are never observed.

6. time progress - existing SDL/MSC tools do not support this feature.
Additionally to these, GOAL is able to observe:

1. firing of SDL transitions,
2. time progress, effective in current SDL simulation tools but not in verification,

3. data values, discrete states of SDL agents, contents of signal queues.
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MSC has the advantage of being more abstract and visually intuitive, while GOAL has the
advantage of being a complete imperative language. One can write real event-driven programs
in GOAL, with more complicated control flows than what can be expressed in MSC.

Additionally, GOAL programs may modify the simulated SDL model. This can be used for
example for fault injection, or forcing the execution of certain parts of the SDL specification.

4.3.2 Semantic model and satisfaction relationship

In §4.1.3 we noted that the semantic model of standard MSCs is richer than finite automata,
but most model checking problems are undecidable for this model. In practice, verification tools
based on MSC, such as ObjectGEODE, use a semantics for MSC equivalent to finite automata.
Thus, the basic semantic models of GOAL and MSC are identical.

The satisfaction relationship between a model and an MSC specification is outside the scope
of the MSC standard, and depends on the choice of verification tools. Here are some examples
of choices that can be made by tools:

— The MSC represents successful scenarios vs. error scenarios.

— All executions of the system must comply to the MSC vs. at least one execution must
comply to the MSC.

— The MSC represents a complete trace (all observable events are represented) vs. the MSC

represents a partial trace (additional events may occur between the events specified by the
MSC).

In practice, no MSC tool gives control over all these parameters of the semantics of the sat-
isfaction relation. Expressing some things (e.g. a combination of complete and partial scenarios
in the same MSC) may not even be possible without some extensions to the language.

In contrast, the satisfaction relationship between SDL models and GOAL observers, using
explicitly defined success and error states, is sufficiently flexible to encompass all the choices
mentioned above.

4.3.3 Conclusion

To conclude, GOAL is more suitable than MSC for formally specifying properties of SDL mod-
els, when automatic verification is aimed. Nevertheless, MSC has several advantages: it is
standardized, used on a larger scale (and for more various tasks), more abstract, simpler and
more intuitive. For these reasons, in the context of this thesis we study ways to make both
languages more appropriate for the verification of quantitative temporal properties of real-time
systems.
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Chapter 5

Timed automata

In the previous chapters we have presented the functional description languages on which the
real-time specification and validation approach proposed in this work is based. There, we have
outlined a series of lacks of these formalisms, which concern both the specification of timing
information and the possibilities to use such information e.g. in formal reasoning about timing
properties.

In this chapter we examine the timed automata model, introduced by Alur et al. [ACD93,
ADY4], which allows both the description of timing information and the formal (possibly au-
tomated) reasoning based on this information. In later chapters, we will use concepts and
analysis techniques from the timed automata framework in order to enhance the support of the
SDL-centered framework for the design and validation of real-time systems.

In the beginning of the chapter we discuss some of the choices that have to be made when
explicit timing is introduced in a formalism. In §5.2 we introduce labeled transition systems
(LTS) which provide the semantic basis for many formalisms including timed automata. We
continue in §5.3 with the definition of the timed automata model, whose semantics is based on
LTS. In §5.4 we examine the reachability problem for the timed automata model, and some
analysis methods for solving it. The abstractions used for deciding reachability are useful for
solving other important problems for timed automata, e.g. various model checking problems.
We close the chapter with a discussion of the extensions of the timed automata model that have
been studied in the literature.

5.1 Reasoning about time

A characteristic of real-time systems is that their correct functioning depends on the timing or
their actions and responses. A real-time system model must include such timing information,
representing either requirements or knowledge about the system behavior.

For validation purposes, including timing information in the system model is necessary but
not sufficient. What is further needed are techniques for manipulating this information and
deriving additional properties about the temporal behavior of the model.

Model-based vs. axiomatic frameworks

Various frameworks for reasoning about time have been proposed in the literature. There are
two major lines of thought. One of them is concerned with deriving timing properties based on
behavioral models (the model-based approach). The idea is to take the behavioral model of the

7
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system, which is used for modeling and verifying functional properties, and to annotate it with
timing information and use it for modeling and verifying timing properties. The techniques used
for analyzing such models are based on the exploration of the model state space, and on methods
derived from model checking. Temporal logics may be used in conjunction to these models to
express properties.

Representatives of the model-based based approach are formalisms such as timed automata
[ACD93, AD94], temporal extensions of Petri nets [Sif77, Ram74, MF76], temporal extensions
of process algebras [NS91], etc. For property specification, they use real-time extensions of
temporal logics (see for example the survey [AH91]), or automata-based formalisms such as
timed Buchi automata.

The second category of frameworks for reasoning about time aim at modeling only the
temporal properties of a system, independently of any behavioral model. Reasoning is possible
based on a proof system, formed of axioms and inference rules, in which new properties may be
derived from existing ones. Examples of such frameworks include duration calculus [CHR92] or
timed extensions of Hoare logic [Sha95].

In this work we concentrate on a model-based approach, as we aim to support the validation
of quantitative temporal properties based on (extended) SDL models. We take timed automata
as starting point, because they are extended versions of finite automata, and thus semantically
related to SDL.

Discrete vs. continuous time

Timed models can be classified in two categories: discrete models and continuous models.
In discrete time models, time passes in discrete steps, so the distinguishable moments in the
functioning of a system may be mapped on the set of positive integers. Any system event occurs
at one of these countable moments.

In continuous time models, such as the timed automate model examined in this chapter,
time is real-valued. Time passes continuously between two events occurring at moments ¢; and
t2, so other events are allowed to occur at any moment in the interval [¢,t2]. Continuous time
models are also called dense time models.

From the point of view of the power of expression, the two classes of models are not equivalent:
continuous time models are strictly more expressive than discrete time models. This is argued
informally in [Alu91, AD94] and more formally in [HMP92, AMP98|. For example, [AMP98]
shows that for a certain class of digital circuits modeled with timed automata, discrete time
semantic misses a subset of the intended behavior.

From the point of view of the analysis techniques applicable to them, the two classes of models
are quite different. On one hand, in discrete models time may be considered just another discrete
variable of the system. Therefore analysis techniques for untimed models may be easily adapted
to discrete timed models, with all the consequent advantages. On the other hand, continuous
time models generate uncountable state spaces, so their analysis techniques must rely on a
symbolic representation of time. With symbolic techniques, a possibly infinite set of explicit
states is represented in one symbolic state using some coding method.

The use of symbolic techniques for handling time may create an overhead at analysis, so
continuous models are generally regarded as more expensive than discrete models. However, the
reverse is also possible, as enumerative techniques for discrete time models may suffer a state
space explosion phenomenon in case of time-nondeterministic specifications. Several examples
supporting this statement may be found in the case studies section of [Tri98].
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Reasoning about time in SDL vs. timed automata

SDL contains constructs for describing time-driven behavior: the designer can use timers or
enabling conditions involving the time variable now in order to describe such behavior. Thus,
the execution of an action may be triggered or conditioned by time.

While these constructs can model infinitely complex behavior, SDL has two major drawbacks
when one wants to verify temporal properties of timed systems:

1. The formal semantics of the language [IT99c] is loose about time progress: indefinite
amounts of time may pass while a process is in a state even if it has a valid input sig-
nal waiting in the queue, and actions take indefinite times to execute. The only system
component which behaves strictly with respect to time is the underlying component re-
sponsible for keeping track of timers and sending timer expiration signals. With such loose
assumptions about the performance of the underlying execution machine, it is difficult to
guarantee almost any time-related property about the system behavior. This problem was
pointed out in [BGK'00, BGM*01].

2. The complexity of conditions on now is not limited. The modeler may describe indefinitely
complex behavior, for which it is difficult to conceive analysis methods and algorithms.

Timed automata cope with both problems mentioned above:

1. They provide stronger requirements on time progress, which can be constrained by the
state of the automaton. Thus, one can specify actions that occur at a specific moment or
within a bounded time, unlike in SDL.

2. Time conditions can only have simple forms. As we will see in later sections, in timed
automata the only mechanism to measure time is the clock. An automaton may use
several clocks at a time, all of which progress at the same rate and can be initialized
and tested separately. Time conditions are represented by conditions on clocks, which can
only have some restricted form. These restrictions are essential to make it possible to solve
analytically a series of problems on timed automata, such as the reachability problem or
various model checking problems.

For timed automata techniques to be applied to SDL, a SDL specification has to conform,
in a way, to the restrictions mentioned above. We discuss the implications of this in Chapter 6.

5.2 Labeled transition systems

Timed automata (TA) are a special kind of Extended Finite State Machines (EFSM), with
specific means for describing time-related behavior. EFSM is a generic name for the class of
models which are based on a finite state machines and are extended with additional capabilities
such as variables. Various types of EFSMs are used for modeling the behavior of reactive
systems, and they constitute the target model for analysis techniques such as model checking
[QS82, CES86]. A common characteristic of all types of EFSM, including timed automata,
is that their semantics is given as a (possibly infinite) labeled graph of states and transitions
(Labeled Transition System — LTS).

Definition 5.1 (Labeled Transition System) A labeled transition system (LTS) is a tuple
(Q,Qo, 2, —) where Q is a set (states set), Qo € Q is a non-empty subset of Q (initial states),
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Y is an alphabet of symbols (transition labels) and — is a ternary relationship on QQ X ¥ X Q.
We denote © = y the fact that (z,a,y) €—.

The structure or content of labels is not defined at this level. Usually, when an LTS is used
as the semantic model for a higher-level formalism, labels correspond to actions, transitions,
etc. described in that formalism. For specific purposes (abstraction, verification) sometimes
it may be useful to classify labels according to various criteria, e.g. observable/internal, or
input/output/internal.

Semantics of LTS

From an operational point of view an LTS may be viewed as an automaton. Its execution begins
in the initial state. The LTS is in one state at any time, and it may take a transition out of this
state depending on the external constraints expressed in terms of labels. LTSs differ from finite
automata in that they have no final state and acceptance conditions.

Definition 5.2 (traces and runs) Let S = (Q,Qo, X, —) be an LTS and ¢ = (ap,a1,...) a

finite or infinite sequence of labels from X. ¢ is a trace of S iff there exists a sequence of states

¥ = (qo,q1,-..) 0 that ¢; — g 1Vi.i < |p|. The couple (@,1) is called a run and is represented
ao a1

as qo —qy —> qo ...

Depending on the purpose served by an LTS, we may consider different semantics for it.
For example, if we want to check whether a certain trace is possible or not in an LTS §, we
might consider the semantics of S as the set of all traces accepted by S. However, if we want
to check that there are no sink states in an LTS, this semantics is not sufficient. We give below
the definition of the strong equivalence relationship between two LTS (derived from the strong
bisimulation relation of [Mil80]).

Definition 5.3 (strong equivalence) Let S} = (Q1,Qo1, %1, —1) and S = (Q2,Qo2, X2, —2
) be two labeled transition systems. Sy and Sy are strongly equivalent iff there is a relation
~ € Q1 X Q2 such that:

Va € ¥1. V¢, € Q1.q1 —= ¢}, = 34, € Qy such that
@ = ¢ and g = ¢ , and

Va € ¥y. Vgh € Qu.qp —= ¢y = g, € Q1 such that
¢ — ) and q1 = q}.

Vg1 € Q1.Vq2 € Q2. 1 = q2 =

and

Vqu S Q01. 3(]02 S Q02 such that qgo1 ~ Qo2 , and
vq02 S Qog. 3(]01 S Q()l such that qgo1 ~ Qo2 -

LTS as semantic model

LTS is a natural, although low-level model for representing computations in a Von Neumann
architecture. Thus, a sequential program in a usual imperative programming language can be
seen as an LTS. The states of the LTS are tuples of the form (IC, V) where IC is the instruction
counter that keeps the position of the next instruction to be executed by the program and V is
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the vector containing the values of all variables in the program. If some variable domains in the
model are infinite (as it is the case with clocks in TA) the corresponding LTS may not be finite.

Concurrent programs such as SDL specifications may be represented with LTSs as the set
of all possible interleavings of concurrent actions. For that, some level of atomicity has to be
assumed for the instructions of the concurrent programs. The standard ASM semantics of SDL
[IT99c¢] for example is in line with this requirement, and is equivalent to an LTS-based semantics.

Generally, when LTS are used as a basis for the semantics of a high-level formalism, the
definition is done on several layers so that the actual LTS corresponding to a specification in the
initial formalism is not defined explicitly. In the case of SDL, the ASMs semantics provides an
intermediate level between an SDL specification and the corresponding LTS. Along the same
line, the LTS corresponding to a concurrent model is usually not defined explicitly; instead, the
LTS is built from other LTSs corresponding to sequential components of the model, by using a
suitable LTS composition operator.

LTS composition operators

In this section we show several composition (product) operators that are usually employed
to model concurrent programs. In the following definitions, let S7 = (Q1,Qo1, %1, —1) and
Sy = (Q2,Qo2, X2, —2) be two labeled transition systems.

The asynchronous product models non-synchronized parallel composition of programs, i.e.
arbitrary interleaving of actions from the two programs.

Definition 5.4 (asynchronous product) The asynchronous product of S and Sy is the LTS
S1]1S2 = (Q1 X Q2,Q01 X Qo2, X1 U X9, —) where — is defined as:

a l !
. — and =q, or
(q1,q2) L> (qlqué) Zﬁ { q1 149 q2 ds

@2 ¢y and q =q

Alternatively, the asynchronous product may also be defined such that the two LTS can both
take a step at the same time (the labels of S} ||S2 are then in 3; U Xy U (X x X9)).

The synchronized product models synchronized parallel composition of programs. Transitions
in S7 and S9 are either non-synchronizing, case in which they execute independently as in the
asynchronous product, or synchronizing, case in which they must execute in parallel.

Definition 5.5 (synchronized product) Let o C (—1 X —2) be a relation between the tran-
sitions of S1 and Sz, which defines the pairs of transitions that are synchronizing. We will denote
o|—, and respectively o|—,, the projections of this relation on — and —2, i.e. the synchronizing
transitions of S1 and respectively So. Let € be a transition label not contained in 31 U Y.

The synchronized product of S1 and Sy according to o is the LTS

S1®y S2 = (Q1 X Q2,Q01 X Qoz, (X1 U{e}) x (X2 U {e}),—)
where — 1is the minimal set of transitions defined by the following rules:
1. Y(q1,a,q)) €1 such that (q1,a,q}) & o|,, and Vg2 € Q2, we have (q1,¢2) (“—’63 (4}, q2).
2. Y(qa,a,q,) €9 such that (q2,a,q,) € ol,, and Vg1 € Q1, we have (q1,¢2) (i; (q1,d5).

,b
3. v((‘]laa'aqll)a (q27ba QQ)) € o, we have that (q17q2) (Lz (qllanZ)
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A variant of synchronized product frequently used in the literature is based on the equality of
labels. This is equivalent to considering the following set of synchronizing transitions:

o= {((a1,0,91), (42,b,65)) € (=1 x =2) | a=0b}

5.3 The timed automata model

Timed automata were defined by Alur et al. in [ACD93, AD94]. Several slightly different versions
of the basic model described in [ACD93] have been used in the literature. In the following, we
will use timed automata with urgency, defined in [BS97, BST98|.

Definition 5.6 (timed automaton) A timed automaton is a tuple A = (X,X,Q,qo, F)
where:

1. 3 is a finite set of transition labels.

2. X is a finite set of clocks.

3. Q s a finite set of discrete states.

4. qo 1s a distinguished state of Q) called initial state.

5. E is a set of transition edges between the states from Q, each edge e = (q,(,u,a,X,q') € E
having the following components:

— q,q' € Q are the source and destination states (denoted source(e) and dest(e) respec-
tively).

— ( is the guard of the transition (denoted guard(e)) and it is a conjunction of atomic
conditions nvolving clocks from X.

An atomic condition has one of the following two forms: x ~ ¢ or x —y ~ ¢ where
z,ye X, ~€{<,<,>,>} and ¢ € Z, is a constant. We will denote CP(X) the set
of conjunctions of atomic conditions over the clocks of X.

— u € {eager, lazy, delayable} is an attribute called the urgency of the transition
(denoted urgency(e)).

— a € X is the label of the transition edge e (denoted label(e)).
— X C X is the set of clocks reset during the transition e (denoted reset(e)).

A semantics for timed automata in terms of labeled transition systems is given in the next para-
graph. Informally, timed automata are finite state machines extended with a set of real-valued
clocks. Clocks are synchronized, in the sense that they increase at the same rate (extended ver-
sions of timed automata, in which this condition is relaxed, were also proposed in the literature;
they are discussed in the beginning of §5.5).

A run of a timed automaton is a sequence of instantaneous transitions, interleaved with
waiting periods in which the automaton resides in a state. Thus, from an operational point of
view, while a timed automaton is in a state it has two options: to take a discrete transition (if
the transition is enabled, i.e. the guard condition holds) or to let some time pass (if the urgency
of the enabled transitions allows it). Transitions are executed instantaneously (i.e. the value of
the clocks does not increase during the transition) and may reset some clocks to 0.
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The notion of urgency in the above definition is essential, as it allows a simple modeling of
deadlines, which appear frequently in real-time models. The urgency attribute of a transition
has the following meaning:

— eager: the transition does not let time progress. If the automaton is in a state and an
eager transition is enabled, the automaton may not remain in the state and must take
one of the enabled transitions immediately. Note that the transition that is taken may be
different from the eager transition in cause.

— lazy: the transition lets time progress by whatever amount. If the automaton is in a state
and a lazy transition is enabled, the automaton may take the transition or may let time
pass (if the other enabled transitions allow it t0o).

— delayable: the transition lets time progress up to a limit, beyond which the transition
would be disabled. For example, if a delayable transition has a guard z < 2 and the state
is reached with a value of the clock & smaller than 2, time may pass up to the point when
xz = 2. At that point, the transition becomes eager and it (or another enabled transition)
must be taken immediately.

In contrast to the above definition, the basic timed automata proposed in [ACD93] specify
time progress conditions using state invariants. Invariants are boolean conditions on clocks
which must hold in the state they refer to. Therefore, in a state, time may progress as long as
the invariant remains true.

[BST98] argues that there is an inconvenient in specifying time progress conditions using
state invariants: state invariants must continuously hold from the moment the state is entered
until the state is exited. With state invariants it is sometimes difficult to model eager urgency,
i.e. that a transition must be executed as soon as it is enabled.

The notion of urgency originated from that of deadline [BS97, BST98]. A deadline is a
boolean expression involving clocks that is associated with a transition and not with a state as
the state invariant. The deadline gives priority of the transition with respect to time progress:
while the deadline is false, the transition is not urgent and the time may advance (if the other
transitions allow it too). When the deadline is true, the transition is urgent and time can no
longer progress until the concerned transition or another enabled transition is fired.

The classes of transition urgency described above correspond to particular cases of deadlines
appearing frequently in real-time specifications: d = false for lazy transitions, d = g for eager
transitions, and d = the upper limit of g for delayable transitions (d and g denote respectively
the deadline and the guard of the transition).

Semantics of timed automata as labeled transition systems

A semantics is given to timed automata by associating an (infinite) labeled transition system
(LTS) G 4 to each timed automaton A. This infinite LTS, called the semantic graph of the timed
automaton, is defined by the following:

1. The nodes of G4 are called configurations or dynamic states of A. They are pairs (¢, V)
where ¢ € @Q is a discrete state and v is a wvaluation of the clocks of the automaton,
v:X — Ry. If s = (¢,v) is a configuration, we denote by discrete(s) the discrete state

q.

2. The edges of G4 correspond to transitions of A from one configuration to another. There
are two kinds of transitions allowed in a state (g, v):
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— Discrete transitions happen when a transition edge e = (q,(,u,a, X, q') is taken.
e is enabled in (q,v) iff v satisfies the condition ¢ (also denoted v € (). When the
transition e is taken, the system moves to state (¢, v') where v/(z) = v(z),Vz € X\ X
and v'(z) = 0,Vz € X. The transition is denoted by (¢,v) —= (¢, v').

— Time transitions happen when an amount § € R, § > 0 of time elapses without any
discrete transition being fired in the meantime. A time transition moves the system
from state (g, v) to state (¢,v + 0) where v + § denotes the valuation v/ such that

v'(z) = v(z) + 0,Vz € X. The transition is denoted (g, V) LN (g,v + 6). The time
transition is enabled iff the following time progress conditions hold:

a € |0,0), there 1s no eager transition e = (¢, (,u,a, X,q ) enabled 1n (g, v +
Vo' € 1]0,9), there i iti ¢ X, q bled i &
(i.e. u=eager and v+ ¢' € ().
(b) V&', 8" such that 0 < ¢ < 6" < 6, there is no delayable transition e =
q,¢,u,a,X,q )enabled in (¢,v+94') and disabled in (g, v+ i.e. u = delayable
¢ X, q bled i ¢') and disabled i o") (i delayabl
and v+ 40" € ( and v+ " € ().

We considered that G 4 contains only the vertices reachable from the initial configuration of
the system, which is (go, v) with v(z) =0, Vz € & (also denoted (qy, 0)).

Runs. Canonical representation. Zeno runs

The runs of an automaton A are the runs of the semantic graph G 4,regarded as an LTS. A run
is therefore an infinite sequence (g, vo) 20, (q1,v1) s ..., where the labels ag, a1, ... denote
either discrete transitions or time transitions.

Two runs which exhibit the same discrete transitions and the same accumulated delays
between successive discrete transitions can be considered equivalent. That is to say that two

consecutive time steps (g, V) LN (q,v") LA (g¢,v") in a run are equivalent to a single time step

5+’ . . . .- .
(q,v) ALY (q,v"). Moreover, we can consider there is a time transition with delay 0 between
any two consecutive discrete transitions of a run.

By the above rules, each run is equivalent to a run of the following form: p = (qo, vo) Do,

(o, Vo+00) == (q1,v1) RN (q1,vi+61) =% ... in which time transitions and discrete transitions
alternate. This is called the canonical form of timed automata runs.

A special form of canonical runs appears when the initial form of the run contains an infinite
number of transitions among which only a finite number are discrete transitions. This implies
that there is a point ¢ in the run beyond which all transitions a;, a;y1,... are time transitions
(with the delays, say, d;,0;+1,...). In this case, the canonical form of the run contains a final

transition — where § = }_,;d; is the limit of the series of delays (it is possible to have
d = 00). We denote the canonical form like this: p = (g0, vo) o, (g0 Vo + 00) > (g1, v1) SN

(ql,vl + (51) LT 6%;; (qk,vk) i)

On the canonical form p of a run, we use the following notation to denote the state reached
after 7 time steps and 7 discrete steps: p(i) = (g, v;).

A configuration (g, v) is reachable if there is a run of the automaton, starting in the initial
state (go,0) and ending in (g, v).

A run of the canonical form shown above is called zeno if it is infinite and the total elapsed
time along the run is finite, i.e. > ,,6; € R The interpretation is that an infinite number
of discrete transitions (which normally model actions in the specified system) is executed in a
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finite amount of time along a zeno run. This usually corresponds to a erroneous or incomplete
specification.

Timed automata composition

As for LTS, it is sometimes possible to describe a concurrent timed system using a set of timed
automata modeling concurrent components, and a composition rule for constructing the global
TA of the system. [Bor98] proposed several composition operators for TA with urgency.

We present here a variant of synchronized composition operator, which corresponds to the
synchronized execution of some discrete transitions and the interleaved execution of other dis-
crete transitions. The pairs of synchronizing transitions are given by a binary relation o. Syn-
chronous passage of time in all components is assumed.

Definition 5.7 (sychronized product) Let A = (2,X,Q,q, E) and A" = (X', X", Q. q(, E')
be two TA with urgency. Also, let 0 C E X E' be a binary relation between transitions from A
and A" which denotes which pairs of transitions are synchronizing.

The synchronized composition of A and A" is AQ, A" = (XU {e}) x (X' U{e}), X UX", Q x
Q',(q0,40),T), where T is the minimal set of transition edges defined by the following rules:

1. Ye = (q1,¢,u,a,X,q2) € E such that fe' € E'. (e,€') € 0, and ¥q' € @',
((Qh 7),¢ u,(a,€), X, (q2,4")) €T.
(ql,C' u'ya', X', qh) € E' such that fle € E. (e,€') € o, and Yq € Q,
(( ¢1),¢ s (6,d'), X', (g, 45)) € T
3. Ve = (q 1,C,u a,X,q) € E and Ve’ = (¢}, u',d', X', ¢)) € E' such that (e,e') € o, then
((q1, 1), C A ¢y maz(u,u'), (a,a"), X U X', (g2, 5)) €T

The composition operator for urgencies, maz is defined as the maximum with respect to
the following order relation: lazy < delayable < eager. The label € denotes the fact that one
component is not taking any transition, in interleaved transitions.

The TA composition operator defined above is the simplest form of composition, and cor-
responds to the synchronized composition of the semantic graphs (LTSs) of the two automata.
The operator defined above is equivalent to the AND composition operator defined in [Bor98],
provided the following restriction holds: if two synchronized transitions have urgencies delayable
and respectively lazy, then the guard of the lazy transition must be { = true. A more compli-
cated AND composition rule is defined in [Bor98] for the cases when the above condition does
not hold. For more details, the reader is referred to [Bor98].

The composition of timed automata is not used explicitly in the remaining of this thesis, as
we discuss the semantics of time in SDL directly at the level of the semantic graph of an entire
SDL system. However, the rules by which describe the transitions (with their characteristics,
like guards and urgencies) of that graph correspond to this definition of composition, applied to
SDL agents. The composition operator would be explicitly necessary if a complete compositional
description of a timed automata-based semantics for SDL was aimed.

Example of timed automata specification

We illustrate the timed automata model introduced previously, using a slightly modified version
of a classical example first introduced in [Alu91]. It models the controller of a railroad crossing
gate system. The controller interacts with two elements of its environment: a train proximity
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approach sig train approaching approach sig
(true)* (true)* (true)*
z:=0 y:=0

raise sig lower sig . .
(x=1)° (x =1)° train entering
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exit sig
(true)® train exiting
z:=0 (y <5)°
(a) lower sig (b)

(true)*
up z2:=0

. down
raisimg raise sig

(true)?
z:=0

c)

Figure 5.1: The railroad gate system modeled with timed automata.

sensor, and the actuators of the physical gate. Its behavior is quite simple and deterministic:
each time the proximity sensor signals the approach of a train, the controller waits for one time
unit then begins to lower the gate. Then, when the sensor signals the exit of the train from the
zone of the gate, the controller waits for one time unit after which it begins to raise the gate.

The behavior of the controller is modeled in Fig. 5.1-a. In the figure, states are represented
as circles, the initial state being marked with a dangling incoming arrow. States are annotated
with a name, when that is significant. Transitions are represented as arrows between the source
state and the destination state, annotated with their label, clock guard, urgency (we use A,d
and e exponents to denote respectively lazy, delayable and eager urgency, like in [BS97]), and
clock resets. Clocks are denoted with characters from the end of the roman alphabet.

All the transitions of the automaton modeling the controller are marked as eager, because
they correspond to actions executed by the controller as soon as they are possible. The waiting
times are modeled by testing the value of clock z.

For assessing the timing of this system, the environment of the gate controller must also be
modeled. We model the components of the environment through two other automata, which
synchronize with the controller automaton (transitions with identical labels are synchronizing).

Although the complete behavior of the environment is not completely deterministic, some
information about it may still be available. For example, we consider that an approaching train
is detected by the sensor at least 2 time units before it enters the gate, and that it exits the
gate at most 5 time units after it has been first detected. Moreover, the proximity sensor is
considered to transmit the approaching signal to the controller as soon as the train is detected,
and the ezit signal as soon as the train exits the gate. The automaton in Fig. 5.1-b represents
the train and the proximity sensor together. Transitions concerning the train (¢rain approaching,
entering, exiting) are lazy or delayable, modeling the non-determinism of the train. Transitions
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which model the sending of signals to the controller are eager to model the immediate reaction
of the sensor.

The behavior of the gate, shown in Fig. 5.1-c, is as follows: it takes between 0 and 1 time
units for the gate to go down, and between 1 and 2 time units to go up. Transitions which start
lowering and raising the gate are modeled as lazy, to capture the fact that they are triggered by
synchronizing with the controller.

5.4 Analysis techniques and decidable problems

An interesting problem concerning a timed automaton A is whether a particular configuration
(q,v) is reachable from the initial state (go,0). This is called the reachability problem. The
verification of many properties of TA, such as invariance or other safety properties, can be
reduced to reachability.

[ACD93] provides a solution for the reachability problem, using an abstraction technique
which allows to build a finite graph, which preserves reachability, from the potentially infinite
semantic graph G 4. The abstract graph, called region graph, is defined below.

The region graph

In what follows, it will be useful to give a geometrical representation to the clock space of a
TA: in a configuration (¢,v) of an automaton A, v is point in the space R*l. A conjunction
of atomic conditions ( € CP(X) defines a convex polyhedron in RI¥1; the polyhedron can be
identified with the condition . A disjunction of conditions ¢ defines a non-convex polyhedron
in RI*l; we will denote N'CP(X) the class of non-convex polyhedra on X.

The following definition of the region graph is based on that from [Tri98], with some small
corrections (namely, the addition of condition no. 3 in the definition below). The construction
of the region graph is based on the observation that the transition guards of a TA, involving
only conditions such as  ~ ¢ or z — y ~ ¢ (see Def. 5.6), cannot distinguish between two
valuations v and v’ if the integral part of all clocks is the same and the order of the fractional
parts is the same. Moreover, for each TA there is a maximal constant ¢ with which a clock or
a clock difference is compared, and the transition guards cannot distinguish between values of
clocks or differences exceeding c.

Formally, the construction of the region graph is based on the definition of the region equiv-
alence relation: two valuations v and v’ are region equivalent with respect to the maximal
constant ¢ (v ~, v') iff:

1. Ve e X. |v(z)] = [V'(z)] or |v(z)] > cand |Vv'(z)] > c.
2. Vo,y € X. [v(z) = v(y)| = [v'(z) = v'(y)] or [v(z) = v(y)| > c and |[v/(z) = V'(y)| > c.
3. Ve e X{v(z)} =0 & {v'(z)} =0.
(where {r} and |r| denote respectively the fractional and the integer part of a real number 7).
Fig. 5.2 shows the region equivalence classes for a 2-clock space, with a maximal constant
¢ = 2 (points, lines and grayed zones represent equivalence classes).

The region equivalence on clock valuations induces an equivalence relation between the nodes
of Ga: (q,v) = (¢',V') iff ¢ = ¢ and v ~, v/. [ACD93] proves that ~, is a strong time
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Figure 5.2: The region equivalence classes for two clocks and ¢ = 2

abstracting bisimulation of A!, i.e. if concrete time values are abstracted away on the time

transitions of G 4, region equivalence is a strong equivalence on G 4 in the LTS sense (§5.2).
The region graph is defined as the quotient of G 4 with respect to ~. It preserves reachability

in the sense that a configuration (g, v) is reachable in A if and only if its region equivalence class

——

(q,v) is reachable in G 4/~.. As the region graph is finite ([ACD93] provides an upper bound
for the size of the graph), and there is an effective procedure for representing and computing
the region graph of a TA, it follows that the reachability problem is decidable for TA.

Other forms of the reachability property, such as: “starting from a state (¢, v), can the
automaton A reach a discrete state ¢’?” can also be solved using the region graph. Moreover,
the region graph preserves more complex classes of properties, such as linear-time properties or
branching time properties expressed in some temporal logics. A survey can be found in [Tri98].

The simulation graph

For verification problems involving only reachability or linear properties, there are more efficient
analysis methods than the region graph mentioned above. In this section we describe the sim-
ulation graph, that is used in a later chapter for the verification of temporal properties of SDL
specifications.

The simulation graph of A has vertices of the form (g, S), where g € @ is a discrete state
and S € NCP(X) is a polyhedron that we will call zone. The following operations are defined
on (g, S) pairs:

time-succ((q,S)) = (¢, {v' |IvES, R (q,v) - (¢,v)})
disc-succ(e, (¢, 9)) = (¢, {v'|IvES. (¢,v) = (¢,v")})
where e is an edge between ¢ and ¢'.

It can be proved that if S is a zone from NCP(X), time-succ((g, S)) and disc-succ(e, (¢, S))
also yield zones from N'CP(X)2. The simulation graph of the automaton A is the smallest graph
SG(A) such that:

1. time-succ((qo,0)) is a node of SG(A)

2. for every node (g, S) of SG(A) and every discrete transition edge e from ¢ to ¢', if (¢/, S") =

e

time-succ(disc-succ(e, (¢, S))) and S’ # () then (¢', S’) is also a node of SG(A) and (¢, S) —
(¢',S") is an edge of SG(A).
'The results in [ACD93] refer to the basic TA model. However, they can be easily extended to TA with
urgency.
For basic TA (without urgency), convexity is also preserved, and therefore all zones of the simulation graph
are from CP(X). See [Tri98].
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We note that a zone S can be decomposed in a finite union of regions (see previous section).
In consequence, the simulation graph is always finite. It can further be proven that the simulation
graph preserves reachability and linear properties (i.e. every run of A is contained in a path
from SG(A)). For further details, proofs and examples, the reader is referred to [Tri98].

5.5 Discussion

Decidability limits of the timed automata model

A number of extensions of the basic timed automata model have been studied. They try to
overcome practical limitations of the TA, e.g. by generalizing the laws of variation for clocks or
the types of conditions that can be included in guards. We survey here some of these lines of
research.

Automata with integrators allow to measure accumulated delays by using clocks which can
be stopped and restarted at the same value (called integrators or stopwatches). They are useful
for example to model preemptive multitasking systems. However, the reachability problem for
timed automata with integrators is undecidable [Cer92, HKPV98].

There have been several attempts to define restricted variants of integrator automata for
which reachability is decidable [KPSY93, BER94, ACH93]. The restrictions are quite important:
for example, [KPSY93, ACH93] constrain the integrators to be neither reset not tested by the
automaton, except in a final transition that may be triggered only once.

Multirate automata [ACHT95] define clocks that may vary at different relative speeds. They
are useful for modeling distributed systems with drifting clocks. The reachability problem for
multirate automata is decidable with the condition that clocks are not compared between them
but only with constants (i.e. no z —y ~ ¢ conditions allowed in guards) [HKPV98, ACH"95].

In general, TA and all their extensions are restrictions of a more general model, hybrid
automata [ACHH93, NOSY93]. A hybrid automaton models a hybrid system [MMP91, NSY91],
which combines discrete and continuous components. Hybrid automata are state-transition
systems in which the state has a discrete part and a continuous part. The continuous part is
formed of real-valued variables which vary in time according to a law, which can be very general
(e.g. a differential equation). TA are hybrid systems in which all continuous variables = (clocks)
vary by the equation £ = 1. Hybrid automata have been extensively studied in the past decade,
with results ranging from the identification of decidable restrictions [HKPV98, Hen96] to various
verification methods applicable on restricted models [ACH'95, OSY94].

All the models mentioned above are usually decidable only under strong restrictions (for
a synthesis of decidability results, see [HKPV98] and the work cited therein). Semi-decision
procedures can sometimes be developed for undecidable models. Such procedures are important
from a practical point of view, in situations where timed automata are not expressive enough
and only a generalized model can capture the behavior of a system. Nevertheless, these semi-
decision procedures are usually complex and difficult to apply to large models. Thus, timed
automata give in a way a complezity limit up to which “general” timed models are decidable,
and the available analysis methods are simple enough to be applied in a framework based on
SDL. Therefore, in our work we have restricted to basic timed automata and equivalent SDL
models.
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Automata vs. other models for timed behavior

Much of the research on timed models has initially concentrated on other kinds of formalisms,
such as Petri Nets or process algebras. In the domain of Petri Nets, we mention the early
models of Timed Petri Nets [Sif77, Ram74], the Time Petri Nets [MF76], as well as the many
other variations defined subsequently (for a recent comparison between different models, see
[Boy01]).

Petri Nets present some advantages from the modeling point of view, being able to capture
more naturally different types of synchronization and composition. However, recent research has
concentrated more on basic automata models, for which more evolved constructs for specifying
timing constraints, urgency, etc. have been developed. From the point of view of the expressivity
of the models, there are several results showing the equivalence between classes of time Petri Nets
and classes of timed automata (see the survey in [Boy0l]). From the point of view of analysis,
both models use essentially the same techniques, based on the construction of a symbolic state
space, and on inequality systems for representing time information. We note however that the
application of these techniques in verification tools is more advanced on the side of automata-
based models, with tools such as Kronos [Yov97, DOTY95], Uppaal [LPY97, BLL"96], HyTech
[HHWT97] and IF [BFG199, Boz99].

The situation is similar on the side of timed extensions of process algebras, where analysis
techniques typically work by mapping the algebraic model to some automata model similar to
timed automata (see for example [Nic92]).
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Chapter 6

SDL extensions for timed behavior
description

In this chapter we examine a series of extensions to SDL which improve the capability of
the language to handle the specification of time-related information at an abstract level. The
technique for specifying timing information introduced here uses the primitive mechanisms from
timed automata: clocks, conditions on clocks and urgencies. The semantics of time in SDL is
adapted to suit the usage of these mechanisms.

We begin the chapter with an overview of the problems encountered when specifying time-
related behavior in SDL. The issues discussed here have been pointed out in our previous work
[BGKT00, BGM™01], and an outline is given in §3.5.

We continue in §6.2 by introducing the extensions to the SDL language. The constructs
proposed here are inspired from primitives used in timed automata. For this reason, they
are rather low level, and current efforts go towards distilling a set of higher level primitives
(semantically based on those introduced here) to be proposed for standardization [BGMT01].

In §6.3 we examine the impact of the proposed extensions on the formal semantics of SDL
described in the Annex F of Z.100 [IT99c] . The precise semantics of the extensions as well as
the new semantics of time is expressed in a clear and formal way using Abstract State Machine
(ASM) specifications.

As current simulation and verification tools based on SDL do not use the standard ASM
semantics from [IT99c], in §6.4 we discuss how the extensions defined previously may be inte-
grated in the LTS-based semantics used by most tools. The result is an LTS that has all the
characteristics of the semantic graph of a timed automaton: the states contain a discrete part
(referring to the agents, states, variables, etc. of the SDL system) and a part referring to clocks,
the transitions are either discrete transitions or ¢time transitions. The simulation and verification
tool described in Chapter 8 uses the LTS-based semantics of the extended SDL defined here, in
connection with analysis techniques originating from timed automata.

We close the chapter with a discussion of the gains brought by the extensions, and of related
work that can be found in the literature.

6.1 Overview of problems

We discussed previously (§3.5) the dual nature of SDL which is both a specification formal-
ism and a programming formalism, and we have outlined the fact that SDL gives precedence

93
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to programming constructs rather than high-level specification. [BGK1T00, BGM*01] provide
suggestions for language improvements on both sides. In this thesis we concentrate on the
specification side, as that is more critical for the validation of real-time system specifications.

6.1.1 Classification of problems and solutions

The use of SDL as a real-time specification formalism leads to two types of problems: expressivity
problems and wusability problems.

1. Ezxpressivity problems are represented by the impossibility to capture in SDL meaningful
(timing) information about a system, like the execution time boundaries of a piece of SDL
code. This kind of problems is due to the lack of appropriate language constructs for
expressing such information.

2. Usability problems are caused by the practical or theoretical impossibility to use SDL
models for some specific system engineering task, like simulation or property verification.
Usability problem are frequently due to the definition of the SDL semantics. For example,
with the present definition of the SDL semantics, there are currently no analysis methods
for deciding the reachability problem on SDL models in the general case.

The solutions for the two types of problems are different: ezpressivity problems require the
addition of new constructs to the language, whereas usability problems require the modification
of the language semantics. In the definition of new constructs, care must be taken as to the
coherence between new constructs and existing ones: no overlapping and no hidden dependencies
should exist. The modification of the language semantics is however more problematic, as
the same semantics normally has to serve several purposes (e.g. code generation, simulation,
verification, performance analysis, etc.), which may impose contradictory demands.

We take the example of code generation versus formal verification. The semantics of SDL
[IT99c] is more suitable for code generation than for simulation and verification: [IT99c] main-
tains that each action takes an indeterminate time to execute, and that a process stays an
indeterminate amount of time in a certain state before taking the next fireable transition. This
notion of time that is external and unrelated to the SDL system is practical for code generation
in the sense that actual implementations of the system conform to it. However, for simulation
and verification, this semantics of time is impractical: timer extents do not have any significance
except that of lower time bounds, and any timer that gets in a queue may stay there for an
indeterminate amount of time.

Any rigorous attempt to construct the semantic graph (LTS) of an SDL system (which is
the starting point for simulation and verification) must account for all combinations of execu-
tion times, timer expirations and timer consumptions, causing an explosion of the state space.
Moreover, few temporal properties may be ensured using the hypotheses stated by the standard
semantics. This causes a usability problem.

In practice, simulation and verification tools make simplifying assumptions on execution and
idle times. The usual convention is that actions take 0 time to execute, and any action that
can be executed is executed immediately. This option is justified by the fact that it generates
the highest degree of determinism, thus reducing the state space by an important factor and
rendering SDL specifications analyzable.

The two alternative definitions of the SDL semantics mentioned above are mutually exclusive
and equally justified: one by the needs of code generators, one by the needs of simulators and
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verification tools. We argue that this dichotomy cannot be surpassed by a single SDL semantics.
A solution is to adopt multiple semantic profiles of SDL, which would correspond to different
usages of SDL models: code generation, simulation, performance analysis, model checking, test
generation etc. A semantic profile would define a semantics that is particularly suitable for a
certain type of manipulation. We consider however that the definition of a theoretical basis for
defining profiles is outside the scope of this thesis, and we do not explore this issue in more
detail.

6.1.2 Expressivity problems

In this section we outline some problems that may be encountered when expressing abstract tim-
ing information in an SDL specification. The extensions described in later sections go towards
solving the problems enumerated here.

Assumptions on execution times

The abstract specification of a real-time system may involve the specification of information
about the execution times of certain actions. Such descriptive information is meaningful in
simulation and verification, as the well functioning of the system may depend on it.

Currently, in order to introduce assumptions on execution times the modeler is forced to
use imperative constructs such as timers. While this does not entirely solve the problem (e.g.
maximal execution times cannot be expressed), it also implies a style of specification which is
incompatible with some uses of the SDL model (e.g. code generation).

Execution times normally depend on the deployment of the SDL system. There are how-
ever cases in which execution times are meaningful from a qualitative point of view (e.g. for
calibrating system timers), and thus appearing in earlier phases of system specification.

Some earlier approaches for the specification of execution times in SDL models exist [Rou98,
DHHMC95a]. The ObjectGEODE Simulator [Rou98| uses a syntactic extension by which one
can associate an execution time interval to an action, and a probability distribution in this
interval. [DHHMC95a] uses a more elaborate approach in which execution times are dynamically
calculated with the help of queuing machines, so that they are depending on the amount of work
and on the charge of the system. However, both approaches target performance evaluation and
lack precise semantic definition and a unified mechanism for expressing other timing assumptions
(e.g. communication times or the timing of events, see next paragraphs).

Assumptions on timing of events

In open specifications communicating with the environment, the timing of events coming from
the environment is an important factor for the behavior of the system. We argue that informa-
tion of the timing of these events should be included in the SDL specification. Moreover, the
development of a real-time system usually comports several preliminary stages in which abstract
and incomplete descriptions are produced. In order to validate these early designs, the timing
of events occurring in incompletely specified components has to be described within the SDL
model.

To preserve the clarity of the language, the extensions for expressing timing assumptions
have to be based on a simple primitive mechanism capable of expressing many types of timing
assumptions (e.g. event period and jitter, timed inter-event synchrony, etc), instead of enumer-
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ating different extensions for all the types of assumptions. This concerns also the expression of
execution times, and the other timing information discussed in this section.

Assumptions on channel behavior

SDL defines channels as reliable means for transporting messages: a channel never looses mes-
sages. Additionally, a channel may either be non-delayable (i.e. messages arrive instantaneously
at the other end) or with non-specified delays (but keeping the order of the conveyed messages).

These attributes are insufficient for characterizing real communication channels. For exam-
ple, SDL is used to describe flow control protocols such as the alternating bit protocol from the
OSI stack. Such protocols are built upon the assumption that channels are unreliable, and it is
their mission to make them reliable through software. If the assumptions on channels cannot
be marked in SDL, the resulted description of the protocol cannot be used in simulation or
verification: the tools will never cover the behavior parts that handle signal loss.

Currently, lossy or delaying channels can be modeled only by explicitly describing the be-
havior of the channel (e.g. using an SDL process). This approach has several drawbacks:

— once the behavior of the channel is specified, all messages will arrive at destination with a
wrong sender PId.

— the channel description must be replicated over and over again for every lossy channel in the
system (note that a generic process type cannot be used, because the channel description
depends on the types of the conveyed signals, which differ from channel to channel).

— dynamic creation of timers is needed in order to transport an indefinite number of messages
at once on a delayable channel.

A solution is to let the modeler describe the behavior of the channel through a set of at-
tributes such as loss probability and upper and lower time bounds for transmission delays.
More complicated solutions which take into account the type and size of a message can also be
imagined.

6.1.3 Usability problems

As described previously, usability problems consist in the difficulty to use the standard semantics
of an SDL model for a specific engineering task. In this work we are concerned with model-
based validation tasks: simulation, formal verification (model checking). These tasks require
the construction of the semantic graph (LTS) corresponding to the behavior of an SDL model.
There are two major difficulties in building the graph with the standard semantics: the lack of
control over time progress and the lack of an appropriate notion of atomicity.

Control over time progress

This problem was mentioned as an example in §6.1.1. It refers to the fact that using the rules for
time passage prescribed by the SDL semantics [IT99c¢], the semantic LTS of an SDL model will
contain many unrealistic execution scenarios. The result is both a state explosion phenomenon
and the impossibility to guarantee elementary timing properties.

In order to be usable in simulation or verification, the semantics of an SDL model must
prescribe some level of control over the progress of time. Existing simulation tools do this, by
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assuming that actions take 0 time to execute, and that time never progresses while the system
has something to execute.

These means of controlling the time progress in simulation are limited. There are cases when
the user needs to control the simulation time in more flexible ways:

— to specify that in a certain state, an unlimited amount of time may pass, even though the
system has something to execute,

— to specify that in a state, a bounded amount of time may pass regardless of whether there
is something to execute or not. In this case, there is a number of consequent problems
concerning the specification of the amount of time (fixed or with lower and upper bounds;
specified statically or dynamically).

Atomicity of transition elements

Z.100 [IT99b] prescribes that the agents composing a system or a block are executed in parallel.
However, simulation or verification techniques are based on the LTS associated to an SDL model,
which can only be built by assuming a certain degree of atomicity. The formal semantics of SDL
[IT99c| is equivalent to an interleaving model at the level of SDL actions (§3.3.3). However, if
execution times are associated to individual actions, the validity of this interleaving model has
to be checked, since the execution of truly parallel actions should not sum up execution times,
while the execution of interleaved actions (e.g. in process sub-agents) should do it.

6.2 Extensions for representing timing information

In this section we introduce some SDL language extensions which allow to express descriptive
timing information characterized as problematic in the previous section. The syntax and in-
formal semantics for these extensions are described in the following paragraphs. As a general
rule, we describe the abstract syntax of the extensions using the BNF-like formalism from Z.100
[IT99b]. The BNF rules described here either replace the productions for existing non-terminals,
or specify newly introduced non-terminals.

The definition of the concrete syntax is less formal. As a general rule, we use formal SDL
comments (see the comment keyword of SDL [IT99b]) for introducing annotations on model
entities. However, the syntax proposed here is not the most suitable for additions to the standard,
and is provided only to clarify the definition of the extensions.

The semantics of the extensions is explained informally in this section. The impact of these
extensions on the formal semantics of SDL is discussed later on in §6.3.

6.2.1 Clocks, guards and transition urgency

We introduce one basic mechanism which can serve for describing many forms of timing infor-
mation: the clock. Like in timed automata (Chapter 5), clocks can be used to measure and
constrain time passage. A specification may use several clocks, which all progress at the same
rate. To preserve the encapsulation principle, each clock must belong to an SDL agent. Only
the owner agent of a clock, and its sub-agents may refer to the value of the clock or perform
operations on it.
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Clock operations

From the point of view of the SDL type system, a clock is a value of the type Clock. Clocks
can be declared statically, like in:

dcl ¢ Clock;
or created dynamically using the mkClock() operator like in:

dcl c object Clock; /*reference typex*/

¢ := mkClock();
The resetClock construct is used to reset a clock to 0:
resetClock(c);

The assignment between two Clock variables is also allowed. This operation is not defined in
timed automata, but it does not interfere with the analysis methods and the decidability of the
TA model.

We impose several restrictions to the use of variables of type Clock, in order to preserve the
applicability of the analysis methods existing for timed automata to SDL. A first restriction is
that a clock variable may not be passed as parameter to a procedure, in an agent creation or in
an output. Passing the value of a clock as parameter would equate with a stop clock operation,
which is beyond the scope of timed automata. For compatibility with timed automata, a second
restriction is that expressions involving Clock variables are allowed only inside transition guards
or continuous signals (SDL provided clause).

The operators defined below may be used for building expressions involving Clock variables.
The following set of operators can be used for comparing a clock with an integer value:

"<" : Clock,Integer —-> Boolean
"<=" : Clock,Integer —-> Boolean
"=": Clock,Integer -> Boolean
">" : Clock,Integer -> Boolean
">=" : Clock,Integer -> Boolean

The difference of two clocks yields a value of the predefined type DifClock. DifClock is by
definition not compatible with any other type in the SDL type system, so DifClock values
cannot be converted into reals, for example. The purpose of this constraint is to forbid statically
the use of clocks in expressions different from those defined in timed automata.

"-" : Clock,Clock -> DifClock

The operators predefined for DifClock values are:

"<" : DifClock,Integer —> Boolean
"<=" : DifClock,Integer -> Boolean
"=": DifClock,Integer —> Boolean
">" : DifClock,Integer -> Boolean

">=" : DifClock,Integer —> Boolean
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Guards and urgency

In order to specify the precise timing of events, we need a mechanism able to link the moment
when a transition is fired to the values of clocks. This is done, like in timed automata, by using
transition guards to constrain transition firing and urgencies to constrain time passage.

A transition guard or continuous signal (provided clause) can use comparisons of clock
values to constrain the moment the transition is fired. The guard must be the conjunction of two
parts c1 Aco where ¢ is a (possibly void) condition not involving clocks, and ¢ is a (possibly void)
conjunction of boolean terms obtained from clock comparisons and clock difference comparisons.

Like in timed automata (§5), we define three classes of transition urgency: lazy, delayable,
eager. In the abstract syntax, an urgency attribute which can take one of the above values is
attached to each type of transition clause (Input-node, Continuous-signal, Spontaneous-transition
non-terminals):

Input-node ::  Transition-urgency
[ priority |
Signal-identifier
[ Variable-identifier |*
[ Provided-ezpression |
[ On-exception |

Transition
Spontaneous-transition ::  Transition-urgency
[ On-exception |
[ Provided-ezpression |
Transition
Continuous-signal = Transition-urgency

Continuous-expression
[ Priority-name ]
Transition

Transition-urgency = lazy | delayable | eager

In concrete syntax, urgency is represented with a formal comment (comment) attached to
the transition clause, containing the urgency attribute. Transitions not specifying the urgency
attribute have eager urgency by default. This choice differs from the standard semantics of
SDL (which is equivalent to considering all transitions lazy) but is justified in simulation and
verification, as it reduces the size of the state space and leads to more realistic scenarios.

6.2.2 Action execution durations

In the TA model, transitions execute in 0 time. For this reason, in the semantics associated
to the extended SDL, we consider that SDL actions also execute in 0 time. However, time
consuming actions may be represented explicitly using clocks and urgencies: an additional state
represents the time consuming action, and a delayable transition exiting this state represents
the ending of the execution (time). The actual action may be executed (in 0 time) either upon
entering or exiting this state. We introduce an extension for annotating time consuming actions,
so that the representation described above is obtained by an implicit transformation.
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implicit
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Figure 6.1: Implicit transformation of time consuming actions

Syntax

Graph-node ::  ( Task-node
| Output-node
| Create-request-node
| Call-node
| Compound-node
| Set-node
| Reset-node )
Ezec-min-delay
Ezec-max-delay
[ On-exception |

Ezec-min-delay = Nat
Ezec-max-delay = Nat

In abstract syntax, two integer attributes (Ezec-min-delay and FEzec-maz-delay) representing
the lower and upper limits of execution time are associated to each action (Graph-node non-
terminal). In concrete syntax, a time consuming action is annotated with a formal comment
containing the string "exectime (A,B)", where A and B are integer constants denoting the lower
and upper bounds of the execution time.

The extension is similar to that proposed in [Rou98]. If the execution time of an action is
not specified explicitly, the default time limits are both equal to 0. This choice is different from
the standard semantics of SDL, but is justified in simulation and verification as it reduces the
size of the state space and leads to more realistic scenarios.

Semantics

A time consuming action introduces an implicit state in the enclosing agent. When the system
reaches the action, it stays blocked in that implicit state for an amount of time § € [A, B],
where A and B are the execution time limits specified for the action. Time consuming actions
are shorthand notation for (and translated implicitly into) a 0-time model, as shown in Fig. 6.1.
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6.2.3 Channel behavior specification

Standard SDL channels never lose nor distort messages, and the time necessary to transfer
a signal can be controlled using the nodelay attribute: 0 time if the channel is nodelay,
indeterminate time otherwise. We introduce here two extensions which allow to specify:

— the possibility of signal loss, with a certain probability,
— the minimal and maximal delays for signal transfer.

These extensions cover the basic modeling needs for a large class of systems. However, if the
properties of a channel are more complex (e.g. signal distorsion, loss probability depending on
the length of signal, etc.) they have to be modeled explicitly, using for example an SDL process.

Syntax

Channel-definition ::  Channel-name
[nodelay]
Channel-loss-probability
Channel-delay-kind
Channel-min-delay
Channel-max-delay
Channel-path-set

Channel-delay-kind = delay | pipeline

Channel-min-delay = Nat

Channel-maz-delay = Nat

Channel-loss-probability =  Literal

In abstract syntax, a signal loss probability (Channel-loss-probability — real constant in [0, 1]) is
associated to a channel specification (Channel-definition non-terminal). Two integer attributes
(Channel-min-delay and Channel-maz-delay) representing the lower and upper limits of signal
transmission delay, and an attribute (Channel-delay-kind) taking the value delay or pipeline,
are also associated to each channel specification. The meaning of the delay depends on the
attribute delay or pipeline, as explained in the next section.

In concrete syntax, lossy channels are annotated with a formal comment containing
"lossy(p)", where p is the signal loss probability. Delaying channels are annotated with a
formal comment containing either "delay(A,B)" or "pipeline(A,B)", where A and B are in-
teger constants denoting the lower and upper bounds of signal communication delay. At most
one delay and one loss specification can be mixed in the same comment and refer to the same
channel.

If the loss probability is not specified explicitly for a channel, the default value is 0. If the
transmission delay is not specified explicitly for a channel, the default value is pipeline(0,0).
Channels marked with the standard SDL attribute nodelay must have the minimal and maxi-
mal transmission delays equal to 0.

Semantics

There is a signal queue for each valid direction of every channel instance of an SDL specification.
The queue holds the signals that have been sent at one end of the channel, and not yet received
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at the other end. Thus, when a signal is transferred between two agents it may pass through
several channel queues before arriving at the destination. Each queue preserves the order of the
conveyed signals.

Signals sent through a channel marked lossy may not arrive at the receiving end of the
channel. In that case, no observable event will occur at the receiving end of the channel, and
the loss of a signal does not influence the transmission of other signals conveyed by the same
channel. The loss probability is informative, in the sense that if p is strictly between 0 and 1,
for every transferred signal the two alternatives of losing or not losing it are valid behaviors.

A signal sent through a channel marked with "pipeline(A,B)" at a moment 7" arrives at
the receiving end at a moment between 7'+ A and 7'+ B. The arrival time is further constrained
by the fact that the order of the signals is preserved, so a signal may not arrive at the end of a
channel before the signal preceding it in the channel queue.

A signal sent through a channel marked with "delay(A,B)" at a moment T arrives at the
receiving end at a moment between 7" + A and T" + B, where T" is the maximum between T
and the arrival time of the previous signal transferred through the channel.

The two types of channel delays correspond to two degrees of parallelism in the processing
of signals in the channel. The meaning of delay is that no parallel transmission of signals is
made in the infrastructure represented by the SDL channel. For example, an SDL channel
representing a data link layer connection (in the OSI stack) — e.g. on an ethernet link — exhibits
this type of delay, as the transmission of a signal does not begin until all previous signals have
been conveyed. The meaning of pipeline is that fully parallel processing of signals is made in the
infrastructure represented by the SDL channel. For example, a TCP link between two remote
hosts connected by a multi-node network path exhibits (asymptotically) pipeline delays, as
the transmission of a signal may begin as soon as the transmission of the previous signal was
initiated, and does not have to wait until the previous signals arrives at destination. (In reality,
in this case too a small part of the signal transmission is made sequentially, but that is negligible
compared to the end-to-end transmission time).

6.2.4 Example of extended specification

In this section we present a small example illustrating the SDL extensions introduced previously.
This is an incomplete version of the SpaceWire protocol specification [sWGO00], which is discussed
in more depth in Chapter 9.

The Exchange Level of SpaceWire is a data link protocol providing services like connection
establishment, error detection and flow control. This level is materialized by a Link Interface that
makes the connection between a host system and a physical SpaceWire link. A Link Interface
is composed of three entities: a Receiver (RX), a Transmitter (TX) and a State Machine (SM),
described in more detail in Chapter 9.

For some of the functions provided by the Link Interface, the SpaceWire standard [sWGO00]
contains requirements concerning timing. There are two types of requirements:

— requirements concerning various timeout periods used by the system. The particularity of
SpaceWire is that the normative values for these timeouts are not fixed, but may vary
within (large) intervals specified by the standard.

For example, a disconnection timer is used for detecting transmission problems on the
physical link. If no signal from the link reaches the receiver for a period equal to the
duration of the timer, the Receiver informs the State machine about the disconnection.
The disconnect timeout period may vary between 740 ns and 1080 ns.
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Figure 6.2: Modeling time non-determinism in the SpaceWire specification
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Figure 6.4: Non-deterministic behavior of the host systems
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Standard SDL timers are set with a unique duration. Thus, using an SDL timer for
modeling the disconnection timeout does not allow to validate the protocol specification
for all the possible combinations of timeout values at the two ends of a link. With the
extensions introduced in this chapter, the disconnection timeout may be modeled using a
clock and a delayable transition in the receiver component, as shown in Fig. 6.2-a.

Similarly, the connection establishment phase uses a time-controlled reset cycle, during
which the link interface passes successively through several states (the meaning of these
states is not important at this stage). The standard specifies the time periods for which the
link must remain in each state. For example, the ErrorReset state is left after 5.12 us to
7.78 us, and the ErrorWait state is left after 10.24 us to 15.48 ps. Such non-deterministic
time requirements may also be modeled using clocks and delayable transitions, as shown
in Fig. 6.2-b.

— requirements concerning the speed (and other characteristics) of the physical link. In an
SDL model, the physical link is modeled as a channel between the two link interfaces. A
link operating at 100 Mbps transfers a bit in 10 ns. If the character encoding layer is
abstracted away in the SDL model, and full characters are considered to be sent on the
link, the delay for a character is 80 ns'. This is shown in the model in Fig. 6.3.

The lossy attribute may be used to model the fact that a physical link is unreliable (message
distortion is not taken into account in this case).

The model shown in Fig. 6.3 is built for validating the specification of the SpaceWire link
interface. For this, the context in which the link operates also needs to be modeled. This context
includes the two host systems operating the connected interfaces. Their complete behavior
should not be specified; nevertheless, several properties of host systems have to be taken into
account for validation purposes:

— a host system may fail and reset the link at random,

— a host system may send characters on the link at random.

Fig. 6.4 shows how this non-deterministic behavior is modeled using lazy transitions.

6.3 Impact of extensions on the ASM semantics of SDL

The purpose of this section is to study how the timing extensions introduced in §6.2 can be inte-
grated in the ASM semantic framework of SDL [IT99c], and to provide a precise understanding
of the extensions for readers familiar with the formal SDL semantics. We do not aim to give
here a complete list of modifications to be made to Z.100 Annex F [IT99c|, but rather to show
the main lines for the implementation of the extensions in ASM.

There are several points to be detailed:

— the handling of explicit clocks in ASM,
— the handling of action execution durations, communication delays and timers in ASM,

— the introduction of a notion of controlled time, which progresses depending on the state of
the system.

! As a character may have different lengths, this requirement is actually represented differently in the detailed
model presented in Chapter 9.
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6.3.1 Explicit clocks

Explicit clocks introduce two new predefined data types: Clock and DifClock. The definition
of these types introduce many changes in the ASM semantics, as can be seen from the definition
of other predefined types (e.g. boolean, integer, etc. See [IT99¢c] Part 3, Ch. 3.). We do not
detail all the ASM constructs involved in the definition of these types here, especially as they
do not provide insight into the functioning of the timed SDL model. Instead, we concentrate
on the next sections which describe the handling of delaying channels, timers and time in the
ASM model.

The predefined types Clock and DifClock introduce two new data domains:
SDLClock =g4er Clock x Identifier
SDLDifClock =g4ef Real x Identifier

which are included in the Value domain (see [IT99c] Part 3, §2.1.3.1) gathering values of all
predefined data types:

Value =gqof SDLClock U SDLDifClock U
SDLInteger U SDLBoolean U SDLReal U SDLCharacter U SDLString U PId U
Object U SDLLiterals U SDLStructure U SDLArray U SDLPowerset

Values from the SDLClock domain refer to elements from a domain called Clock:

controlled domain Clock

initially Clock = @
The Clock domain gathers all the clocks defined in the SDL system (both implicit and explicit)
at a specific moment. Explicit clocks are added whenever a data item of the type Clock is
created (i.e. at agent creation time for static clocks, or when the operator mkClock is called for
dynamic clocks). Implicit clocks are added whenever the underlying semantics needs them (e.g.
for measuring signal transmission times), as will be shown in the next section.

The function clock Value gives the current value of a clock:

controlled clockValue : Clock — Real

Several ASM artifacts are needed to make the Clock and DifClock types functional. For
example, the function compute ([IT99c]|, Part 3, §3.1) must be able to compute the predefined
operators of the new types: "<", "<=" t=n_us=n_nsnon_n for Clock, "<", <=1 = ns=0 00
for DifClock. We show below the definition of the functions used to compute the predefined
operators, which have to be called from compute:

computeClock (procedure: Procedure, values: Value*) : Value =gef

if procedure.procName = “—” then

mk-SDLDifClock(values[1].s- Clock.clock Value — values[2].s-Clock. clock Value,
DifClock Type)

else let vall = wvalues[1].s-Clock.clockValue, val2 = values[2].s-Nat in
case procedure.procName in
| “<” : mk-SDLBool(vall < val2, BooleanType)
| “<=": mk-SDLBool(vall < val2, BooleanType)
| “=” : mk-SDLBool(vall = val2, BooleanType)
| “>” : mk-SDLBool(vall > val2, BooleanType)
| “>=": mk-SDLBool(vall > val2, BooleanType)

endcase
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endlet
endif

computeDifClock (procedure: Procedure, values: Value*) : Value =gef
let vall = values[l].s-Real, val2 = values[2].s-Nat in
case procedure.procName in
| “<” : mk-SDLBool(vall < val2, BooleanType)
| “<=": mk-SDLBool(vall < val2, BooleanType)
| “=" : mk-SDLBool(vall = val2, BooleanType)
| “>” : mk-SDLBool(vall > val2, BooleanType)
| “>=": mk-SDLBool(vall > val2, BooleanType)

endlet

endif
The resetClock construct introduced in SDL is implemented in the ASM semantics by a new
behavior primitive, similar to the behavior primitives defined in the standard for each basic

action (output, assignment, set, reset, etc.). A resetClock action is represented by an element
of the ResetClock domain:

ResetClock =q4er ValueLabel x ContinueLabel
where the ValueLabel refers a SDLClock value. The reset is then realized by the following macro:

EVALRESETCLOCK(a : ResetClock) =
value(a.s- ValueLabel Self ).clock Value := 0

Self.currentLabel := a.s-ContinueLabel

6.3.2 Execution and communication delays. Timers

Ezecution delays are handled using implicit clocks. However, the handling of these clocks need
not be defined by the semantics, as in §6.2.2 we have shown the syntactic transformation of
a time consuming action into an implicit state, with a delayable transition and an additional
implicit clock. This transformation (see the Transformation step in §3.3.1, Fig. 3.4) may be
handled in the static semantics, and the dynamic semantics will handle the newly introduced
clock like any explicit clock?.

For handling communication delays and timers in the ASM semantics, we have two options:

1. to adapt the schedule mechanism already existing in the standard (see §3.3.3, page 56), or

2. to use implicit clocks for measuring communication and timer delays.

We will discuss both alternatives in the following paragraphs.

2The dynamic semantics must nevertheless ensure mutual exclusion for alternating agents (i.e. sub-agents of
a process). In the context of time consuming actions, this means that an alternating agent should not yield the
execution rights token (modeled by the isActive function in the standard formal semantics) upon entering an
implicit action state.
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ASM implementation using schedules

Timers and communication delays are implemented in the standard ASM semantics of SDL using
the schedule mechanism. This mechanism can be easily adapted to accommodate channels with
specified delays, such as those introduced in §6.2.3. We define the following derived functions
which retrieve the attributes from a channel specification?:

channelDelayKind(l : Link) : Channel-delay-kind =ger
l.nodeAS1.s-Channel-delay-kind

channelMinDelay(l : Link) : Nat =qer
l.nodeAS1.s- Channel-min-delay

channelMazDelay(l : Link) : Nat =ger
l.nodeAS1.s- Channel-maz-delay

channelLossy(l : Link) : Boolean =ge¢
l.nodeAS1.s-Channel-loss-probability # 0

A controlled function is necessary to hold the delivery time of the previously delivered signal,
for delay channels. This is because in delay channels, unlike in pipeline, the delivery of a
signal is done only after the previous signal has reached the destination.

controlled previousDeliveryTime : Link — Time

The FORWARDSIGNAL macro (already defined in [IT99c] Part 3, §2.1.1.3), which is executed by
channel ASM agents (Link) and is responsible for delivering signals between the ends of a link,
is modified to take into account the channel delay and loss attributes:
FORWARDSIGNAL =
if Self.from.queue # empty then
let si = Self.from.queue.head in
if Applicable(si.signalType, si.toArg,si.viaArg,Self.from,Self ) then
if (Self.channelDelayKind = “pipeline” V
(Self.channelDelayKind = “delay” A Self.previousDeliveryTime < now)) then
DELETE(sé,Self. from)
choose looselt : looselt € Boolean
if = Self.channelLossy V —looselt then
INSERT (s1,now+ Self. delay,Self.to)
si.viaArg ;= si.viaArg \
Self.from.nodeAS1.nodeAS1Told, Self.-nodeAS1.nodeAS1Told
endif
endchoose
Self.previousDelivery Time := now + Self.delay
endif
endif
endlet
endif

3The function definitions use the nodeAS! function, which makes the interface between the ASM behavior
description objects (defined in the dynamic semantics), and the ASM representation of the SDL syntax (defined
in the static semantics).
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The signal delivery algorithm described above, as well as the one described in [IT99c], makes
use of a monitored function (delay) which gives the delay applied to a specific signal instance
traveling through the link:

monitored delay : Link — Duration

As in [IT99c], the above algorithm preserves the order of transferred signals under specific
assumptions about the values of delay. The assumptions are given in [IT99c] in the form of
integrity constraints on delay. Adapted for our semantics, the integrity constraints on delay can
be formulated as follows: whenever the macro FORWARDSIGNAL is executed, if the updates (i.e.
ASM assignments) specified in the macro are executed, the following inequalities must hold:

Self.channelMinDelay < Self.delay < Self.channelMazDelay
Self.previousDelivery Time < now + Self.delay

The first constraint ensures that the link delay is within the specified bounds. The second
constraint ensures that order is preserved on pipeline channels (on delay channels, it is preserved
by definition).

In order to preserve the strict nature of delay specifications, the execution of the FOR-
WARDSIGNAL macro must be considered eager whenever there is a signal that can be effectively
transferred by the link. This issue is taken into account in §6.3.3, when the semantics of time
progress is described.

ASM implementation using implicit clocks

The behavior of delaying channels and timers may alternatively be described in ASM using
implicit clocks, instead of the schedule mechanism. A reason for using implicit clocks is that
the schedule mechanism uses absolute times: signals (and timers) are stamped with an absolute
arrival time, which is then compared with the absolute clock now (see the definition of the
function queue from [IT99c], Part 3, §2.1.1.2) to implement signal arrival. Such a use of absolute
time marks in a model poses important problems for model checking, as there are currently
no abstractions able to reduce an infinite state space generated by such a model to a finite
representation, in the general case.

For SDL systems which use only relative times (i.e. timers set with statements like
set (now+d,t), where d is a duration not depending on the value of now) as well as delaying
channels, the use of absolute time marks may be avoided. In this paragraph we discuss a method
of handling relative timers and delaying channels in the ASM semantics of SDL, using only con-
structs which can be mapped to timed automata primitives (i.e. clocks, guarded transitions,
urgency). We conjecture that the resulted semantics is equivalent to the timed automata-based
semantics of SDL examined later on in §6.4%.

In this implementation, Link agents hold a signal queue:

controlled linkQueue : Link — Signallnst*

(We note that the ASM operators for list creation and concatenation are respectively the brackets
< ...>and . This notation is used in the macros defined below.)

A sequence of Clocks is used to measure the travel time of signals. In case of pipeline links,
there is a clock for each signal in the queue. In case of delay links, only one clock (corresponding
to the first signal in the queue) is sufficient.

“The proof of the equivalence between the two semantics may be based on an argument of strong bisimulation
between the LTSs generated by the two semantics. However, due to the complexity of the SDL language and of
the semantics, the actual realization of the proof is hardly possible.
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controlled linkQueueClocks : Link — Clock*

The macro FORWARDSIGNAL (from [IT99c|, Part 3, §2.1.1.3) is redefined as shown below.
Every link executes (in parallel, and whenever possible) two actions:

1. retrieve messages from the head of the queue of the transmitting end, and place them in
the linkQueue,

2. deliver messages from the head of the linkQueue to the receiving end, when their arrival
time has come.

FORWARDSIGNAL =
RETRIEVESIGNAL
DELIVERSIGNAL

RETRIEVESIGNAL =
if Self.from.queue # empty then
let si = Self.from.queue.head in
if Applicable(si.signalType, si.toArg,si.viaArg,Self.from,Self) then
DELETE(si, Self.from)
Self.linkQueuve := Self.linkQueue " <si>
if Self.channelDelayKind = “pipeline” V Self.linkQueueClocks = empty
then
extend Clock with c
c.clockValue :== 0
Self.linkQueveClocks := Self.linkQueueClocks " <c>
endextend
endif
endif
endlet
endif

DELIVERSIGNAL =
if Self.linkQueue # empty
A Self.linkQueueClocks.head.clockValue > Self.channelMinDelay
A Self.linkQueueClocks.head.clock Value < Self.channelMaxDelay
then
INSERT (Self.linkQueue.head, now, Self.to)
SelflinkQueue = Self.-linkQueue.tail
if Self.channelDelayKind = “pipeline” then
Self.linkQueueClocks := Self.linkQueueClocks.tail
elseif Self.linkQueue.tail # empty then
extend Clock with ¢
c.clockValue :== 0
Self.linkQueueClocks := <c¢>
endextend

else
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Self.linkQueueClocks := < >
endif
endif

When a link retrieves a message from the transmitting end, the message is put in the link
queue. If the link is pipeline, a new clock is created and set to 0, in order to measure the travel
time of the newly handled signal; the same is true if the link is delay and there is no other
signal currently traveling through it. The link delivers a signal at the other end only when it is
in the head of the queue and the corresponding clock satisfies the channel delay bounds. The
clock corresponding to the delivered signal is erased from the queue, but if the link is delay a
new clock is created for the next signal in the queue (if there is one).

We note that with this semantics of channels, the mechanism of schedules from [IT99c|,
Part 3, §2.1.1.2, which are used to delay signal arrival is no longer necessary. For simplicity, in
the macros described above we use the same basic primitives (INSERT, DELETE, queue) as in
[IT99¢c], but each time a signal inserted in a gate schedule (i.e. INSERT is called) the signal is
stamped with now and not with a delayed arrival time.

Timers can be handled similarly, using clocks instead of the schedule. In [IT99c], timers are
modeled using two domains:

1. the timer definitions: Timer =g¢r {tid € Identifier : tid.idToNodeAS1 € Timer-definition}
2. the timer instances: TimerInst =qof PId x Timer x Value*.

The same domains are used in this variant of the semantics. An additional function maps every
(non-expired) timer instance to a clock:

controlled timerClock : TimerInst — Clock
Another function keeps the non-expired timer instances of every agent:
controlled runningTimers : SDLAgent — Timerlnst-set

A third function keeps the relative deadline of each (non-expired) timer instance. We will
consider that the relative duration is a mnatural, for every timer set by the system. This is a
restriction to the SDL language, made for simplifying the compatibility with timed automata.

controlled timerDeadline : TimerInst — Nat
The macros SETTIMER and RESETTIMER described in [IT99¢] are modified as shown below:
SETTIMER(tm: Timer, vSeq : Value*, t:Time) =
let tmi = mk-TimerlInst(Self.self, tm, vSeq ) in
DELETE(¢mi, Self.inport)
Self.runningTimers := Self.runningTimers U { tmi }
extend Clock with ¢
tmi.timerClock = ¢
c.clockValue :== 0
endextend
if ¢ = undefined then
tmi.timerDeadline := tm.duration
else
tmi.timerDeadline :== t — now
endif
endlet
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RESETTIMER(tm: Timer, vSeq : Value*) =
let tmi = mk-TimerInst(Self.self, tm, vSeq ) in
DELETE(¢tmi, Self.inport)
Self.runningTimers := Self.runningTimers \ { tmi }

endlet

The derived predicate Active ([IT99c], Part 3, §2.1.1.5), which indicates whether a timer is active
or not is redefined as:
Active(tmi : Timerlnst) : Boolean =qef
tmi € Self.runningTimers V tmi € Self.inport.schedule
As can be seen above, the macro SETTIMER does not handle the delivery of the timer message
in the agent input port, as it does in the semantics using schedules. Therefore, an additional
rule macro is described to that end:
EXPIRETIMERS =
choose tmi : tmi € Self.runningTimers A
tmi.timerClock.clockValue > tmi.timerDeadline
INSERT (tmi,now,Self.inport)

endchoose

The macro EXPIRETIMERS must be inserted in the normal execution cycle (described in
§2.3.2.2 of the standard semantics) of every SDLAgent. There are several phases of the cycle in
which it can be inserted with the same effect, e.g. it may be called within the FIRETRANSITION
macro.

6.3.3 Controlled time

An important change brought by the timing extensions in the semantics of SDL is the handling
of time progress. As we mentioned before, in order to guarantee the satisfaction of timing
constraints, time must be modeled as an internal, controlled parameter of the system, instead
of being an environment parameter.

Concretely, this means that the function now, instead of being a monitored function as in
[IT99c], is modeled as a controlled function:

controlled now : — Real
initially now = 0
A new ASM agent is responsible for handling the now function and the system clock values

(the clockValue function). This agent exists from system creation until the end of system
execution.

TimeAgent =qer Agent

static timeAgent : — TimeAgent

initially Agent = { system, timeAgent }
The program of the time agent consists in computing the maximal value up to which time may

advance at a moment, and then advance now and the values of all system clocks by an amount
non-deterministically chosen between 0 and the computed maximal value:
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ADVANCETIME =
choose v : v € Real A 0 < v A v < maxTimeProgress
now = now + v
do forall ¢ : ¢ € Clock
c.clockValue = c.clockValue + v
enddo

endchoose

The key of the above specification is the mazTimeProgress function, which implements the time
progress conditions (which are similar to those of time automata with urgency):

— Time does not progress while an SDL agent is executing a transition. We remind that
in the model executed by the dynamic semantics, time consuming actions are already
transformed into waiting states and zero-time actions.

— Time does not progress if there is an agent in a stable state for which an eager transition
is fireable.

— Time can progress with at most d time units, if there is an agent in a stable state for which
a delayable transition is fireable, and progress beyond d would disable the transition.

— Time can progress with at most d time units if there exists a signal on a delayable channel
which should arrive at the end of the channel in at most d time.

— Time can progress with at most d time units if there exists a running timer is a process
which should expire in d time.

The definition of mazTimeProgress is then:

mazTimeProgress : Real-inf =4 min(< mazTimeZeroActions,
mazTimeFEager, mazTimeDelayable,

mazTimeDelayLinks, mazTimeTimers > )
In the definition, we use the domain:
static Real-inf = Real U { co }

where static co :— X is a distinct element of the ASM basic set denoting the infinite value. We
also suppose that the function

min( Real-inf * U Real-inf-set) : Real-inf

returns the minimum of a sequence or set of real numbers including oo, and that a function “<”
: Real-inf x Real-inf — Boolean extends the comparison operators for oo in the usual way.
In what follows, we examine the functions involved in the definition of mazTimeProgress.

Zero execution time for transitions

To ensure that time does not progress while an agent is executing a transition, until it reaches a
stable state, the function mazTimeZeroActions returns 0 whenever an SDL agent is executing
a transition, and oo otherwise.

The execution of an SDL agent is a process comporting multiple phases (ezecution start,
transition execution, transition selection, ezecution stop) with complex control and sub-phases.
Each phase consists of one or more ASM agent steps (applications of the ASM program). A
possible definition of mazTimeZeroActions is to allow time to progress only in a particular phase
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Figure 6.5: Activity phases of SDL agents.

of execution of the ASM agent implementing the SDL agent. In this way, all the other phases
in the execution of the ASM agent, which are invisible on the SDL level, are considered atomic
with respect to time (i.e. eager). The following definition of mazTimeZeroActions allows time
to progress only when all agents are about to begin the selection of fireable transitions®:

mazTimeZeroActions : Real-inf =ge¢
if Vag € Agent : ( (ag.program = AGENT-PROGRAM) =
(ag.agentModel = ezxecution A
ag-agentMode2 = selecting Transition A
ag.agentMode3 = startSelection ) )

then oo else 0 endif

There is a problem with this definition: in each ASM agent, the cycle between transition
selection — tramsition execution is a continual process, i.e. if a selection phase does not find
any fireable transition, another selection phase begins unconditionally. Moreover, the cycles
of the agents composing the system do not synchronize with each-other. Therefore, with the
definition of mazTimeZeroActions given before, the system may enter a timelock in which all
agents cycle on the transition selection phase, but do not pass through the state tested by
maxTimeZeroActions simultaneously.

A solution to this problem is to synchronize the execution cycles of all SDLAgents in the
system (e.g. using a semaphore variable), so that they are forced to pass through the state tested
by mazTimeZeroActions simultaneously. This may be done in such a way that the generality of
the model is not affected, i.e. all possible interleaving of SDL actions in concurrent agents are
preserved. For that, it is necessary to allow the re-execution of the selection phase in an agent
even if a fireable transition was found, so that the synchronization introduced above does not
force the firing of transitions. In the next section we show how we redefine the execution cycle
of an SDLAgent to take into account these facts.

Eager and delayable transitions

Several changes are needed in order to introduce the conditions on time progress imposed by the
existence of eager and delayable transitions into the ASM model. Fig. 6.5 shows the execution
cycle of an SDLAgent from the standard formal semantics [IT99c|, with an additional urgency
selection phase. In this phase, the clock constraints of the form z ~ ¢ (~€ {<,<,=,>,>}),
guarding the eager and delayable transitions which are otherwise fireable (i.e. except for the
truth value of these clock guards), are gathered together in two lists:

"The test ag.program = AGENT-PROGRAM is used in mazTimeZeroActions to select the SDLAgents from the
whole set of ASM Agents which also contains SDLAgentSets and Link agents
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controlled eagerGuards : — (Value x Nat x Procedure)*
controlled delayableGuards : — (Value x Nat x Procedure)*

The components of the tuples kept in these lists represent respectively the referenced clock (),

the constant (¢) and the comparison operator (~).

If the clock guard corresponding to an eager transition evaluates to True with the current
values of clocks, then an additional location denoted by the function trueEagerGuard is put to
True:

controlled trueFEagerGuard : — Boolean

The ASM implementation of the urgency selection phase is similar to that of the selecting
transition phase. The differences are that in urgency selection, the evaluation of the enabling
conditions differentiates conditions on clocks from other boolean terms, and constructs the lists
mentioned above instead finding fireable transitions (without returning on the first transition
found but by traversing all possibly fireable transitions).

We note that in order for the urgency selection phase to work properly, all SDLAgents in the
ASM model must start executing it in a synchronized manner. Otherwise, if some SDLAgents
are still in the firing transition phase while others begin the urgency selection, the former may
change the fireable transitions of the latter “on the fly”, thus invalidating the global time progress
condition. Synchronization may be achieved through an ASM variable used as semaphore, like
in the case of the selecting transition phase (see previous section). Thus, the phases represented
in black in Fig. 6.5 are phases at the beginning of which SDLAgents need to synchronize.

With these preparations, the expressions of the functions maxzTimeFEager and mazxTimeDe-
layable are:

mazTimeEager : Real-inf =ge¢
if trueFagerGuard then
0
else
min( < v.s-Nat — v.s-Value.s-Clock.clockValue | v in eagerGuards :
v.s-Nat — v.s-Value.s-Clock.clockValue > 0 A

(v.s-Procedure.procName = “>" V

v.s-Procedure.procName = “>="V

v.s-Procedure.procName = “=")
>)

endif

mazTimeDelayable : Real-inf =ge¢
min( < v.s-Nat — v.s-Value.s-Clock.clockValue | v in delayableGuards :
v.s-Nat — v.s-Value.s-Clock.clockValue > 0 A

(v.s-Procedure.procName = “<” V

v.s-Procedure.procName = “<="V

v.s-Procedure.procName = “=")
>)

In the above definitions, we suppose that min returns oo if the list or the set parameter is empty.
As can be seen, mazTimeFEager returns 0 if the “urgency selection” phase has found (at
least) one eager transition which is fireable with the current values of clocks and now. If no
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such transitions are found, the list eagerGuards contains the (atomic clock comparisons from
the) guards of eager transitions which may be enabled by only letting time pass. For every such
transition, time may not progress beyond the lower bound of the transition guard, as this would
mean to let time progress while the eager transition would be enabled. Actually, mazTimeFEager
cannot handle eager transitions with guards of the form z > c¢. However, such transitions are
logically nonsense, as they allow time to progress up to x = ¢ — where they are not enabled, but
not beyond — where they would be enabled. Therefore, such transitions should be signaled as
modeling errors.

maxTimeDelayable is based on the list delayable Guards, computed in the “urgency selection”
phase, which contains the (atomic clock comparisons from the) guards of delayable transitions
which may be disabled by letting time pass. For every such transition, time may not progress
beyond the upper bound of the transition guard, as this would mean to let time progress until
the transition becomes disabled.

Channel delays and timer expiration

The implementation of time progress conditions related to delaying channels and timers in ASM
depends on whether these constructs are implemented using the schedule mechanism or using
implicit clocks (see §6.3.2).

1. Time progress conditions for schedules. A schedule does not let time pass beyond the
arrival time of the first signal not arrived. Globally, the maximum amount of time that is
allowed (by the schedules) to pass is the minimum of the amounts let by all schedules in the
system. Moreover, in the implementation using schedules, there is no difference between
the time progress condition generated by timers and that generated by delaying channels.
We have therefore the following definitions for maxTimeDelayLinks and maxTime Timers:

maxTimeDelayLinks : Real-inf =4ef mazTimeSchedules
maxzTimeTimers : Real-inf =q.¢ maxTimeSchedules
mazTimeSchedules : Real-inf =g4e¢
min({ g.signalsInTransit.head.arrival — now |
g € Gate : g.signalsInTransit # empty })

where the function signalsInTransit computes the list of signals in a gate schedule which
are not yet arrived:

signalsInTransit(g : Gate) : Signallnst* =qer < si in g.schedule : (now < si.arrival) >

2. Time progress conditions for implicit clocks. If implicit clocks are used for handling delay-
ing channels and timers in the ASM semantics, the time progress conditions are based on
the values of implicit clocks and the relative timer and signal delays.

The time progress condition imposed by delaying channels (mazTimeDelayLinks) are:

— If there is a signal at the transmitting end of a Link, which is ready to be put in the
link signal queue (action RETRIEVESIGNAL, defined on page 109), then time may not
advance until this action is done.

— Otherwise, time may advance until the (maximum) arrival time of the first signal
which is to reach its destination.

We get the following definition for mazTimeDelayLinks®:

5The test lk.program = LINK-PROGRAM is used to select the ASM agents implementing Links.
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mazTimeDelayLinks : Real-inf =4e¢
min( { lk.channelMazDelay — Ilk.linkQueueClocks.head.clock Value |
Ik € Agent : lk.program = LINK-PROGRAM A lk.linkQueue # empty } )

The time progress condition imposed by the handling of timers using implicit clocks is that
time cannot advance beyond expiration moment of the timer with the closest deadline”:

mazTimeTimers : Real-inf =4e¢
if 3 ag € Agent : ag.program = LINK-PROGRAM A ag.from.queue # empty
then
0
else
min({min({tm.timerDeadline — tm.timerClock.clockValue | tm € ag.runningTimers } ) |
ag € Agent : ag.program = AGENT-PROGRAM})

endif

Conclusion

For an increased precision in the definition of the extensions proposed for SDL, in this section
we have described the semantics of the extensions in ASM, and we have adapted the ASM
semantics of time to better suit the needs of timing analysis (especially by modeling time as
a controlled parameter of the system). ASM provides a formal operational description of the
semantics, which it can capture at the right abstraction level.

However, while an ASM model is semantically equivalent with a labeled transition system, the
direct application of model checking techniques on multi-agent ASM specifications is complicated
by the fine granularity of ASM transitions, and by the high level of asynchrony between ASM
agents. Moreover, current SDL tools such as [TELOOa, TELOOb] do not use the standard
semantics but rather some simplified LTS-based semantics, which avoids the problems of ASM
mentioned above and thus reduce the state space explosion problem. For these reasons, we find
it easier to adapt timed automata analysis techniques to SDL, which is one of the goals of this
work, by taking as starting point the simplified semantics implemented by SDL tools.

In the following section, we discuss the impact of our proposed extensions on the semantics
of SDL as given by tools. We obtain thus a semantic model for SDL which is closer to the
timed automata model.

6.4 Impact of extensions on the LTS-based semantics of SDL

Simulation and verification tools for SDL, like [TEL0Oa, TELOOb], work by building an LTS
corresponding to the possible executions of an SDL model. This LTS complies only partially to
the standard ASM semantics of SDL, as some simplifications are made for efficiency reasons,
such as: transitions are considered atomic (interleaving is at the level of transitions and not
of individual actions), transitions take 0 time units, time progress is controlled in a simplified
manner.

In this section we examine how the extensions introduced in §6.2 can be integrated in the
semantics of SDL implemented by the ObjectGEODE simulation tool [TEL0OOa]. Many details

"The test ag.program = AGENT-PROGRAM is used to select the ASM agents implementing SDL agents.
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are however treated only informally, as a more rigorous definition was given in ASM in the
previous section. As we noted previously, we may only conjecture that the semantics described
in the following is equivalent with the ASM semantics using implicit clocks, described in the
previous section. A proof for this equivalence is practically impossible due to the complexity of
SDL and of the semantics.

The Object GEODE discrete time semantics of SDL

For a given SDL system S, the ObjectGEODE verification tool builds a labeled transition system
Gs corresponding to the state space of &, which is used to check behavioral properties. The
nodes of Gg are global states of the SDL system, comprising the discrete state of each process
instance, procedure or service, the values of all variables, the content of all queues, as well as
the relative delay until expiration for each active timer in the system. The predefined variable
now is not part of the system state®, since this would cause Gs to be infinite systematically.
The initial state of the LTS, qg, corresponds to the state of the SDL system after the initial
creation of all statically declared SDL agents.
Gs may contain the following kinds of transitions between states:

1. internal discrete transition. ¢; N g2 iff there is an SDL transition identified by ¢,
enabled in the state ¢; and which takes the system into the state ¢o. A discrete transition
is caused by an input, a priority input, a continuous signal, a signal save or discard, etc.
The modifications of the components of the state are those prescribed by the standard
SDL semantics.

2. feed discrete transition. ¢; N g2 iff t is an input transition, and the signal that causes
it may be sent by the environment of the SDL system.

It is considered that signals coming from the environment may arrive at whatever moment,
and therefore a feed transition ¢; N g2 is enabled even if the signal causing the transition
is not actually in the queue, and there are other signals in the queue. For the signal
parameters, the modeler has to specify particular values considered to be representative,
so that the graph Gg is not constructed for all possible combinations of parameter values.

This implementation of the communication between the SDL specification and the en-
vironment is compliant with the standard ASM semantics, in which gate schedules are
modeled as shared ASM functions and can be freely modified by the environment.

3. time transition. ¢; tlﬂc) g2 if the next timer to expire has ¢ time units until expiring.
g2 is equal to ¢; except for the delays of active timers, which are decreased by c¢. A
semantic parameter of the tool specifies whether time transitions are allowed at all times,
or only when the system is idle (i.e. there is no internal discrete transition and no timeout
transition enabled in ¢;).

The above conditions specify how time progress is controlled in the construction of Gs.
Time transitions are interleaved with other SDL transitions, therefore SDL transitions
always take 0 time. Moreover, time advances in discrete steps, and always up to the next
timer expiration deadline.

8In consequence, certain expressions involving now cannot be interpreted correctly in Gs.



118 CHAPTER 6. SDL EXTENSIONS FOR TIMED BEHAVIOR DESCRIPTION

4. timeout transition. ¢ tmeoyt t g2 iff the timer ¢ is active in ¢; and its relative delay

until expiration is 0. g2 is equal to ¢; except for the active status of ¢ and the queue to
which the signal ¢ is appended.

Impact of language extensions and continuous time progress conditions

For an SDL specification § using the timing extensions introduced previously in this chapter,
the semantics is given by an LTS Gg that we call timed semantic graph. The states of this LTS
have the form ¢" = (g, ¢%, X, v), where:

— ¢ is the global system state, like in Gs. ¢ comprises the discrete state of all processes,
procedures and services that are active in the system, as well as the values of all variables
and the contents of all signal queues.

— ¢° contains the state (i.e. contents) of the queues associated to delaying channels (one
queue for each direction of a delaying channel).

— X is a set of clock identifiers. It contains an identifier for each explicit or implicit clock
existing in the current system state. The set X is variable due to dynamic clock and
process creation/deletion, as well as to the handling of implicit clocks.

Implicit clocks are used for measuring signal delays and for handling timers. For each
running timer wu, the initial relative deadline d,, is held in the state g, like in Gg, but this
value is not modified by time transitions.

— v is a valuation of the clocks v : X — R. It is similar to the way clock values are handled
in the semantic graph of timed automata (§5.3):

The initial state of the LTS G5 is ¢ = (qo, 4§, Xo, Vo) with go being the initial state from Gs,
q; containing void queues for every delaying channel, &) containing a clock identifier for each
statically declared Clock variable in each agent that is created at system startup, and vy = 0.

Let ¢] = (q1, 4%, X1,v1) and ¢] = (g2, ¢5, X2, v2) be two states of the LTS. The types of edges
that can exist in Gg between ¢f and ¢j are described below:

1. internal or feed discrete transitions (this category includes both internal discrete

transitions and feed transitions). ¢ N g5 if:

(a) t is a discrete transition enabled in ¢;, and ¢ N g2 according to the rules in the
untimed semantic graph Gg, and

(b) vy satisfies the part of the guard of ¢ referring to clocks (see the language extensions
section), and

(c) g5 is obtained from ¢f by updating the contents of queues of delaying channels with
the signals that are output during ¢, and

(d) v is obtained from vy by applying the clock operations (resets, creations) specified
on the transition ¢, and

(e) Xp = X1 U Xy \ Ay where Xy are the clocks created during ¢ and &} are the clocks
destroyed during ¢, and Vo € Xy, va(z) = 0.
More precisely, the rules for computing the sets A and &} are as follows: For each
timer v that is set by the transition ¢, a clock z, is added (z, € Aj). For each
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timer u that is reset by the transition ¢, the corresponding clock z, is deleted from
(.Tu S Xuf)

For each output of a signal s, s is placed in the queue corresponding to the first
channel on the signal delivery path (which is computed statically, according to the
standard semantics of SDL). If that channel is annotated as pipeline, a new clock
z, is added (zs € Ajy), to measure the signal travel time. If the channel is annotated
as delay, a clock z is added only if there is no other signal in the channel queue.

Moreover, for each new Clock object = created using mkClock() or as a consequence
of the creation of a new agent, z € X}y. For each destroyed clock object z, z € Ay.

2. timeout transition. ¢ timeoyt g5 if uw is active in ¢] and the the value of the clock z,

corresponding to the timer u is equal to the initial relative timer deadline d, kept in ¢;
(vi(zy) = dy). q2 is the same as q; except for the status of u (inactive in ¢y) and for the
agent queue to which the signal u is appended. ¢§ = ¢f, and Xy = &) \ {z,}.

Timeout transitions are treated as eager transitions (see the definition of time transitions
below).

3. signal delivery transition. g¢f deliveg s g5 if the signal s is in the head of a channel

queue, and the clock z4 corresponding to the signal satisfies the constraints of the channel
(Cmin < vi(2s) < Cmaz, Where ¢ and cpge are the minimum/maximum delays for the
concerned channel). The clock z; is deleted in Xo, and the signal s which is deleted from
the corresponding channel queue in g5.

If the channel is the last one in the signal delivery path, the signal s is simply put in the
destination agent queue in go. If the channel is not the last one, the signal is forwarded in
the queue of the next channel (i.e. ¢§ is updated), by the same algorithm as in the initial
signal output (see discrete transitions).

Signal delivery transitions are treated as delayable transitions, as it can be seen in the
definition of time transitions below.

. oL ti 0 . . .. .
4. time transition. g¢f Z%) g5 iff the time progress conditions specified below hold. In
that case, g2 = q1, ¢5 = ¢f, and Ay, = &}. vog = v + 4.

The time progress conditions are: Y¢', 6" such that 0 < ¢’ <" < 4§
(a) there is no discrete eager transition and no timeout transition enabled in
((ZD qi:a Xlu Vi + 6,)7 and

(b) there is no delayable transition and no signal delivery transition enabled in
(1,45, X1,v1 +¢') and disabled in (q1,¢$, X1, v1 + 6").

Relation to timed automata

The timed semantic graph G% has the same characteristics as the semantic graph of a timed
automaton:

— its states are composed of a discrete part — (g, ¢%, X) for a state ¢" = (q,¢%, X,v), and a
part referring to clocks: v.

— its transitions are classified into transitions which act on the discrete part and do not in-
crease the component v (internal, feed, timeout and signal delivery transitions are included
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in this category), and time transitions which leave the discrete part intact but increase
uniformly the component v.

In [Obe99], we have actually shown that for each SDL specification S, a timed automaton
As can be constructed such that the semantic graph of Ag is strongly equivalent to the timed
semantic graph Gg of S.

However, the actual construction of As is not important, as the analysis methods designed
for timed automata work with (abstractions of) the semantic graph of an automaton, which for
As is equal to Gg. Therefore, in the verification tool described in Chapter 8, we apply timed
automata abstractions (such as the simulation graph, see §5.4) and model checking techniques
directly on the G% graph described above.

6.5 Discussion

We have presented a set of extensions to the SDL language which allow the modeler of real-time
systems to specify more precisely the timing of actions and events described in an SDL model.
The extensions improve the ezpressivity of the language, in the sense that both events occurring
at precise time instants as well as time non-deterministic events may be modeled; both bounded
and unbounded temporal non-determinism may be captured in SDL using the extensions. This
flexibility in capturing timing constraints is due to the concept of transition urgency taken from
timed automata [BST98].

The possibility to express time non-determinism in a flexible way is important especially for
the validation of abstract or incomplete specifications. In such specifications, it is often the case
that the behavior of a component is not fully specified, yet some information is available about
the timing of its actions. An example of such specification is provided in §6.2.4.

Other extensions which have been demanded by SDL users (actions with duration, channels
with delays) and for which previous proposals existed [Rou98, Die97], are studied in this chapter
and given a precise syntactic and semantic definition. Issues like time progress conditions and
atomicity in the context of parallel agents, delaying channels and time consuming actions are
examined in our timed semantics.

We argue that the analyzability of SDL specifications is also improved by using the extensions
and the timed semantics introduced in this chapter, for the following reasons:

— The semantics is more accurate with respect to time. Certain scenarios with unrealistic
time lines, which are allowed in the standard semantics of SDL are eliminated in the timed
semantics, thus reducing the size of the state space.

— A relation between our timed semantics and timed automata exists, which makes it possible
to use timed automata analysis techniques in the context of SDL.

Related proposals

The issue of introducing timing annotations into SDL specification has been studied previously,
mostly in the context of model-based performance analysis. We mention here two previous
approaches:

1. The ObjectGEODE Performance Evaluation Fxtensions. The ObjectGEODE simulator
implements a series of extensions [Rou98] for modeling and evaluating performance values
of SDL specifications. The modeler has the possibility to attach durations to actions,
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specified by the lower and upper bounds and a probability distribution. Deployment in-
formation may also be introduced in the SDL model, by specifying which processes run on
the same processor. This information is necessary to determine which other processes are
blocked by the execution of an action with duration in a process. The timing information
may be used subsequently to make performance measures by intensive random simulation.

The extensions from [Rou98] do not give the user full control over time progress. The se-
mantics of time remains the same as the one implemented by the standard ObjectGEODE
simulator, modulo time consuming actions. Moreover, the extensions are not intended for
verification of temporal properties, and their semantics is not formally specified.

2. Queuing SDL (QSDL, [DHHMC95a, Die97]) is another extension of SDL for modeling
timing properties of systems with the goal of doing performance evaluation. QSDL intro-
duces an extension for modeling time consuming actions, the REQUEST statement. The
difference between QSDL and our extensions is that the execution time of a REQUEST is
not specified statically. Instead, REQUESTs are directed towards queuing machines, which
compute dynamically the processing time of each REQUEST. Queuing machines represent
computing resources shared between several agents of an SDL system, and have a series
of attributes (like speed, number of processors, scheduling policy) through which their be-
havior may be adapted to the necessities of the model. Thus, QSDL allows the modeling
of congestion due to system overloads.

QSDL also introduces extensions for modeling communication delays, although the design
choices are debatable: delays (fixed values) must be specified for each message output,
message overtaking is allowed.

The critiques made to the ObjectGEODE performance extensions remain valid in the case
of QSDL: the extensions are not intended for verification and lack a proper underlying
semantic framework. The timed semantics of SDL discussed in this chapter could be
adapted to QSDL.

Closer to our proposal is the work related to IF [BFG199], which does not propose extensions
to SDL but gives a timed semantics of SDL in terms of an intermediate formalism (IF), whose
semantics is in turn based on communicating extended timed automata [Boz99]. Many aspects
of the timed semantics of SDL described in this chapter are found also in the SDL to IF mapping
from [Boz99].

Our current efforts [BGMT01] go towards defining a set of high-level extensions for specifying
timing information, through which the user should be able to capture the types of information
occurring frequently in real-time specifications (e.g. cyclic events with period and jitter, or
synchronization between events) without having to express them in terms of low level constructs
such as clocks and urgencies. These extensions are based on the semantic framework established
in [Boz99| and in the present work.
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Chapter 7

Timed property description and
verification using MSC and GOAL

An important part of the validation methodology for timed systems proposed in this work is
concerned with the verification of functional properties including timing aspects, over SDL
specifications. In this chapter we examine how such properties may be specified and verified
using MSC and GOAL. There are three aspects that need to be studied:

— the language constructs for specifying quantitative temporal properties. The existing con-
structs of MSC-2000 are sufficient for expressing basic timing properties. In the case of
GOAL, we propose a small set of extensions which enable the modeling of quantitative
timing.

— the semantics of the languages. Defining semantics for a property language means stating
precisely the conditions in which a property is satisfied (i.e. the satisfaction relation
between the set of models and the set of properties). In the case of MSC, a first problem is
that MSC-2000 lacks a formal semantics for the timing constructs newly introduced in the
language. A second problem is that MSC is not a property language, but rather a language
for expressing execution traces to which no particular meaning is attached. Later in this
chapter we show that several equally justified definitions may be given to MSC satisfaction.
In the case of GOAL, the notion of satisfaction is already defined. Therefore, we only need
to provide a proper timed semantics for the language extensions that we introduce.

— the verification method. For both languages, we provide an algorithmic verification method
by reducing the satisfaction problem to a timed automata model checking problem.

In order to give a sound semantic basis to the definition of GOAL and MSC as temporal
property languages, we begin this chapter by defining an abstract property model, Timed Prop-
erty Automata (TPA). TPA is defined at the level of abstraction of timed automata, and uses
the main ideas of Timed Biichi Automata (TBA) introduced in [Alu91]. The main difference
with TBA is that TPA is event oriented rather than state oriented. This makes it more suitable
as semantic foundation for MSC and GOAL, which are event-oriented languages.

We use the TPA model also for studying the verification problem. The verification method
that we describe for TPA may be projected directly at the level of SDL/MSC/GOAL to obtain
verification techniques for these languages.

The chapter is structured as follows: §7.1 introduces the TPA formalism. We discuss first
some general notions about formal property specification languages, and we continue with the
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definition of TPA and with a study of the TPA verification problem. In §7.2 we discuss the
possible definitions of MSC satisfaction, and we sketch a TPA-based semantics for a subset of
MSC. In §7.3 we introduce a set of extensions which enable the description of timing information
in GOAL, and we discuss informally the semantics and verification issues related to GOAL.

7.1 Timed Property Automata

7.1.1 Property specification languages

In this section we introduce some general notions about the property specification languages
used in model checking, in order to set the stage for the formalism defined in the next section.
This section does not aim to give a thorough introduction to the subject; for that, the reader is
referred to a monograph such as [CGP99] or [Hol91].

Linear vs. branching time

Defined in a general way, a property is an assertion about the behavior of a model. As the
behavior of an LTS (§5.2) may be regarded either as a set of possible runs or as an execution
tree (with the possibly infinite branches representing runs), it is common to distinguish between
properties that make assertions about the individual runs (linear properties) and properties that
make assertions about the tree of runs (branching properties).

Thus, for a linear property P and a run p, it is possible to say whether the run satisfies the
property (denoted p € P). The property P may be identified with the set of runs that satisfies
it. Based only on the set of possible runs of an LTS (and not on its structure), it can be decided
whether the LTS satisfies the property or not.

Branching properties, on the other hand, make assertions about the structure of the tree of
runs, and therefore two automata with the same set of accepted runs do not necessarily satisfy
the same branching properties.

Logic vs. automata-based property specification

Formalisms for representing both branching and linear properties have been proposed in the
literature. There are branching and linear variants of temporal logics [Pnu77, CES86, BAMPS83],
as well as operational methods for specifying linear properties using Biichi automata [BBO]. In
this thesis we are concerned with the latter type of specifications, as they are semantically closer
to the property languages considered here (MSC and GOAL).

Safety vs. liveness

In linear time, it is common to consider two types of properties [Lam77]:

— Safety properties, which assert that a certain (bad) condition does not occur during the
execution of a system. If P is a safety property, and p is an execution that does not satisfy
P, it means that there is a point in p where the “bad” condition occurs. Let a be the
prefix of p up to that point. A characterization of safety properties is that if « ¢ P, then
V3 a continuation of the run «, the concatenation «.f does not satisfy P (.8 & P).

Invariance properties, for example, are safety properties.
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— Liveness properties, which assert that a certain (good) condition occurs infinitely often
during the execution of a system. If P is a liveness property, then every finite execution
« of the LTS has an infinite suffix S (not necessarily realizable in the LTS) such that the
concatenation . satisfies P («. € P).

A topological characterization of linear properties [AS87] shows that any property is the
conjunction of a safety property and a liveness property.

Safety and liveness properties are specified and verified using different methods. As we
show in the next section, in the formalism considered in this chapter safety properties are
specified by assuming finite automata acceptance conditions for the automaton representing the
specification, while liveness properties are specified by assuming Biuchi acceptance conditions
for the specification automaton.

7.1.2 TPA definition

Definition 7.1 (timed property automaton) A timed property automaton (TPA) is a cou-
ple B = (A, F) where A = (X,X,Q,qo,E) is a timed automaton in which all transitions have
lazy urgency, and F C Q is a set of accepting states.

Property satisfaction is defined through two satisfaction relations: safety satisfaction and
liveness satisfaction. The semantics of the accepting states is defined by the satisfaction rela-
tions; it is similar to the Biichi acceptance condition in the case of the liveness satisfaction, and
to the finite automata acceptance condition in the case of the safety satisfaction.

Correspondence of runs

The satisfaction relations between a TA A = (X, X,Q,qo, F) and a TPA B = (A', F) with
A= (XX, Q' q), E') are defined based on a correspondence function between the transitions
of A and the transitions of A’. Let 0 : Q' x E — E'U{e} be a function, such that V¢’ € Q', e € E,
if 0(¢',e) € E' then o(q',e) has ¢’ as source state. The symbol e signifies that there is no
transition in E' corresponding to a state ¢’ and a transition e; it avoids the definition of o as a
partial function on Q' x E.

Based on the above definition, we define a correspondence function (denoted o) between runs

of A and runs of A’. Let p = (qo, vo) LN (qo, vo + o) BN (q1,v1) 2ty . bearunof A in the

1 # Y
canonical form. The corresponding run of A’, o(p) = (g}, vl) —= (qh, vl + 5) -0, (¢}, v}) —

... begins in the initial state of A’, (gg, v(), and is determined by the following transitions:
— Time steps from o(p) are identical with those from p: Vi. o, = ¢;. Given a state (¢}, v;), the
time step LI uniquely determines the next state of o(p): (g}, vi + ;). The validity of the

%%, time step is ensured by the fact that all transitions of A" are lazy (see the definition
of TPA) and therefore any amount of time may pass in any state.

— Discrete steps from o(p) are determined uniquely by the discrete steps from p as follows:

o o(qi,e;) ,if o(q,e;) € E' and v} + §; € guard(e]),
¢ € , otherwise.

In the former case, (¢, vi + ;) BN (¢i41,Viq,) is a usual discrete transition of the timed
automaton A'. Its validity is ensured by the fact that €] = o(g),e;) € E' is a discrete



126 CHAPTER 7. TIMED PROPERTY DESCRIPTION AND VERIFICATION USING MSC aND GOAL

transition departing from ¢, (see definition of o above) and the guard is satisfied: v} +d; €
guard(e;). The transition uniquely determines the next state (¢;,;,vi, ), by the usual TA
transition rule.

In the latter case, (¢}, Vi + ;) — (¢i41,Viyq) does not denote an actual transition, but
the fact that the automaton A’ remains in the same state: ¢;,, = ¢; and v | = vj + d;.
The e-transition uniquely determines the next state (¢;, ,,v;, ), and its validity is ensured
by definition.

Note that because of the e-transitions, the run o(p) is not in a canonical form. Thus, an
infinite run p may correspond to a finite run o(p) if o(p) is brought to canonical form. This case
corresponds to the situation in which the property automaton does not make any more discrete
transitions (different from €) beyond a certain point.

The above arguments imply the following property:

Lemma 7.1 o associates an unique and valid run o(p) of A’ to every run p of A.

For a TPA B = (A', F) and a correspondence function o, let
Execy ,(B) = {p/ run of A’ | 3p run of A, p' = o(p)}
We define also the following subset of Execy s(B):

Exec-infy ,(B) = {p' run of A’ | Jp infinite run of 4, p' = o(p)}

Satisfaction relations
We define two satisfaction relations for TPA:

— With the safety satisfaction relation (Fg), a TA A satisfies a TPA B = (A', F') (denoted
A Eg B) iff there is no run of A’ in Execa ,(B) passing through a state from F.

Intuitively, the states from F are regarded as error states, in which the property automaton
must not enter.

— With the liveness satisfaction relation (Fr), a TA A satisfies a TPA B = (A, F) (denoted
A Fp B) iff every infinite run p of A corresponds to a run o(p) which brought to the
canonical form is either

1. infinite, and passes an infinite number of times through a state from F' (Biichi accep-
tance condition), or

2. finite, and ends in a state from F.

Intuitively, the states from F' are regarded as progress states, and every infinite run of A
must make the property automaton B progress an infinite number of times.

The following notations are used in the definition of Fg and Fz: let A be a TA and B = (4', F)
be a TPA with the components denoted in usual way. Let p be a run of A’ in the canonical
form. We define inf(p) as the set of discrete states g through which p passes an infinite number
of times, if p is infinite, and the singleton formed of the last state of p, if p is finite. Let:

Execi’g(B) = {p € Execy ,(B) | 3i € N.discrete(p(i)) € F'}
Exec—infﬁyo_(B) = {p € Exec-infy ,(B) | inf(p) N F = 0}
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A B A z>1
r:=0 r<k Q r:=0 ; szzo ;
A B true

z:=0 z<k

(a) (b) (©)

Figure 7.1: Examples of Timed Property Automata.

Definition 7.2 (TPA safety satisfaction) A Fg B iff Execi,g(B) = 0.

Definition 7.3 (TPA liveness satisfaction) A F; B iff Exec—infﬁ,g(B) = 0.

By definition, Fg may be used to check safety properties of a model, by negation: in order
to specify that a certain bad condition does not occur during the execution of a system, the
modeler builds a TPA that enters an error state when the condition is met in a corresponding
run of the model.

Fr is strictly more powerful than Fg, and may specify properties which have both a safety
part and a liveness part. In order to express a safety property in a liveness TPA B = (A, F),
it is sufficient to introduce a sink state ¢ in the TPA such that ¢ ¢ F'. Then, the TPA must be
built such that each (finite) run p of the model that does not satisfy the safety property leads
the TPA in state g. Since every finite run is the prefix of at least one infinite run (in the sense
that time may progress to infinity along it, but not necessarily containing an infinity of discrete
steps), and every infinite continuation of p will leave the TPA in state ¢ (because ¢ is sink), the
TPA will not be liveness satisfied if a run p leading to q exists.

The reason for which we introduce the two relationships is a practical one: the verification
of safety satisfaction is equivalent to the verification of a simple reachability property, while the
verification of liveness satisfaction involves a more complex algorithm for searching non-progress
loops in the state space of a model. We also think that making a clear distinction between the
two categories helps the modeler in the specification of properties.

Examples of properties

A simple example of safety property is: “an event A should never be followed by an event B
at less than k time units”. The TPA that describes this property is shown in Fig. 7.1-a'. The
correspondence function used in verification would have to ensure that TPA transitions labeled
with A and B correspond respectively to model transitions on which events A and B occur.

The classical bounded response property is a liveness property: “every event A is eventually
followed by an event B within at most &k time units”. The TPA corresponding to this property
is shown in Fig. 7.1-b.

The bounded response property may be expressed, in a slightly modified form, as a safety
property: after an occurrence of the event A, k time units never pass without the occurrence of

!For representing TPA graphically, we use the same conventions as for timed automata. Additionally, states
from the final set (F) are represented with double circles, and the urgency is not marked on transitions as all of
them are lazy by definition.
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B. The difference between the liveness version of the bounded response property and the above
safety version is that, with the latter, zeno runs on which neither B occurs, nor k£ time units
pass, are not considered to break the property. An example of such a property is specified in
GOAL, later in this chapter.

Another example of liveness property is non-zenoness, which states that there is no infinite
run of the system along which time remains below a finite limit. The specification of this
property in liveness TPA is shown in Fig. 7.1-c. The correspondence function for this TPA must
relate every transition of the model with the transition labeled true. The idea is that on every
infinite run of the system, if time remains below a finite limit then the TPA will eventually
remain in the non-accepting state (on the left) forever, which will lead to the non-satisfaction
of the property.

Comparison with Timed Biichi Automata

The definition of TPA above is different from both versions of Timed Biichi Automata defined
in [Alu91] and [Tri98]. The first difference is the correspondence relationship, which in [Alu91]
and [Tri98] is state-based instead of transition-based. Thus, in [Alu91] and [Tri98], a function
o : Q' — 29 associates to each discrete state of B a set of corresponding states from A.
The correspondence of runs from A and B is also defined based on the states rather than on
transitions.

A correspondence based on transitions can be strictly more fine grained than a correspon-
dence based on states. In consequence, there are properties referring to the transitions of A,
such as: “a transition e is always triggered ¢ time units after a transition €¢”, which can be
expressed using the TPA defined above and which, in general, may not be expressible using the
TBA from [Alu91, Tri98]. Conversely, properties referring to the states of A, such as “a state ¢
is exited at most ¢ time units after it is entered” can be expressed in both TBA and TPA.

From the point of view of the satisfaction relations, it is difficult to compare TPA to TBA,
as the definition of TPA is based on a notion of correspondence of runs such that each run
of the model corresponds to a run of the TPA, while TBA satisfaction is based on language
inclusion [Alu91] or intersection [Tri98] and the sets of runs of the model and of the TBA are
incomparable in general. We also note that satisfaction of TPA is decidable, as shown in the
next section, while satisfaction of TBA is decidable with the definition based on intersection
[Tri98] and undecidable with the definition based on inclusion [Alu91].

7.1.3 TPA model checking

In this section we discuss the problem of deciding TPA satisfaction. As the satisfaction relations
Fg and Fp, are based on the set of runs of B corresponding to runs of A, Execa ,(B), and on its
subset Exec-infy ,(B), we construct an automaton generating the runs Execy »(B).

Characterization of satisfaction as an automata language problem

Definition 7.4 (weak synchronized product) Let A be a TA, B = (A',F) a TPA, and o :
Q' x E — E'U{e} the correspondence function between the edges of A and A'. We define the
weak synchronized product of A and A" as: AR, A" = (Ex ({e}UY), X UX", QxQ', (g0, q),T),
where T is the minimal set of transition edges defined by the following rules:

1. Ve = (q1,C,u,a,X,q2) € E and Vqi € Q' such that o(q},e) =€, then
((q1,01), ¢, u, (a€), X, (q2,¢1)) € T
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2. Ve = (q1,(,u,a,X,q2) € E and Vqi € Q' such that o(q},e) = (¢},¢' lazy,d', X', ¢h), then
((qlaqll)aCACIaua (ava,)aXUXlu (q27qé)) € T: and ((ql’qll)aCA_'C,aua (aue)aXa (q27q,1)) eT.

The weak synchronized product defined above is similar to the AND synchronized product
defined in §5.3: the function o : Q' X E — E'U{e} induces a relation 7 = {(e,e’) e EXE' | 3¢’ €
Q'.o(¢',e) = €'}, which defines a synchronized product A ®, A" almost identical with the weak
synchronized product A X, A’. This assertion is based on the following observations:

— as all transitions ¢’ € E’ have the urgency u' = lazy (see definition of TPA), we have
maz(u,u') = u, Yu

— from the definition of the product, it can be seen that all transitions of the automaton A’
are either synchronizing with transitions from A, or not taken into account in the product.
The reverse is not necessarily true, i.e. transitions of A may execute without synchronizing
with A’

The difference between A ®, A’ and A X, A’ comes from the existence of transitions
((q1,¢)), ¢ A= u, (a,€), X, (q2,4})) € T?. They allow the automaton A to take a transition
e = (q1,¢,u,a, X, q2) without synchronizing with ¢’ = o(q¢’,e) even if A" is in the state ¢', in
case the guard (' of ¢’ is not satisfied. Therefore, the above operator enforces synchronization
of A with A" only when the latter is ready to accept it (whence the attribute “weak”), and thus
it does not constrain the behavior of A.

The above argument implies the following property:

Lemma 7.2 There is a one-to-one correspondence between the runs of A and the runs of AX,

Al

Notations. In the following, we will use the following notations: let v: Y UX’ — R a
valuation of the clocks of A X, A'. We denote v|4 and v|4 the restriction of v to X and
respectively X/, which are valuations of A and A’.
0 1)
Let p = ((q0,¢h),vo) —= ((q0,qh),vo + do) —= ((q1,¢}),v1) —> ... arun of AR, A’. We

denote p|a = (qo, vola) o, (qo, vola + do) % (q1,v1]a) 1y where ei|4 is the transition e of

A from which the transition e; of A X, A’ was constructed.

0 €, ‘ ’
We also denote p|ar = (g), Volar) = (ah, Volar + ) = (g}, Vi|ar) — ..., where e;| 4 = ¢’

if the transition e; of A X, A’ is constructed by synchronization with €', and e;|4r = € if the
transition e; is not constructed by synchronization.

Sketch of proof. = We argue that for every run p of AKX, A', p|4 is a uniquely determined
run of A, and conversely, for every run 7 of A there is a unique run p of A X, A’ such that
m = p|a. The proof in both directions may be based on an induction argument, over the steps
of the runs. ]

With the notations introduced above, the following property can be easily proved, using the
same induction argument as in the previous property:

*Note that the guard of this transition (¢ A =¢’) may be a non-convex polyhedron, and thus does not conform
to the definition of TA. However, this does not add complexity to the model, as { A =¢’ is a finite union of convex
polyhedra (i1 V ... V {; and so the aforementioned transition may be considered to represent a set of alternative
transitions with the convex guards (i, ..., (x, which falls back in the class of TA defined in 5.3.
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Lemma 7.3 For every run 7 of A, the corresponding run p of AR, A" is such that p|o = T,
and p|g4 = o(m), where o is the correspondence function between the runs of the TA A and the
runs of the TPA A’.

Using the above result, the sets Execa »(B) and Exec-infy »(B) from the previous section,
on which are based the definitions of the satisfaction relations, can be characterized as follows:

Execa - (B) = {plar | pisarunof AKX, A"}
Exec-infs ,(B) = {p|lar | pis an infinite run of A X, A"}

The satisfaction relations can therefore be characterized as follows:

— A Fg B iff there is no state (g, q’) reachable in A X, A’ such that ¢’ € F.

— A Fp B iff all infinite runs of A X, A’ pass an infinitely often through at least one state
/
q €F.

Abstractions for the verification of TPA satisfaction

The characterization from the previous section reduces the problem of deciding TPA safety satis-
faction to the reachability problem for the automaton AX, A’. As such, TPA safety satisfaction
may be verified by constructing either the region graph or the simulation graph (see §5.4) of
AX, A’ and checking that no state (q,¢') with ¢’ € F is reachable in the constructed graph.

TPA liveness satisfaction can be decided in a similar way, by checking that there are no
cycles in the region graph or the simulation graph which do not pass through states (q,¢’) with
¢’ € F. Such non-progress cycles can be detected using Tarjan’s algorithm for finding strongly
connected components [Tar72] or variants of it [HPY96, CVWY92].

The above arguments imply the decidability of both safety and liveness TPA satisfaction.

7.2 MSC

An MSC specification defines a set of event traces ordered in time. The first problem in using
MSC as a formal property specification language is the lack of a semantics comprising the
new timing aspects introduced in MSC-2000. In §7.2.1 we discuss a method of characterizing
formally the language of traces specified by an MSC, as the set of accepting runs of a timed
automaton with Biichi acceptance conditions. Our characterization works for a subset of MSC-
2000, for several reasons; firstly, the language of event traces defined by a High-level MSC is
not regular, as previously discussed in §4.1.3. Some simplifying assumptions have to be made
so that the language may be characterized using automata. Secondly, certain constructs for
specifying timing in MSC-2000 are outside the expressivity limits of timed automata. Finally,
some parts of the MSC language are not discussed here (e.g. use of data), as in this work we
concentrate on the specification of timing constraints.

A second problem in using MSC as property specification language for formal verification
is to define the satisfaction relationship between SDL models and MSC specifications. The
relationship is not defined in the standard Z.120 [IT99a], as it is considered outside the scope of
the language definition. In §7.2.2 we examine some of the alternative definitions which may be
given to the satisfaction relationship.

Based on the timed automata semantics defined for MSC, in §7.2.3 we discuss a method
for verifying automatically the satisfaction of MSCs with timing constraints. The verification
method reduces MSC satisfaction to TPA liveness satisfaction.
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Throughout this work, we consider only the mechanisms for expressing timing constraints
already available in MSC-2000, and we do not propose extensions to the language.

7.2.1 A timed automata semantics for MSC

In order to verify any form of MSC satisfaction, the language of traces defined by an MSC
specification has to be defined formally. This is the task of the formal semantics of MSC, which
is a part of the language standard (Annex B of Z.120). At the time being, however, the formal
semantics of MSC does not cover the timing aspects introduced in MSC-2000 and defines only
the untimed trace language generated by an MSC specification.

To be able to apply timed automata model checking techniques to the verification of MSC
satisfaction, we define the set of timed traces generated by an MSC as the language of runs
generated by a timed automaton with Biichi acceptance condition. For that, we take as starting
point the Petri-net semantics of MSC given by [GPR93] and described in §4.1.3.

An MSC specification not containing timing annotations specifies a set of traces in which
the relative delays between events may have arbitrary values. The timing annotations used to
constrain the relative delays between events are (see §4.1.5):

— relative constraints, which specify the distance in time between the occurrence of two
events, by a lower and an upper bound.

— absolute constraints, which specify the moment of occurrence of an event, by a lower and
an upper bound.

The time values used in such constraints may either be specified statically (with expressions
involving only constants) or dynamically (using unconstrained expressions of type Time). In
the latter case, the expressions may contain values resulted from measurements, which may be
either relative delays between events, or the absolute occurrence time of an event. In Fig. 4.4
we have shown an example containing both measurements and constraints.

However, not all the constructs mentioned before can be expressed using timed automata
constructs. For example, measuring the distance in time between two events, and using it later
to constrain the occurrence delays of other events is equivalent to using a stop clock operation.
This operation is beyond the expressivity limits of timed automata.

Additionally, absolute constraints expressed in real-world time (like GMT) are also allowed
in MSC. Such constraints raise problems, because there is no corresponding notion of absolute
time in timed automata. In turn, absolute constraints referring to a time scale in which the first
event of the MSC occurs at time 0 may be handled as relative constraints with respect to the
first event of the MSC.

For these reasons, the semantics described in the following takes into account only relative
timing constraints expressed using constants.

The timed automaton whose set of runs is equal to the set of timed traces generated by an
MSC M is obtained in the following steps:

1. Build the Petri-net PN corresponding to the MSC M from which timing annotations have
been removed, as explained in [GPR93] (and in §4.1.3).

2. Annotate the transitions of PN with timed automata-like guards and clock operations, as
follows:
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Figure 7.2: Semantics of timed MSC as timed automaton

— if the transition represents an MSC event which is the origin of a relative constraint

C, annotate it with a clock reset “z, := 0”, where z. is a unique clock corresponding
to C.

— if the transition represents the finishing event of a constraint C, annotate it with
a guard “A ~q z. ~2 B”, where z. is the clock corresponding to C, A and B are
the lower and respectively upper bound of the constraint C, and ~i,~y€ {<, <}
according to whether the interval specifying C' is open or closed in A, respectively B.

3. Build the LTS containing the reachable markings and transitions of PN. The definition of
the timed automaton corresponding to an HMSC will only work if the graph of markings
of PN is finite. However, as we have shown in §4.1.3, this condition is satisfied if it is
considered that upper and lower boundaries of a Basic MSC constitute synchronization
points for the instances contained in the MSC. In the following, we will consider that it is
the case, as otherwise the MSC model checking problem is undecidable.

4. Annotate the transitions of the LTS with the same annotations (guards and clock resets)
as the corresponding PN transitions. We obtain thus a timed automaton, in which all
transitions have lazy urgency (by default).

In Fig. 7.2 we show the construction of the timed automaton corresponding to a simple MSC
specification with timing annotations. First, in the center, the annotated Petri net is built. On
the right we represented the timed automaton built from the LTS containing reachable markings
of the Petri net. The states of the automaton are annotated with markings, that is with the
labels of places in which there is a token.

For each MSC, there will be one or more markings of the Petri net corresponding to final
states of the MSC. For the example in Fig. 7.2, the final marking is the marking in which the
places srv.end and clientl.end contain one token each. In the case of an HMSC, or a basic MSC
using inline operators, there may be more than one final state of the MSC due to alternatives.

In the timed automaton, the final markings will generate one or more states which will
be marked as final states. These states are usually sink states, but may also have outgoing
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transitions if the MSC specification ends in a loop. For this reason, the timed automaton is
defined to have Buchi acceptance conditions with respect to these final states. The set of timed
traces described by an MSC may be defined as the language of runs generated by the timed
Bichi automaton constructed above.

7.2.2 MSC satisfaction

In order to use MSC as a property specification language in relation to SDL models, the con-
ditions in which an SDL model satisfies an MSC must be clearly defined. In the following, we
discuss the principles of the definition of a satisfaction relationship, on the following axes:

1. the correspondence between MSC instances and SDL model components,

2. the correspondence between events specified in an MSC and events occurring in an SDL
model,

3. the correspondence between MSC traces and SDL runs,

4. the relation between the set of traces defined by an MSC, and the set of runs of an SDL
model.

Some of the ideas discussed in the sequel are inspired from the definition of MSC satisfac-
tion used in the ObjectGEODE simulation and verification tool [TELOOa]. Nevertheless, the
satisfaction relations considered in the tool are more restrictive and do not take into account
the timing aspects.

SDL agents and MSC instances

If an MSC specification M describes a property of an SDL system S, then there must be a
correspondence between instances of M and the distinct components of S to which they refer.
As distinct components are modeled through agents in SDL, it is natural to assert that the
instances of M should correspond to agents from S. This corresponds to the intended usage of
MSC as explained in the standard.

Because agents are organized hierarchically, an instance of M designating an agent will also
designate all its sub-agents. Events appearing on the instance correspond to events occurring in
the agent itself or in the sub-agents. The environment (border) of M designates the environment
of S

SDL events and MSC events

There is an intuitive correspondence between SDL events and MSC events, as the two languages
were originally designed in order to be used jointly:

— Message sending corresponds to an SDL signal output. Message receipt may corresponds
either to the receipt or to the consumption of a signal by an SDL agent. In the following,
we consider that it corresponds to the consumption, i.e. to the execution of a matching
input (or priority input) clause.

— A timer operation (set, reset) specified in an MSC corresponds to the execution of a match-
ing timer operation in the SDL model. A timer timeout corresponds to the consumption
of the matching timer signal.



134 CHAPTER 7. TIMED PROPERTY DESCRIPTION AND VERIFICATION USING MSC aND GOAL

— Instance creations, instance stops, method calls correspond to the analogous events in the

SDL model.

— Actions and conditions are not matched against events in the SDL model.

SDL runs and MSC traces

For discussing the correspondence between SDL runs and MSC traces, we will consider the
timed automata-based semantics of SDL discussed in §6.4. Thus, a run is a sequence of states
and transitions: p = ¢ Do, q) + do N qi LN qi + 01 N g3 ..., where %p,%;,... denote
discrete transitions (either SDL transitions, or implicit signal delivery or timeout transitions)
and dg, d1, ... denote time transitions.

As specified by the timed semantics of MSC, an MSC trace is a sequence of discrete events
separated by relative time durations ¢ = (e, (), e1, ], 2,95, ...). The correspondence between
p and 1 depends on two aspects:

1. the correspondence between the events generated by discrete transitions %y, %1, ... from p,
and the events of 1, (e, €1, ...). The correspondence may not be one-to-one, as there may
be transitions generating 0 or multiple events.

2. the correspondence between the relative delays dy, d1,... from p and the relative delays

0507, ... from 1. Again, the correspondence may not be one-to-one, and depends on the
correspondence between transitions and events. For example, if several events e;, ..., e; are

generated by the same transition ¢z, the delays d;,...,0;_1 must be 0.

We can define the correspondence between sequences of discrete events generated during an
SDL model run, and (untimed) traces of events specified by an MSC, in several ways:

— If we consider that the MSC defines complete traces, then a run p of the SDL model is
inscribed in the MSC if there is a trace ¢ of the MSC which contains exactly the discrete
events from p, in the same order.

Alternatively, if we consider that the MSC defines complete traces with respect to a set of
observable events E, then p is inscribed in the MSC if, by removing from p the events that
are not in the observable set E, there is a trace 1 of the MSC which contains exactly the
remaining events of p, in the same order.

— If we consider that the MSC defines incomplete traces, then p is inscribed in the MSC if
there is a trace ¥ of the MSC such that all the events of 1) appear in p in the same order,
but p may contain additional events not appearing in ).

Relation between sets of runs and sets of traces

Globally, the satisfaction relation between an SDL model and an MSC specification may be
defined in several ways, such as:

1. the SDL model S satisfies the MSC specification M (S F M) if all runs of S are inscribed
in M, or

2. S E M if there is a run of S which is inscribed in M, or

3. S E M if no run of S is inscribed in M.
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Depending on the exact relation that is considered, an MSC may represent either a safety
property, or a combined safety and a liveness property. For example, in case of the third relation
described above, the MSC represents a purely safety property (the events in the MSC must not
occur). In cases 1 and 2, the MSC has both a safety and a liveness part: the safety part is
that events not specified in the MSC must not occur, and the liveness is that, eventually, all the
events specified in the MSC must occur. For this reason, in general an MSC may be interpreted
as a liveness timed property automaton.

7.2.3 Timed MSC model checking

The correspondence between MSC events and events occurring in the SDL model, described
informally in the previous section, may be formalized as a correspondence function of the kind
used in timed property automata (§7.1.2). This allows the interpretation of the timed automaton
of an MSC as a TPA referring to the timed automaton of an SDL model. Thus, the verification of
MSC satisfaction may in principle be performed using the model checking techniques described
for TPA.

However, in the previous paragraph we showed that several kinds of MSC satisfaction rela-
tions may be useful. The verification of each kind of relation requires small modifications of the
automaton corresponding to the MSC, discussed below.

We examine here the model checking method for one particular kind of MSC satisfaction
relation, the methods for other types of relations being somewhat similar. We consider a relation
in which MSCs represent complete event traces (that is, other events except those specified by
the MSC are not allowed to occur in runs complying to the MSC). Moreover, by this relation, an
SDL model is considered to satisfy an MSC if all the runs of the SDL model are either inscribed
in the MSC (in the sense discussed in the previous section), or do not contain the events that
appear in the beginning of the MSC (that is, they leave the TPA corresponding to the MSC in
the initial state).

In order to verify this satisfaction relation, we have to modify the TPA corresponding to
the MSC to ensure that traces containing additional observable events not appearing in the
original MSC are rejected. Thus, in every state of the timed automaton, several additional
transitions towards a new sink state (unexpected) are introduced. The transitions correspond
to all observable events that are not expected in that state (or are expected with a different
timing condition), according to the MSC specification. For example, in Fig. 7.3 we consider the
state “srv.2, CACK.init.resp,clientl.1” of the automaton from Fig. 7.2. Assuming that the set of
observable events is formed only of the events appearing in the MSC, i.e. inputs and outputs of
the signals CR,CACK and StartSession, the transitions that are added in the state are represented
in the Fig. 7.3.

Another modification of the automaton concerns the initial state, which is also marked as final
state. Thus, if during the synchronous execution of the SDL model and the MSC automaton, the
MSC remains perpetually in the initial state along a run, that run will be considered compliant
to the MSC (according to the definition of the Biichi acceptance condition of TPA).

With these modifications of the automaton corresponding to the MSC, the satisfaction of the
MSC by an SDL model may be verified using the method for checking TPA liveness satisfaction.
(We note however that small modifications of the algorithm for constructing the weak synchro-
nized product between an SDL specification and an MSC property automaton are necessary,
in order to accommodate the fact that one SDL transition may generate several events, and
therefore it may trigger several transitions in the MSC automaton.)
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out CR(namel)

out StartSession
/[x2=0vx2>5]

out CACKL

sv.2
CACK.init.resp
clientl.1

in CACK
in CACK /[x1=0vx1>2]
/[0<x1<=2]

srv.2
client1.2

out StartSession
/[0<x2<=5]

srv.end
CACK.init.resp
StartSession.init.resp
clientL.1

Figure 7.3: Augmenting the timed automaton for ensuring completion of traces

Other variants of MSC satisfaction may be verified similarly, by using a different method of
augmenting the automaton (e.g. if the MSC specification is regarded as an incomplete trace,
then unexpected events should not lead to the sink state). Throughout this work, we have only
used the satisfaction relation described above, and we do not discuss further the other types of
relations.

7.3 GOAL

GOAL observers, in the form defined in Chapter 4, cannot be used for the specification and
verification of quantitative timing properties because they lack constructs for observing the
timing of events. As we noted in §4.2.3, the value of the global SDL clock now may be tested
by an observer, but due to the analysis method used by the ObjectGEODE tool this cannot be
used in formal verification.

In consequence, in this section we examine a series of extensions to the GOAL language
which enable the verification of properties involving time. The extensions are similar to those
made for SDL, and introduce primitives taken from timed automata. The resulted language
may be given a semantics in terms of timed property automata, defined in the beginning of this
chapter.

7.3.1 Extensions for specification of timing constraints

The execution model of GOAL and the satisfaction relation between SDL models and GOAL
observers are similar to those of timed property automata. Therefore, the GOAL extensions for
observing timing proposed in this section are based on the mechanisms used in TPA — clocks
and transition guards involving conditions on clocks.

Thus, an extended GOAL observer may declare explicit clocks, using the Clock data type
introduced in SDL. The transition code of an observer may contain statements involving clocks,
like in SDL: clock creation (using mkClock), reset (using resetClock) and assignments of clock
variables.

The transition clauses of an extended observer may be guarded (using the provided clause)
with clock constraints, of the forms allowed in SDL and in timed automata. The constraints
may test the value of clocks of the observer or that of clocks belonging to the SDL model.
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observer otime

. probe sm1 iface1!state_machine; D
probe sm2 iface2!state_machine;

I | error state ko;
<not link_is_down() ant> < x> 30000> dcl x Clock;

x <= 30000
newtype observer_operations

<Iink_is_down()> literals noliteral;
| ko operators
- link_is_down : -> boolean; /* tests the state of the SDL model */

resetClock(x)

operator link_is_down;

returns boolean;
. start ;
return (sm1 !state /= sm1!runor sm2 !state /= sm2 ! run);
endoperator ;
endnewtype ;

Figure 7.4: Timed safety property expressed in GOAL

observer nonzeno

success state progress;

resetClock(x) dcl x Clock ;

B —
| progress

[
resetClock(x) < true >

Figure 7.5: GOAL observer for checking non-zenoness in liveness mode

Like in TPA, urgencies are not allowed in GOAL and all transitions are considered lazy.
The purpose of this restriction is to disallow observers to block time progress in the product
automaton, as this would cut out valid behaviors of the SDL model from the state space of the
product.

Fig. 7.4 contains an example of timed safety property of SpaceWire links (see the SpaceWire
example in §6.2.4) expressed in GOAL with the extensions introduced above. The property may
be expressed as follows: after a reset or a fault, a SpaceWire link is re-established in at most
30us3. We specify this property as a safety observer based on the assumption that the SpaceWire
model does not allow zeno runs (see the discussion on bounded response properties at page 128).

Fig. 7.5 shows an observer which can be used to detect zeno runs in liveness mode: on each
zeno run, the observer will eventually remain in the wait state forever, which will trigger the
non-satisfaction of the observer. This observer is a direct transcription of the TPA in Fig. 7.1-c.

3This property should hold in the SpaceWire model, provided that the physical link is not damaged and the
link is not reset a second time. These provisions may be ensured by other means in the ObjectGEODE verification
tool (e.g. using transition filters).
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7.3.2 Semantics and model checking of timed observers

The semantics of extended GOAL observers may be defined in terms of TPA. We do not intend
to provide a complete definition of the semantics of extended GOAL observers here, but rather
to outline the principles of this definition:

— The mapping of global states and transitions of a GOAL observer into timed automata
states/transitions is similar to that explained in §6.4 in the case of SDL.

— The correspondence between events occurring in the SDL model, and events specified in
GOAL transition clauses, which is at the basis of the execution model of GOAL (in the
standard version), may be formalized as a correspondence function of the kind used in the
definition of TPA. Thus, the correspondence function o : Q' x E — E' U {e} for GOAL
observers may be defined as follows:

— If a transition ¢’ from the TPA of the observer, starting in a state ¢', is triggered by a
when clause*, then for every transitions ¢ from the TA of the SDL system producing
the observed event, we have o(¢’,t) = t’. By definition, GOAL observers must be
deterministic, which means that there is at most one ¢’ starting in ¢’ and satisfying
the above conditions.

— If a transition ¢’ from the TPA of the observer, staring in a state ¢’, is triggered by
a provided clause®, then for every transitions ¢ from the TA of the SDL system
which leads to a global SDL state in which the provided condition holds, we have
old,t)="1t.

— For all other pairs of SDL transitions ¢ and GOAL states ¢’, we have o(¢',t) = e.

— The satisfaction relation between SDL models and GOAL observers is similar to the sat-
isfaction relations defined for TPA. Thus, properties are specified in GOAL by annotating
states as error or success states. The safety and liveness verification of GOAL satisfaction
(as described in §4.2.2) correspond respectively to the verification of safety and liveness
satisfaction relations for TPA. The verification is based on building a product between the
SDL model’s state space and the GOAL observer’s state space, which is similar to the
weak synchronized product defined for TPA:

— GOAL transitions always synchronize with an SDL transition; the reverse is not true.

— Synchronization is based on the correspondence relationship between SDL transitions
and GOAL transitions.

— Synchronization with a GOAL observer does not restrain the set of behaviors of the
SDL model (synchronization is weak).

As in the case of MSC, a transition in the SDL model may produce several observable events.
Taking them into account requires small modifications of the definition of the weak synchronized
product, so that the observer may take several steps with a single step of the SDL model.
With the semantics of GOAL observers defined in terms of timed property automata, the
satisfaction of an observer by an SDL model may be verified using the techniques applicable to

*When is used for observing discrete events in the SDL model (outputs, inputs, transitions firing, etc.). See
the definition of GOAL in §4.2 and [TELOOa].

*Provided is used for observing elements of the state of the SDL model (variables, queues, etc.). See the
definition of GOAL in §4.2 and [TELO0Oa].



7.4. DISCUSSION 139

TPA, discussed in §7.1.3. The tool presented in the next chapter uses the simulation graph of the
weak synchronized product between the observer TPA and the SDL model TA, as abstraction
for verifying observer satisfaction. However, neither the SDL model TA nor the observer TPA
are built explicitly by the tool; instead, the tool builds directly the simulation graph of the
product and checks properties (reachability and liveness) on the fly.

7.4 Discussion

We have approached the problem of specifying and verifying quantitative temporal properties of
SDL models using the MSC and GOAL languages. Our study shows that a few timing-related
extensions make GOAL into an expressive and flexible language for specifying properties. On
the other hand, MSC proves to be less flexible for specifying properties. Even if timing-related
extensions are not needed a priori because MSC-2000 contains constructs for specifying timing,
the constraints expressible in MSC (based on time intervals) may be less powerful than the
explicit-clock approach adopted in GOAL. Moreover, we have shown that several definitions for
the notion of MSC satisfaction are possible and equally justified, and extensions of the language
would be needed in order to let the user specify the exact meaning of satisfaction.

Related work

As GOAL is a proprietary language, there is no previous work on the specification of timing
properties in it. However, the language is by nature related to other operational property
specification languages such as (timed) Biichi automata [Alu91], from which we have taken our
inspiration in defining the extensions.

On the side of MSC, even if much research has been dedicated to the analysis of MSC spec-
ifications themselves, there are few results on using MSC as a property language in relation to
other system description formalisms. A notable approach is represented by the Live Sequence
Charts, an MSC variant proposed in [DH98]. LSCs provide a definition for the notion of sat-
isfaction based on a set of language extensions, which basically allow the distinction between
possible and necessary behavior, but also include facilities like activation conditions for portions
of an MSC. The extensions introduced by LSC solve some of the problems with MSC pointed out
in this work. However, [DH98] does not take into consideration timing issues in the definition
of LSC semantics.
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Chapter 8

Timed SDL simulation and
verification

In this chapter we discuss a simulation and verification tool built in the context of this work,
which is based on SDL, MSC and GOAL, and implements the language extensions described
in the previous chapters. Our tool is based on an existing industrial SDL environment,
ObjectGEODE [TELO0Oa], which provides many functionalities (graphical editing of SDL, MSC
and GOAL, simulation, verification, automated test generation, executable code generation and
others) and implements most of the features of SDL-96, MSC-96 and GOAL. The advantage of
reusing parts of an industrial environment is that the implementation of most of the features
of the three languages, which are not affected by the proposed timing extensions, is obtained
without additional efforts.

We begin the chapter by a high-level description of the tool architecture and main function-
alities, in §8.1. In §8.2 we describe the construction of the timed simulation graph, the central
function of our tool on which all other features are based. Finally, §8.3 examines the tool from
a user point of view, discussing specific commands and functionalities.

8.1 Tool architecture and functioning

The verification tool built in the context of this work reuses the overall architecture and the main
functions of the ObjectGEODE simulation and verification tool (Simulator). ObjectGEODE is
a CASE' environment which assists the software designer in a number of system development
tasks, ranging from analysis and design, to validation, code generation, test generation and
documentation. It supports several types of models, including the SDL, MSC and GOAL
languages discussed previously, as well as certain types of UML diagrams [OMG99]. A complete
description of the environment is given in [TEL00a] and on the tool website?.
In this context, the Simulator provides the following functions:

— Simulation of SDL models, with debugging features similar to those offered in most mod-
ern programming environments (step-by-step execution, (conditional) breakpoints, data
watch, etc.). Some advanced debugging features are available:

— reverse execution (undo/redo),

!Computer Aided Software Engineering
*http://www.telelogic.com/ObjectGeode
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— scenario archiving and rerun,

— automatic stimulation of open models with signals,
— automatic guidance through transition filters,

— production of customized graphical traces in MSC,
— model coverage analysis,

— interactive or random scheduling of fired transitions.
— Verification functions, using an exhaustive exploration of the model state space:

— deadlock detection,
— configurable dynamic error detection (e.g. lost or unexpected signals),
— checking satisfaction of properties written in MSC or GOAL.

Both simulation and verification functions are based on the construction of the state space
(simulation graph) of the model. They differ in the order in which this state space is constructed.
In simulation, only the states along the executed scenario (which may be guided interactively
by the user, or constructed at random) are built, while in verification, a larger part of the state
space is constructed (in depth-first or breadth-first order). Verification of properties is done on
the fly and the entire state space needs to be built only in some cases.

The exploration of the state space relies on a representation of the global state of the SDL
model (and the associated MSC and GOAL observers), comprising the values of all variables in
the model (and in observers), the discrete states of all agents (and observers), and the contents
of signal queues. The successors of a state are computed in several steps:

1. Evaluation of SDL transitions which are fireable in the current state of the model, and
selection of a transition to be fired (depending on the execution mode: interactive, ran-
dom, verification). In the commercial version of the tool, the list of fireable transitions
may contain either explicit discrete transitions (SDL model transitions), implicit discrete
transitions (timer expiration, signal discard, etc.), or time transitions. In the extended ver-
sion of the tool presented here, time transitions are handled implicitly, as an abstraction
similar to the timed automata simulation graph is used; therefore, only discrete transitions
(explicit or implicit) appear in this list.

2. Execution of the actions specified by the transition, on the current state of the SDL model.
A new state of the SDL model is thus obtained. The observable events occurring during
the transition are recorded and used in the next step.

3. Execution of transitions in the associated MSC and GOAL observers, triggered by the
events recorded in the previous step. A new state for each MSC and GOAL observer is
thus obtained. These are merged with the state of the SDL model, to obtain a new global
state.

Other actions may be executed in parallel with these steps, to accomplish different functionalities
of the Simulator: transition filtering (during the first step), test for stop conditions (after step
3), update of code coverage tables (during step 2), etc.

The software components involved in the simulation of a model are shown in Fig. 8.1. The
SDL model and the MSC and GOAL properties are compiled in an executable format, in which
SDL transitions for example are transformed into routines that rely on a set of action primitives
(corresponding to SDL actions) implemented in a model-independent library (Simulator library
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Figure 8.1: Simulation tool architecture

in Fig. 8.1). This library also contains the definitions of the generic data structures used for
coding global model states, as well as the implementation of the auxiliary functionalities of the
Simulator (such as verification procedures). Furthermore, the simulator binary interacts with a
user interface component, through which the user guides the simulation session and obtains the
results.

As noted before, the central function of the simulator is the construction of the state space.
Implementing the language extensions and the verification techniques described in the previ-
ous chapters will impact both the data representation of the state space and the construction
procedures. The next section examines these aspects.

8.2 The timed simulation graph

The tool built in the context of this work uses an abstraction similar to the simulation graph of
timed automata for handling the clocks of the SDL model (and of the MSC or GOAL observers).
The states manipulated by the extended simulator are symbolic states of the form (g, S), where
q is a global state of the SDL system identical to the global states manipulated by the standard
simulator. S is a zone of the clock space (see §5.4), representing the set of clock valuations
reachable by the scenario executed so far (i.e. the path from the initial state to the current
state, in the state space). Thus, a simulation state (g, S) represents a set of explicit model states
(g, v) which are reachable from the initial state by a same sequence of discrete transitions, and
which share the same discrete part.

Transitions in this simulation graph correspond only to discrete transitions of the SDL model
(i.e. there are no time transitions). The successor of a simulation state (g, S) after execution of
a discrete transition e, is computed by the extended Simulator as time-succ(disc-succ(e, (¢, S))),
where the operators time-succ and disc-succ were defined for timed automata in §5.4.

In the following, we discuss the data representation of simulation states, and the effective
method for computing the successors of a state.
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Figure 8.2: Bi-dimensional clock zone

8.2.1 Representation of states

For encoding the discrete part of a simulation state (gq,S), the same representation as in the
standard version of the simulator is used. For representing clock zones, we use the difference
bounds matrices (DBM) proposed in [Dil89, ACD93].

A DBM is a square matrix, which can encode a conjunction of atomic clock conditions
(convex polyhedron in the clock space). A DBM with (n + 1)? elements is used for encoding
a polyhedron in an n-dimensional clock space. The elements of a DBM are pairs of the form
(¢,~), with ¢ € ZU {00} and ~€ {<,<}.

Let {x1, ...,z } be the set of clock over which a DBM M is defined, and M (7, j) denote the
element of M at coordinates 7, 7. We assume that the rows and columns of M are numbered from
0 to n. For all 4 # 0 and j # 0, M(i,7) encodes the upper constraint on the clock difference
x; — x;: if M(i,7) = (¢,~) then z; — z; ~ c¢. Column 0 and row 0 are used to encode the
constraints of individual clocks: if M(4,0) = (¢,~) and M(0,i) = (¢/,~") then —c’ ~' z; ~ c.

Take for example the zone ( in a bi-dimensional clock space, given by the following con-

straints: 1 > 2, 1 < z9 <7 and —4 < 29 — 21 < 3. The zone is represented in Fig. 8.2. The
DBM that encodes this zone is:

0.9 (-2.<) (-L<)
Ty (117§) (O,S) (47
0

<)
(1,9 3,5 <)

We note that a same convex polyhedron may be represented by several DBMs, if some of
the comparisons are useless. In the above example, the inequality z1lell may be inferred from
o < 7 and 1 — x2 < 4. Any DBM representing the latter inequalities, and an additional
inequality z1 < ¢ with ¢ > 11 will represent correctly the same polyhedron (, regardless of the
actual value of ¢. This is because the intersection of the conditions represented in all such DBMs
is the same.

However, a canonical form for DBMs may be defined, such that every convex polyhedron
is represented by a unique DBM. Such a canonical form, and an algorithm for bringing an
arbitrary DBM to the canonical form are presented in [Tri98]. The canonical form is important,
as its existence simplifies the test of equality for polyhedra (which is reduced to plain equality
of DBMs).

All operations on convex polyhedra needed for the construction of a timed automata sim-
ulation graph (intersection, test for inclusion, projections, etc.) can be easily implemented
using DBMs. For this reason, many tools including KrRONOS [Yov97, DOTY95], UPPAAL
[LPY97, BLL196] and IF [BFG199, Boz99] use this data structure.
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The drawback of DBMs is they cannot represent non-convex polyhedra, which arise in the
analysis of timed automata with urgency, and consequently in the analysis of extended SDL
specifications. As non-convex polyhedra may be represented with unions of convex polyhedra,
they are manipulated in the simulator using lists of DBMs. This representation is not canon-
ical, which complicates the implementation of the equality test for non-convex polyhedra, and
penalizes the performance of the tool in certain cases.

8.2.2 Transition steps

In this section we present the algorithm used to construct successors of a simulation state (g, S).
For the beginning, we will consider the case of an SDL model which is simulated without an
associated MSC or GOAL observer.

Auxiliary polyhedra operations

The computation of successors of a simulation state equates to the computation of the list of
enabled transitions, followed by the computation of time-succ(disc-succ(e, (¢, 5))) for each en-
abled transition e. However, the definitions of time-succ and disc-succ (§5.4) are descriptive,
and do not provide an operational procedure for computing these operations. In the following,
we define several operations on clock polyhedra, which are used in addition to usual operations
(intersection, union, complementation) in the computation of the time-succ and disc-succ oper-
ations. In all operations, we consider only clock valuations yielding positive values (in Ry ), as
it is the case for all clocks appearing in extended SDL models.

1. Orthogonal projections. Let ¢ be a polyhedron on the clock set X, and y € X a clock. The
orthogonal projection of X parallel with the axis of y is the polyhedron

(ly=01={veRY|v(y) =0A (I €(.Vz e X\ {y}. v(z) =V (2)) }

The operation is used to implement clock reset in the construction of the simulation graph.
Fig. 8.3-b shows the result of the application of this operation on a polyhedron in a 2-clock
space (represented in Fig. 8.3-a):

¢ = {verRl™ | 2<v(@) <8 AL<v(y) <T A —4<v(y) —v(z) <3}
(y=0] = {veR{" |2<v(z) <8 A v(y) =0}

2. Forward diagonal projection. The forward diagonal projection of a polyhedron ( gives the
clock valuations reachable from valuations of ¢ by letting time pass with whatever amount:

SC={veR] |V e(IER . VT EX. v(z)=V'(z) +5}

The operation is used to implement time progress in the simulation graph. The result of
/¢ for the polyhedron taken as example above is represented in Fig. 8.3-c:

JC={veR™ [2<v(@) AL<v(y) A —4 < v(y) —v(z) <3}

3. Backward diagonal projection. The backward diagonal projection of  contains the clock
valuations from which the valuations of { are reachable by letting time pass with whatever
amount:

:{vERf |V e BeR . Ve eX. v(z) =V(z) -0}
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Figure 8.3: Operation on clock polyhedra

For our example, the result of this operation is (see Fig. 8.3-d):
L C={veR™ | 0<v(@) <8 A0S v(y) ST A —4<v(y) —v(z) <3}

4. Clock to clock assignment. This operation is used to implement assignments between clocks
in the simulation graph. For a polyhedron (, the result of an assignment y := « is defined
as follows:

(ly=az]={veR]|v(y) =v(z) AV €(.Vz € X\ {y}. v(z) =V'(2)) }

For our example, the result of this operation is (see Fig. 8.3-e):
(=2l ={veR™ |2<v(z) <8 A2<v(y) <8 A v(y) =v(z)}

5. Inferior opening. This operation calculates the largest polyhedron ¢’ C ¢ which is open,
in the topological sense, on the faces determined by lower clock bounds:

open-inf({) ={ve(|IER,.§>0Av-F€e(}

Note that if all the lower clock bounds of a polyhedron ( involve strict inequalities, then
open-inf({) = (. In the above definition we use v — § to denote the valuation v’ with
v/(z) = v(x) — 0 for all clocks z.

The result of the application of this operator on the example taken before is shown in
Fig. 8.3-f.
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6. c-closure. This operation is used to compute the closure of the polyhedron ( with respect
to the region equivalence relationship ~, defined in §5.4. The operation is used in order to
render the number of regions (and zones) finite. The definition of c-closure with respect
to a constant c is:

close(¢,c) = {veR] |V €lv=. v}

An example of the partitioning of the clock space Rj‘_) into equivalence classes with respect
to ~. was given in Fig. 5.2. In Fig. 8.3-g, we represent the polyhedron close((, 6), as well
as the lines that partition the space in equivalence classes (dotted). Note that the c-closure
operation may yield a non-convex polyhedron even if the initial polyhedron is convex.

7. Increasing/decreasing the dimension of the clock space. These operations take as parameter
a polyhedron in an n-dimensional space, and yield a polyhedron in a space of dimension
n+1lorn—1.

Let ¢ € RY, and 2 ¢ X. We define?:

C[Tw]:{vERXU{I} |vlx € (AvV(z) =0}

Let ¢ € RY, and z € X. We define:

Clha)={veR™MI IV eC.v=v]rw}

All the above operations may be easily implemented using the DBM representation of poly-
hedra. A more detailed discussion on the properties of some of these operations, and their
implementation using DBMs can be found in [Tri98]. Some additional operations are intro-
duced here, compared to [Tri98]: the clock assignment, the inferior opening, and the dimension
increasing/decreasing operators. Their implementation with DBMs does not pose difficulties.

Implementation of state operators

The state operators time-succ and disc-succ may be expressed as combinations of operations on
polyhedra, taking simulation state zones and transition guards as operators. In this section we
introduce the formulas for calculating time-succ and disc-succ, which are used by the simulation
tool in the construction of the simulation graph.

We remind the definition of disc-succ for timed automata:

disc-succ(e, (¢,9)) = (¢/,{v' | Iv € S. (¢,v) = (¢',v")})

where e = (¢, (,u,a, X,q) is a transition between ¢ and ¢'.

In the SDL simulator, the discrete destination state ¢’ is obtained from the discrete source
state ¢, by applying the rules of the dynamic semantics of SDL. However, for obtaining the
zone §' = {v' | Iv € S. (¢,v) = (¢’,v')} from the initial zone S, several polyhedra operations
are used.

Let X = {x1,...,x} be the clocks reset during the transition e. For timed automata as
defined in Chapter 5, S’ is given by:

S'=(SN¢)[z1 == 0][z2 :=0]...[zx := 0]

3By v|c we denote the restriction of a function (v) on a subset of its domain (C)
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The intersection SN ¢ yields the valuations v € S such that e is enabled in the automaton state
(g, v). The orthogonal projections following the intersection take into account clock resets.

This formula was previously described for timed automata without urgency in [Tri98]. It
applies in the same way in our framework based on timed automata with urgency. For this
reason we do not include here a proof of correctness. We note however that, in the simulation
tool described in this work, the additional clock operations defined in SDL have been taken into
account:

— Clock assignments, implemented using the clock assignment operator [z := y]

— Clock creation and deletion, implemented using the operators for increasing/descreasing
the dimension of the clock space: [f z] and [{ z].

In the following, we examine the computation of time-succ in timed automata with urgency,
which is is slightly more complicated as it has to take into account the specific time progress
conditions using urgencies. For simplicity and precision, we will use the timed automata nota-
tions instead of those specific to the SDL semantics. We remind the definition of time-succ:

time-succ((q,S)) = (¢, {v' | IvE S, § € R. (¢,v) - (¢, v')})

We rewrite the time progress conditions of timed automata with urgency, given in Chapter
5 on page 84, by making some variable changes: (¢, V) BN (¢, V') iff v/ =v +§ and:

1. Ve = (q,(,u,a, X, q") transition starting from ¢ such that u = eager, V¢’ € (0,0], v'—0" & (.

2. Ve = (q,(, u,a,X,q") transition starting from ¢ such that u = delayable, V¢', §" such that
0<d"<d <o, (vV=8del = vi-d"€e).

Let S’ denote the zone {v/ | I3v € S, § € R. (q,v) SN (gq,v")} from the definition of
time-succ, which we want to characterize using the polyhedra operations defined previously.
We will define the operators restrict-eager(S, () and restrict-delayable(.S, (), which yield the time
successors of a zone S restricted by a time progress condition as imposed by one eager, and
respectively delayable transition having the guard (. The idea is that S’ is the intersection of
these restrictions, restricted with the guards of all discrete transitions e leaving from the state
q.

For obtaining the expression of restrict-eager(S, (), we consider the valuations v € S and
their possible time successors. Depending on the position of v in .S, we have the following three
cases:

1. if v € (, then the eager transition with the guard ( is enabled in v, and therefore time
may not progress at all from v.
The restricted time successors of v are: restrict-eager({v},() = {v}.

2. ifve (v ¢)\(, then time may progress from v but there is a point at which the successors
of v intersect the guard (, and from which time may no longer progress.

The restricted time successors of v are: restrict-eager({v},{) = (* {v}) N ((v" ¢) \
open-inf(()).
3. if v & (, then time may progress indefinitely from v.

The restricted time successors of v are: restrict-eager({v},() =7 {v}.
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Figure 8.4: Urgency restriction operators.

The definition of restrict-eager (S, ¢) is then:

restrict-eager(S,{) = (SN¢) U
(7 (SN ¢\ Q) N ( ¢\ open-inf(¢)) U
(7 (S\ v Q)

In Fig. 8.4-b we show an example of application of the restrict-eager operator, for a square
zone S and a square guard ( (represented in Fig. 8.4-a). The zones that correspond to cases 1,
2 and 3 above are the crosshatched zone, the zone filled with vertical lines, and respectively the
zone filled with oblique lines.

We proceed in the same manner for obtaining the expression of restrict-delayable(S, (). Let
ves.

1. if v € (, the there is a point at which the successors of v intersect the guard (. Time
may progress as long as the successors remain in (.
The restricted time successors of v are restrict-delayable({v},{) = (" {v}) N (" ().

2. if v €/ (, then time may progress indefinitely from v.

The restricted time successors of v are restrict-delayable({v},() =7 {v}.

The definition of restrict-delayable for the entire zone S is then:

restrict-delayable(S,{) = (7 (SN )N (v ) U
(7 (S\ v C))

In Fig. 8.4-c we show an example of application of the restrict-delayable operator, for the
same zone S and guard ¢ as in the example before. The zones that correspond to cases 1 and 2
above are the crosshatched zone, and respectively the zone filled with oblique lines.

The characterization of time-succ((g, S)) is given by the following property:

Lemma 8.1 Let g be a discrete state of a timed automaton, and eq,...,e; be the discrete tran-
sitions originating from s, with the guards (polyhedra) denoted respectively by (1, ..., (.
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Then time-succ((q, S)) = (q,S"), where S’ is given by:

S'=,8n m restrict-eager(S,(;) N ﬂ restrict-delayable (S, (;)
i€{1,...,l} i€{1,...,l}
e; iseager e; isdelayable

Proof. The proof can be found in Appendix B.

Successors computation algorithm

We describe below the algorithm used by the simulation tool to compute the successors of a
simulation state (¢,S). The algorithm is based on the semantic description of SDL given in
§6.4, and on the successors computation formulas introduced in the previous section. It consists
of the following steps:

1. Ewaluation of fireable transitions. The transitions of the SDL model which fulfill the
discrete conditions (i.e. not related to clocks) to be fired, are gathered in a list t1, ..., t;.
They depend only on the discrete part g of the state.

Let g1, ...,g9n be the clock guards of these transitions. A transition t; is enabled in the
symbolic state (gq,S) if it is enabled in at least one explicit state (g, v) contained in the
symbolic state. This is tested by the condition g; NS # 0. Let ¢}, ...,¢; be the transitions
for which this condition holds (enabled transitions), and g, ..., g;. be their respective clock
guards.

In the symbolic state (g, S), certain explicit states (¢, v) may constitute deadlocks. They
are the states in which no transition from ¢, ..., is enabled, and in which no transition
becomes enabled by letting time pass. The deadlocks form a zone characterized by the
following expression: S \ U?:l(\/ g;) Therefore, in the construction of the simulation

graph, if S\ U?:l(\/ g;) # 0 then the simulator will signal the existence of deadlocks.

2. Transition firing. For each fireable transition ¢/ in the list computed before, the following
steps are taken:

(a) The state (¢', S") = disc-succ(t}, (¢, S)) is computed. As noted in the previous section
on page 147, this step consists of the following operations:

i. The SDL statements specified by the transition ¢, are executed on the discrete
part of the state (¢, S), obtaining a new discrete state ¢’. S remains unchanged
in this step.

ii. Sy = SNy, is computed. (g,S)) if the part of the symbolic state (g, S) on which
the discrete transition ¢, is effectively enabled.

iii. The clock operations (resets, assignments, creation, deletion) specified by the
transition ¢, are successively executed on the zone Sj. If 01,02,...,05 are the
polyhedra operations corresponding to these SDL clock operations as explained
on page 147, then the following polyhedra are successively computed: S| =
01(56), veey S],g = Ok(Skfl)-

S’ is the last computed polyhedron, Sj.

(b) The state (¢',S"”) = time-succ((¢’,S’)) is computed. The computation uses the for-
mula given in Lemma 8.1, and consists of the following steps:
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i. S =78 is computed.

ii. The list of discrete, timeout, and signal delivery transitions enabled on a part
of (¢',Sy) is obtained, in a step similar to Step 1. Let t{,...,¢] be the enabled
transitions, and g7, ..., g/’ their clock guards (explicit guards for SDL transitions,
implicit guards for timeout and signal delivery transitions, as explained in the
timed semantics of SDL).

iii. For each eager transition or timeout transition ¢/ in the enabled list, Sj is inter-
sected with restrict-eager(S’, g/'). The result is kept in S{.

iv. For each delayable transition or signal delivery transition ¢! in the enabled list,
Sy is intersected with restrict-delayable(S’, ¢/'). The result is kept in S .

S" is the last value of Sf.

The state (¢',S”) is marked as a successor of (¢, S) by the transition ¢, in the simulation
graph. If the simulation graph is not finite otherwise, closure with respect to the maximal
constant ¢ used in clock comparisons in the SDL specification (or in the MSC and GOAL
observers) can be first applied to the zone S” (S” := close(S”, ¢)).

8.2.3 MSC and GOAL specifications

The handling of MSC and GOAL observers in parallel with an SDL specification induces some
modifications in the successor computation algorithm presented in the previous section. The
computations related to observers take place between steps 2.a and 2.b.

Intuitively, based on the state (¢',S’) and on the events generated by the previous discrete
step t,, the simulator evaluates the fireable transitions of each observer. For each observer,
there may be several fireable transitions uy, ..., ux, with the guards hq, ..., hx, but the parts of
the simulation state (¢, S’) on which these are fireable (i.e. h; NS’, i = 1,k) must be disjoint.
This condition ensures that the behavior of the observer is deterministic for every explicit state
(¢',v) € (¢',S"), which is essential in the definition of timed property automata.

The state (¢',S’) is partitioned in (at most) k + 1 parts: (¢’,h1 N S'),...,(¢", hx N S") and
(q',S"\ U§:1 h;), each part generating a different successor due to the observer transition. On
each part (¢',h; N'S’), the result of triggering the observer transition is computed, in a step
similar to the step 2.a of the algorithm from the previous section. The step 2.b, computing the
temporal successors (time-succ) is subsequently applied to the k + 1 resulted states, and there
will be £ + 1 successors of the initial state (¢, S) in the simulation graph.

Moreover, if there are several observers executed in parallel with a specification, the state
is partitioned for the first observer, each substate is partitioned for the second observer, and so
on.

8.3 User-level features

The simulation tool provides essentially the same interface as the commercial version of the
Simulator [TELOOa]. The tool may be used in the two modes presented in §8.1: simulation
(user-controlled or random) and verification (with finite or Biichi acceptance conditions).

Interactive commands and presentation of results

In simulation mode, the user guides interactively the execution of the model. A number of
additional commands related to the language extensions are available for:
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— wisualizing the clock zone of the current simulation state. The command clocks prints the
clock constraints defining the zone associated to the current simulation state. For example,
the output of this command during the simulation of the SpaceWire system presented in
§6.2.4 may look like this:

> clocks

0 <= ifacel!SM!rc <= 10440

0 <= iface2!SM!rc <= 7780

0 <= ifacel!SM!rc - iface2!SM!rc <= 2660

— measuring the time span between two events in interactive simulation. It is difficult (or
sometimes impossible) to derive information about the time span between two simulation
events by examining the clock zones in the two states. For this reason, the simulator allows
the user to create and destroy chronometers, which are used for measuring time in such
situations. A chronometer behaves like an SDL clock, except that it is introduced from
the simulation console. By consulting the clock zone after several simulation steps, the
constraints on the chronometer indicate the lower and upper limits of the elapsed time
interval.

A typical scenario for taking measurements is shown below:

> addclock chron -- add chronometer, start interactive measuring
added chronometer chron from console

-- simulation steps

> clocks chron —— consult chronometer
156360 <= chron <= 23260
> delclock chron —-- remove chronometer

deleted chronometer chron from console

— wvisualizing the contents of delaying channels queues. The command dchannels prints
information about the signals in transit through a channel, as shown in the example below:

> dchannels
contents of channel physical_link direction towards iface2 =
1 =
sender = ifacel!TX(1)
name = NChar
NChar =
pl = datachar

— controlling the behavior of some extensions, such as lossy channels.

Verification features

In verification mode, the simulation graph is built (entirely or partially) without the intervention
of the user, in a pre-established order of exploration (depth-first or breadth-first). The following
types of properties are checked on the fly:
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— Absence of deadlocks. The conditions in which deadlocks are signaled have been discussed
in Step 1 of the successors computation algorithm, on page 150.

— Invariance properties. These properties are given by propositional logic formulas that must
hold in each state of the system. A formula is formed of atoms « which can test:

1. The discrete state of the SDL system, such as the value of a variable, the length of a
queue, etc. In this case, the satisfaction of « by (g, S) is decided based on the discrete
part q.

2. The values of clocks, using the same form of atomic clock comparisons as in SDL tran-
sition guards. The satisfaction of such conditions «a by (g, S) is verified by checking
the inclusion of the zone S in the polyhedron represented by the condition a.

— Linear properties specified in MSC or GOAL. The verification methods for MSC and
GOAL properties have been discussed in Chapter 7.
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Chapter 9

Case studies

We have performed several case studies for validating the concepts and tools developed in the
context of this work. Some of the examples that have been considered are benchmark examples,
frequently used in the timed verification literature, such as the train-gate-controller system
(described in [Alu91] and [Tri98]) or the Bounded Retransmission Protocol (BRP has been used
as a benchmark example for several verification tools [GvdP96, HS96, Mat96]; time-specific
aspects of the protocol have been studied in [DKRT97], using a timed automata based formalism
and the Uppaal tool [LPY97, BLL198]). These case studies have given good results concerning
the expressivity of the formalisms (SDL for describing the models, and GOAL and MSC for
describing properties) and the power of the analysis methods that are used.

Several case studies using real-life system specifications have also been considered. The
reliable multicast transport protocol RMTP-II [PMR 100, WPT99] is currently being modeled
at France Telecom R&D in the context of the INTERVAL project!, using a set of SDL extensions
similar to those proposed in this thesis, for evaluation purposes. Besides a good expressiveness
of the proposed SDL extensions, the study has also pointed out some shortcomings of the
extensions, such as the impossibility to use time measurements in auto-adaptive systems. Partial
results obtained in another study, concerning a multimedia synchronization protocol by Ericsson,
confirm these conclusions.

In the following, we will describe in more detail a study based on the SpaceWire protocol
[SWGO00]. In §9.1 we give an informal description of the protocol, taken from the protocol
standard draft. In §9.2 we outline the problems encountered when specifying the protocol in
SDL, and show how the extensions proposed in this thesis help in building a more precise
specification. §9.3 shows how timed functional properties of the protocol are described and
verified using GOAL and MSC. Finally, in §9.4 we draw conclusions from the mentioned case
studies.

9.1 The SpaceWire protocol

SpaceWire [sWGO00] is a protocol stack used by the European Space Agency to handle payload
data on-board a spacecraft. The purpose of SpaceWire is to provide a unified high-speed in-
frastructure for connecting together sensors, processing elements, mass memory units and other
sub-systems. The standard covers several protocol layers, from the physical link up to the net-

'European project INTERVAL (IST-1999-11557): Formal Design, Validation and Testing of Real-Time
Telecommunications Systems. http://www.cordis.lu/ist/projects/99-11557.htm
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Figure 9.1: SpaceWire protocol layers and their functionality

work level. In our case study, we have focused on the exchange level, which corresponds to the
data link level in the OSI stack. Parts of this specification were used throughout the previous
chapters of this document.

In Fig. 9.1 we outline the layers of the SpaceWire protocol, and the functions fulfilled by
each layer. The Exchange Level is implemented by a link interface, which makes the connection
between a host system (directly or through the SpaceWire Network Level) and a physical link
(through an additional bit encoding layer — the Character Level). Two link interfaces exchange
full characters (as represented by the Character Level) over an unreliable full-duplez point-to-
point link.

The functionality provided by an Exchange Level link interface is:

1. Connection establishment. Upon initialization, error or a soft reset (received from the
host system), a link interface executes a reset cycle which is described further in this
section. The reset cycle is partly time-controlled, and its purpose is to synchronize the
link interfaces at the two ends, and to bring both of them back in the connected state.

2. Error detection through parity checking. Parity checking is actually handled by the under-
lying layer (Character Level), the Exchange Level only re-initializes the connection upon
a parity error. No re-transmission functionality is provided.

3. Disconnection detection by continuous transmission of control characters on the transmit-
ting side, and timeout detection on the receiving side.

4. Flow control. In order to avoid buffer overflows, each link interface will keep a credit
counter, which represents the maximum number of data characters it is allowed to send
to the other side. The counter is increased when the other side signals (using a control
character) that new places are available in its receiving buffer, and decremented whenever
a data character is sent over.

As defined by the standard, a link interface has three components: a transmitter (TX),
a receiver (RX) and a state machine (SM). In the following, we show how this functionality
described above is achieved by the components link interface.
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The transmitter (TX)

The transmitter is responsible for sending data and control characters over the link, according
to the data received from the host system and to the instructions from the SM. There are two
kinds of control characters used by the Exchange Level:

— the NULL character, which is sent continually by the TX as long as the connection is
established and there are no other characters to be sent. The NULL character is also used
for synchronization in the initial phases of the connection.

— the FCT character, which is used for flow control. The FCT is used in order to signal that
space for 8 more characters is available in the host receiving buffer. FCTs are sent by the
TX at the request of the host system.

The TX also handles flow control information: each time the RX of an interface receives a
FCT from the remote side, the FCT is forwarded to the TX, which increments a credit counter
by 8. Each time the TX transmits a data character, the credit counter is decremented by 1, and
data characters are sent only as long as the credit counter is positive.

The TX has 4 modes of operation:

1. disabled — no character of any kind is transmitted.

2. sending NULLs — in which only NULL characters are transmitted (continually) over the
link.

3. sending NULLs and FCTs — in which NULL characters are transmitted (continually) over
the link, and FCTs are transmitted at the request of the host system.

4. sending NULLs, FCTs and NChars — in which NULL characters are transmitted (contin-
ually) over the link, and FCTs and normal data characters (NChars) are transmitted at
the request of the host system.

The TX switches between these modes of operation, at the request of the SM. They are used in
the link interface initialization cycle, described further on.

The receiver (RX)

The function of the receiver is to forward the characters received from the link to either the SM,
the TX, or the host system. Normally characters are handled as follows:

— NULLs are ignored, except for the first NULL received after a link re-initialization (which
is forwarded to the SM),

— FCTs are forwarded to the TX and to the SM

— Normal characters are forwarded to the host system. However, the receiver takes care so
that two end-of-packet characters are not received one after the other. If this is the case,
an empty packet error is signaled to the host and to the SM (the latter will consequently
re-initialize the link).

— Characters containing parity errors are signaled to the SM which will re-initialize the link.

The RX also uses a disconnection timer, to detect link problems. Whenever a period of 850ns
elapses without a character being received, this is signaled to the SM which will re-initialize the
link. The disconnection detection mechanism is enabled when the first character is received.

The RX has only two functioning modes:



160 CHAPTER 9. CASE STUDIES
ErrorReset
ResetLink TX disabled after 5.12t0 7.78 ps
RX disabled
Run .
TX sending NULLS/ ErrorWait
TX disabled
FCTs/NChars RX enabled
RX enabled } to 15.48 ps
if gotFCT
_ after|10.24 to 15.48 ps after 10.24 to 15.48 ps
Comecins
NULLS/FCTs E)((‘:r:ﬂsg
RX enabled
) Started if LinkStart or
if gotNULL T sending NULLS ('AutoStart and gotNULL)
RX enabled
Figure 9.2: SpaceWire link interface initialization cycle
1. disabled — all characters are ignored
2. enabled — characters are handled as shown above. Additionally, the RX ignores all the
characters received before the first NULL character after a link initialization.
The state machine (SM)

The main function of the state machine is to provide the synchronization logic for link estab-
lishment. When a link is established, the SM’s of the interfaces at the two ends remain in the
same state without taking any action (until an error occurs or the respective interface is reset
by the host system).

The reset cycle executed by a link interface (at initialization time, or after an error or a soft
reset) is depicted in Fig. 9.2. The phases (states) of the cycle are:

1.

ErrorReset — This state is entered at initialization time, after an error or after soft reset.
In this state, the SM will disable both the TX and the RX. This state is normally left
after a 6.4us, but the standard allows a jitter, so the actual value may be between 5.12us
and 7.78us.

During this period, if the remote interface was still connected it will detect a disconnection
(as no NULL or other character is transmitted for more than 850ns), and will initiate the
reset cycle.

. ErrorWait — In this state, the RX is enabled, and it begins listening for NULL characters.

If a NULL character is received, the gotNULL condition (used in state Started) is set
to true. The state is left after a nominal delay of 12.8us (that is between 10.24us and
15.481s with the jitter). The delays in ErrorReset and ErrorWait are chosen so that
receivers at both ends are enabled before either end begins transmission.

. Ready — This is a transient state which is left as soon as the link may be initialized. A

link interface may run in two modes: LinkStart — in which the interface does not have
to wait for an external event in order to be initialized, and AutoStart — which is a slave
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block type Link_Interface Fenel
SendNulls, SendFCTs, SendNchars, ResetTX, /* State Machine -> Transmitter 1/
gotFCT, gotNULL, gotNchar, EnableRX, ResetRX, /* State Machine <-> Receiver *
EmptyPacketError, DisconnectError, ParityError;  /*Errors :*/
signallist LinkChars = NULL, FCT, NChar, ParityErrorChar;
signallist LinkControl = ResetLink,LinkStart,AutoStart;
signallist RxErr = EmptyPacketError, DisconnectError, ParityError;
synonym CreditCountMaxMin NATURAL = 56;
[0l o
TX [ NChai THI RD [THI2host
[NChar}
[ moreiﬂ
[gotFCT} credit
ResetTX,
SendNULLs,
SendFCTs,
SendNchars
[(LinkChars)} b 10 [(LinkCharsﬂ . TxControl CDntrLEll_lnkErrorJ
—p FCTlink « control > >
i otFCT, gotNULL, .
[ (LlnkChars)} { gothhag (RxErrJ [(LII‘IkCOI‘I!TOl)} [ LinkError} [(LinkControl) ]
RxControl
EnableRX,
ResetRX
[NChar]
[ (LinkChars)] - | RHIZhost
RHI
| [ NChaH [moreS}

Figure 9.3: SDL modeling of a SpaceWire link interface

mode, in which the link is initialized when the first NULL is received. The condition for
passing from Ready to Started is therefore: (LinkStart or (AutoStart and gotNULL)).

4. Started — In this state, the TX switched to sending NULLs. If gotNULL is already true,
or as soon as the first NULL is received, the SM is switched to state Connecting. If no
NULL is received within 10.24 to 15.48us , the interface is reset again.

5. Connecting — In this state, the transmission of FCTs is allowed, and the interface waits
for a FCT from the remote side. The FCT means that the remote side is ready to receive
data characters, and therefore the interface may be switched to Run. If this condition is
not met within 10.24 to 15.48us, the link is reset again.

6. Run — This is the normal operation state, in which all control and data characters may
be sent. This state is left only if the host resets the link, or if an error occurs.

Additionally to the transitions represented in Fig. 9.2, transitions to the ErrorReset state
may be taken in any state upon the receipt of a character containing a parity error, or the receipt
of an unexpected character (NChar in a state different from Run, FCT in a state different from
Run or Connecting).

9.2 SDL modeling and expressivity problems

Although the Exchange Level of the SpaceWire protocol is designed to be implementable in
hardware, the signaling between the components of a SpaceWire interface is asynchronous, and
SDL is a suitable choice for modeling and validating the functional and timing aspects of the
protocol. In the following we discuss the SDL modeling of a SpaceWire link interface, the
validation model built around it, and we outline some of the problems occurring if the standard
version of the language is used for modeling.
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The link interface (Fig. 9.3) is modeled as a block agent, with three component processes
corresponding respectively to the transmitter (TX), the receiver (RX) and the state machine
(SM). On one side, the link interface is connected to the physical link through the bit encod-
ing level, which is abstracted away our modeling. Thus, two link interfaces connected together
exchange full characters, represented by the SDL signals NULL, FCT, NChar, and ParityFEr-
rorChar. ParityFErrorChar is introduced to represent characters received with a parity error.
Moreover, as the functioning of the protocol does not depend on the content of data characters
(NChar), the only information carried by NChar signals is whether the character is a normal
data character or an end-of-packet (EOP,EEP) character.

On the other side, the link interface communicates with the host system through several
gates:

— RHI2host — provides a receiving interface by which NChars are received, and credit signals
(more8) are sent.

— TIH2host — provides a transmit interface by which NChars are sent, and by which the
interface signals to the host system when it is ready to transmit (RDY).

— control — provides an interface for link control, transferring signals for: resetting the link,
establishing the link operation mode, signaling link errors.

The specification of TX, RX and SM are shown in Fig. 9.4-9.6. Their behavior corresponds
in a straightforward manner to that described by the standard:

— The TX has four states corresponding to the four operating modes described in the pro-
tocol standard. An additional state (stopped() is necessary in order to flush the signal
queue when the TX is reset. This action is currently not prescribed by the standard, but
during the verification we discovered that the protocol functions incorrectly if signals are
preserved in the queue after a reset.

The manipulation of the credit counters used for flow control is specified on the transitions
from state TX.

Communication delays, which are important for the timing of the protocol, are specified
by the standard and depend on speed of the link, which may be 100, 200 or 400 Mbps.
In the SDL specification we have considered the case of a link operating at 100 Mbps,
and we have taken the nanosecond as time unit. The communication delays could not be
modeled using the extensions for delaying channels proposed in Chapter 6 because, on one
hand, characters have different lengths (a NChar has 10 bits, a NULL has 8 bits, and an
FCT has 4 bits), and on the other hand the TX should be blocked while transmitting a
character, which is not the case if a delaying channel is used. Communication errors are
also modeled explicitly in the 7X, as the assumption about the physical SpaceWire link
is that single-bit errors may occur and are detected using a parity bit.

— The RX has a state (NotEnabled) corresponding to the disabled operating mode (see
previous section), and two states ( WaitNull and Idle) corresponding to the enabled mode.
In WaitNull, the RX waits for the first NULL character received after a link reset. In
normal operation mode (Idle), the RX handles all types of characters that may be received
from the lower layer.

The disconnection timeout is modeled using a clock (dt) and a delayable transition, because
the standard allows a range of values between 740 and 1080ns for the timeout.
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process TX
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dcl
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Figure 9.4: SDL model for the TX
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process RX

dcl char NChar_T := datachar,
EndPacket boolean := false,
dt Clock;

WaitNull

EndPacket := False

resetClock(dt)

WaitNull

NUL%
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I I
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Figure 9.5: SDL model for the RX



9.2. SDL MODELING AND EXPRESSIVITY PROBLEMS

165

process SM

O

ErrorReset

resetClock(rc)

ErrorWait

Started

SendFCT:

U

Reséstem

SendNULL;

resetClock(rc)

resetClock(rc)

DisconnectErroy
ParityError,
gotNchar

@ gm

DCL gotnull BOOLEAN := FALSE;
DCL autostart BOOLEAN := FALSE;

............. DCL rc Clock;
resetClock(rc) rc>=5120and \ -
rc <=7780 / delayable ErrorWait
e
EnableR rc>= an :
ce T ) deleratle

I_I—I
(not AutoStart) or < gotnull> re >= 10240 and delayab,e o Dlsggztr;?rtrlir;or,
(AutoStart and gotnull re<= SRR EmptyPacketError

Resé(@stem

ErrorWait,
Ready,
Started

- gotNULLK DisconnectError,
ParityError,
R gotFCT,
gotnull := TRUE gotNchar

Res@stem

)
O

LinkErrc} |

LinkStar\< ResetLi<

@,, ¢ Auto|Starl<

[
AutoStart S -@ set

- AutoStart
gotnull := FALSE := TRUE = FALSE
I T

ResetTX, ResetR

resetClock(rc)

Figure 9.6: SDL model for the SM
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— The SM process has 6 states corresponding to the operating modes described in the pre-
vious section. The transitions correspond directly to the transitions shown in Fig. 9.2.

The time-triggered transitions specified in the standard are modeled using delayable tran-
sitions, in order to capture the allowed non-determinism.

The standard semantics of SDL, which makes no assumption about the processing times
of agents, cannot be used for validating the SpaceWire specification. The reason is that the
protocol relies on strict reaction times of each component, and has no mechanism for detecting
malfunctions due to slow reactions of certain components. Using the standard semantics of
SDL, nothing can be ensured concerning the functioning of the link (e.g. it cannot be ensured
that, in the absence of errors, the link will eventually be established, as it could take an infinite
time for the RX at one end to detect the first NULL character received).

The semantics of SDL provided by most simulation and verification tools is closer to the
needs of this specification, since assuming O-reaction time is reasonable for this specification.
However, this semantics is not sufficient for validating the functioning of a link in all cases,
because the SpaceWire standard allows large ranges for every timer or duration used in the
specification. Using the standard constructs of SDL, only one combination of time values used
in the SM’s may be validated at a time.

9.3 Verification

We have used the SDL specification of SpaceWire presented in the previous section in two ways:

— First, we exploit the capability of GOAL observers to generate traces, in order to make
end-to-end time measurements for specific functions of the protocol.

— In a second phase, we use the timing information acquired before to construct and verify
combined functional and timing properties of the protocol.

The validation model

For validating the functioning of a link interface, we had to model the environment in which
the link operates. The SDL model built for validation purposes includes two link interfaces
connected through a physical link, as well as the two host systems controlling the interfaces.
The structure of the validation model is shown in Fig. 9.7.

For the physical link, since bit errors and communication delays are modeled in the TX, we
only need to model the possibility for the link to break up; this is characterized by the complete
loss of signal for an undetermined amount of time, which we may model using the lossy channel
construct.

For the hosts, we must assume the weakest hypotheses about their behavior, in order to
obtain results that hold in most real case. The behavior of hosts in the verification model is
shown in Fig. 9.8. At initialization, a host establishes the operating mode of the link (AutoStart
or LinkStart). If LinkStart is chosen, then the host may initialize the link after an indeterminate
amount of time; this is modeled using a lazy transition. After the initialization, the host sends
within a bounded amount of time a credit signal (more8), then passes in a normal operation
mode (represented by state RecvTrans).

In order to verify the flow control mechanism, the host too keeps a credit counter (cpt),
which is increased when a more8 is sent, and decreased when a NChar is received. If this
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system test

/* From Exchange Level to Character Level */ B
signal NChar(NChar_T), NULL, FCT, ParityErrorChar;

signallist | inkChars = NULL, FCT, NChar, ParityErrorChar;

/* host <-> link interface */

signal RDY, more8, ResetLink, LinkStart, AutoStart, LinkError;
signallist | inkControl = ResetLink,LinkStart,AutoStart;

newtype NChar_T

literals datachar, EOP, EEP;

|endnewtype ;
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Figure 9.7: The SpaceWire validation model

counter reaches a value below 0, it means that a buffer overflow has occurred in the host.
Normally, the protocol should ensure that this does not happen.
The host also performs several actions at randomly chosen moments:

— it sends data characters at random (after having received a RDY signal from the link
interface),

— it sends more8 signals at random. To limit the explored model, we allow this only when
cpt = 0, so cpt is never greater than 8.

— it may reset the link at random.

These actions are modeled using lazy transitions, to allow them to happen at arbitrary moments.

Time measurements

The global correct operation of a SpaceWire link is a complex property, that depends on the
fulfillment of several simpler properties concerning each of the four basic functionalities of the
protocol enumerated on page 158. While the functional properties that the protocol must satisfy
(related to each functionality) are easily deduced from the standard, there are no user-defined
requirements concerning timing. For this reason, in our case study we started by making time
measurements for the basic functions of the protocol, and we used the resulted values to construct
correctness properties.

From the user’s point of view, an interesting characteristic of a SpaceWire link is the min-
imal/maximal time it takes for the connection to be established after a reset or an error. This
depends on the operation mode of the link interfaces at the two ends. In the following, we show
how measurements were made in the case of two link interfaces, one operating in AutoStart
mode and the other operating in LinkStart mode, in the absence of transmission errors.
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process host(1,1)
Q dcl cpt natural := 8;

dcl ready boolean := false;

@ timer t:=200;

(

host start)

auto start

BufferOverflow

NChar NChar
(EOP)> (datachar)>
<Buffer0verflow> < = ) ( )

Figure 9.8: The specification of a host

Using the existing mechanisms of the ObjectGEODE simulation tool (notably, transition
filters), we guide the exploration of the SDL model so that the above hypotheses are met. The
observer in Fig. 9.9 is then used to measure the time between the sending of the ResetLink signal
by the host functioning in LinkStart mode, and the moment when the state Run is reached by
both interfaces (and therefore the connection is established). The writeln(z) statement in the
GOAL observer outputs the minimal and maximal bounds on the clock z, as specified by the
clock zone of the current state. By performing an exhaustive exploration of the state space, we
will obtain several minimal and maximal bounds, corresponding to all scenarios through which
the connection is established. The global minimal and maximal bounds may then be computed.

With the hypotheses assumed before, we obtain a minimal value of 15560ns, and a maximal
value of 24390ns for the connection establishment time. However, during this experiment we
discovered that the host system has to satisfy a number of timing constraints to ensure the
establishment of the connection in a bounded time:

— Each host should send a first credit signal (more8) within a bounded amount of time after
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observer measurement
Q probe sm1 iface1 ! SM;
probe sm2 iface2 ! SM;
link_down
dcl z Clock;
sm1 !state =sm1!run
and sm2 !state =sm2!ru
writeln (z)

not_started

output ResetLink

resetClock(z)

Figure 9.9: Observer for measuring connection time

the (re-)initialization of a link interface. Initially we modeled the sending of the first more8
signal with a lazy transition. However, in that case a link interface may never sent a FCT
signal over the link, causing the opposite interface to be unable to take the transition from
the Connecting to the Run state.

— After a link reset, a host should let enough time for the TX to be reset, before sending
the credit signal (more8). The reason is that, if the 7X is busy sending a character when
it receives a RexetTX signal, the reset will be taken into account only after the current
character is transmitted. If in the meantime a more8 is received, it will be lost during the
reset process that follows. Therefore, the more§ signal should be sent after at least the
maximal character transmission time (100ns on a 100Mbps link) from a reset.

For these reasons, a credit signal is sent 200ns after every reset or initialization, in our model.
The minimal and maximal times obtained above hold with this hypothesis.

Other time measurements, for example concerning the connection times under different as-
sumptions or the error detection times, may be made using the previously described method.

Verification of timing properties

We have verified several timed functional properties on the SDL specification of SpaceWire. We
discuss below a property referring to the establishment of a SpaceWire connection. The exact
form of the property expressing correct connection establishment depends on the configuration
of the hosts and on the errors occurring on the physical link. We consider here the case when
one host is configured in LinkStart mode, and the other in AutoStart, and no errors occur on
the physical link.

In this case, when the host configured in LinkStart mode sends the ResetLink message, the
connection should occur in at most 24390ns, as indicated by the measurements described in the
previous section. This property, expressed in a variant of linear temporal logic with bounded
time operators? would have the following form:

¢ = O ({output ResetLink) — Q<24390(Link Up))

In the above formula, (output ResetLink) represents an atomic proposition which holds in the
current state if that follows after a transition in which the ResetLink signal was sent. (Link Up)

?Such operators are used in the quantitative branching time logic TCTL [ACD93]. See also the survey [AH91]
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observer phi_liveness

probe sm2 iface2 1 SM:

Q probe sm1 iface1 ! SM
success state not_started_or_link_up;

not_started_or_link up

sm1 Istate =sm1!run dcl z Clock;
and sm2 Istate =sm2 ! run
output ResetlLink and z <— 24390

not_started_or_link_up )

resetClock(z

Figure 9.10: Observer for verifying connection establishment in a particular configuration

is an atomic proposition representing the states in which the connection is established. (Note
that in the classical definition of LTL, atomic properties like (output ResetLink) cannot be
represented, as they depend both on the state of the model and on the previous transition
by which this state was entered. However, the definition of LTL formula satisfaction may be
adapted to accommodate such atomic propositions.)

In GOAL, the (output ResetLink) atomic proposition is equivalent to the “when output
ResetLink” observation predicate. The value of (Link Up) is given by the following condition
on the components of the SDL model state:

(Link Up) = (sml ! state = sml ! run and sm2 ! state = sm2 ! run)

The property ¢ may be expressed as a GOAL liveness property, as shown in Fig. 9.10.
Other verified properties refer to different functions of the protocol, such as:

1. Ezchange of silence. As shown in the specification, the re-initialization of both sides of a
link after an error is based on the exchange of silence: the side detecting the error enters
the reset cycle (by the ErrorReset state); the other side will not receive any more NULLs,
and will eventually detect a disconnection timeout and enter the reset cycle.

This property may be expressed more formally, for example, as follows: an exchange of the
signal LinkError inside one link interface is eventually followed, within a bounded amount
of time, by the exchange of a LinkFError signal in the opposite link interface. The amount
of time is more precisely 1160ns, which is the maximal duration of the disconnection
timer plus the transmission time of a NULL character which may begin just before the
first LinkError signal. In the following, we show how this kind of properties, which involve
only exchanged messages and associated timing information, may be expressed and verified
using MSC specifications.

Consider the HMSC with two alternatives represented in Fig. 9.11. The first alternative
expresses the fact that after the exchange of a LinkError signal in ifacel, another LinkError
signal is exchanged in iface2 within at most 1160ns. The second alternative specifies the
same events in the reversed order. Then, the timed property automaton corresponding to
the HMSC silence may be used for verifying correct exchange of silence, using the method
described in §7.2.3 (that is, provided that the initial state of the TPA corresponding to
the HMSC is considered a success state, so that systems in which no error occurs are also
considered correct).
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Figure 9.11: MSC property expressing correct exchange of silence

2. Flow control. The correct functioning of the flow control scheme of SpaceWire does not
involve timing. The property that has to be satisfied is that the hosts never reach the
BufferOverflow state. This is a simple safety property that may be verified using only
invariants, supported by the ObjectGEODE verification tool.

The property is satisfied if no error or only bit (parity) errors occur on the physical
link. However, if the link is completely interrupted for a period less than that of the
disconnection timer, after which the link comes back into operation, this error is not
detected and does not produce a re-initialization. In this case, if a FCT character is lost
while the link is down, the flow control scheme may no longer function correctly.
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9.4 Conclusions

The case studies performed show that the language extensions introduced in this work are able
to capture timing information both in the models and when writing temporal properties. They
have also pointed out some of the limits of the model, related to:

1. the abstraction level: in some cases, the primitives are too low level, requiring a more com-
plicated modeling. This is the case with the modeling of transmission delays in SpaceWire,
or with the modeling of congestion (dynamically changing execution times) in other mod-
els.

2. the expressivity of the primitives: as pointed out by the RMTP-II case study mentioned
in the beginning of this chapter, systems which adapt their behavior based on results of
time measurements cannot be modeled using the primitives introduced in this document.

On the tool side, the case studies have pointed out the necessity for applying state space
reduction techniques in case of large specifications. For example, we have been able to analyze
the SpaceWire model only after (manually) performing a live variable analysis and reduction.
Several other types of static analysis and reduction techniques are suggested in [Boz99] for a
formalism similar to SDL (IF). They provide very good reduction ratios and could be easily
adapted for SDL.

As such techniques are not yet integrated in our tool, we considered it premature to make
performance comparisons between the extended ObjectGEODE verification tool and other timed
model analysis tools.
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Conclusions and perspectives

The work presented in this thesis deals with the integration of timed modeling and validation
techniques within the framework of SDL. The concrete results of this work are situated at
several levels.

At the system specification level, we have defined a set of extensions which enable the
modeling of timing assumptions and of non-trivial time-dependent behavior in SDL. We have
also proposed an alternative semantics of time in SDL, which allows model-based tools such as
simulators and verifiers to use more realistic assumptions about time progress, when analyzing a
system specification. These assumptions are derived from the timing annotations introduced in
the specification. We note that the standard semantics of SDL, which constitutes the starting
point of the semantics described in this thesis, uses very loose assumptions about time progress
and therefore cannot be used for validating quantitative timing properties.

At the property specification level, we have studied two languages commonly used for writing
properties of SDL models, GOAL and MSC. GOAL is an automata-like observer language used
in the ObjectGEODE tool [TEL0Oa] for specifying properties of SDL systems, as well as for
controlling the simulation and verification process. In this thesis we have proposed a concise set
of language extensions which enable the specification of quantitative timing properties in GOAL.
We have also studied its semantics, and the satisfaction relationship between SDL models and
GOAL properties. In order to provide a sound semantic basis for these, we have defined an
abstract model of properties, the timed property automata (TPA), and its relation to timed
automata (which form the semantic basis of SDL in our framework).

On the side of MSC, we have been confronted with problems of a different nature. MSC
is a standard language for representing system execution traces. MSC is usually employed
for modeling requirements, representing selected traces, etc., as an informative counterpart to
a system specification. Although very expressive, the language cannot be used as a formal
property specification language, for two reasons: it does not have a formal semantics in its
latest revision (MSC-2000) which includes constructs for modeling timing constraints, and it
lacks an interpretation as a property language (that is, a clearly defined satisfaction relationship
between system models and MSC specifications). The results of our study cover both directions
mentioned before. We propose a semantics for a (regular) subset of MSC-2000 which includes
timing aspects. This semantics is based on timed automata, and is inspired by the (non-timed)
Petri Net semantics of MSC proposed in [GPR93]. We presented in this document only the
main lines of the semantics, without completely formalizing the definition. Concerning the
satisfaction relationships between system models and MSC specifications, we discuss several
alternative definitions for them.

173
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At the level of analysis methods and algorithms, we have first studied the model checking
problem for timed property automata. The obtained results show what abstractions may be used
for deciding TPA satisfaction, and how classic Biichi automata-based model checking algorithms
may be adapted for verifying TPA properties. These results, projected at the level of GOAL
and MSC, provide model checking methods for these two languages.

An important result of this work concerns the abstraction used for TPA model checking.
This abstraction, a variant of the timed automata simulation graph, is more complicated than
the original version presented in [Tri98], as it has to accommodate several new constructs allowed
in SDL models. We provide both an algorithm for building the extended simulation graph, and
a correctness proof for the formulas used in the algorithm.

In order to assess the power of the language extensions and of the analysis techniques pro-
posed in this work, we have implemented them in a tool prototype derived from an industrial
SDL simulation and verification tool. The advantage of starting from a full-fledged tool is that
the implementation of constructs existing in the standard SDL language may be reused, which
diminishes the number of limitations of the tool and eases experimentation. A number of new
features implemented in the tool have been inspired by the case studies on which the tool was
applied.

The case studies have shown that the SDL language extensions are capable of capturing many
forms of timing constraints appearing in real-time system specifications. Additionally, GOAL
and MSC prove to be very intuitive formalisms for describing quantitative timing properties.
While GOAL is very flexible, however, the lack of a standard interpretation of MSC as property
language is a shortcoming.

The application of the tool on case studies confirms that the proposed analysis methods allow
the derivation of interesting timing information, such as minimal/maximal delays between dif-
ferent events occurring in a system. An example is the SpaceWire study presented in Chapter 9.
This case study shows that an accurate modeling of the system timing may provide additional
insight in the functioning of the system, and may for example reveal hidden timing dependencies
between system components.

The case studies have also pointed out some limitations of the proposed techniques. The
language extensions made here prove to be low level in some cases, and unable to express
certain forms of timing constraints, as explained in Chapter 9. The analysis techniques also are
sometimes expensive in terms of computation, especially in the case of systems in which the
analysis yields non-convex clock polyhedra.

Perspectives

There are several directions on which this work may be continued, for achieving a wider inte-
gration of timing modeling and validation methods in industrial development frameworks.

Higher level modeling constructs. When experimenting with the SDL language extensions
proposed in this thesis, we realized that they are sometimes ill adapted and counterintuitive for
a user who is not accustomed with the underlying semantic concepts. For example, the urgency
concept provides a flexible way of specifying the moment when an event (e.g. a transition)
occurs in a system, but the rules for deriving the urgency information from the high-level system
requirements are difficult to formalize and may be misleading for the SDL modeler. On the other
hand, some extensions introduced here are too basic and not flexible enough. It is the case for



175

channel specifications, which cannot model for example delays depending on the type of the
signal, nor other types of transmission errors except signal loss.

For this reason, a promising work direction is the definition of a set of higher-level constructs
for modeling timing information, to be included in SDL, based on the same semantic concepts
as the primitives described in this work. These should be closer to the abstraction level of SDL,
and should reflect more directly the kinds of (timing) information usually appearing in real-time
system requirements.

Improvement of verification techniques. As noted in the conclusion of Chapter 9, there is
a practical necessity to apply state space reduction techniques in connection with the verification
method proposed in this work. A reduction method that may be easily adapted in this framework
is the elimination of inactive variables. This method is likely to produce good results in the case
of SDL, as the language defines several implicit components of the model state (e.g. the sender
implicit variable attached to each SDL agent) which contribute to the explosion of the state
space even when they are not used in a model.

Other reduction methods include partial orders, which attempt to avoid the exploration
of unnecessary interleavings of independent transitions. Such methods have been successfully
applied in the analysis of non-timed systems. However, their results in the case of timed models
are less spectacular. A reason for this is that the time progress condition in a timed model,
like the SDL model proposed in this work, is a global condition depending on the state of
all system components, which reduces the overall independence between transitions of different
components. Nevertheless, recent research results [BJLY98, Pag96, Min99] set hopes for a
successful application of partial order techniques on timed models.

Application of new validation methods. A direction in which we plan to pursuit this
research is the application of other validation techniques on timed models. We are thinking
primarily at testing, which is at the moment the most used validation method in industrial
development.

A research field that has been continually developing over the past decade is automated test
generation from formal system specifications. The ObjectGEODE framework, on which the tool
presented in this thesis is based, includes a test generation tool (TestComposer, [KJG99, KO99])
which is based on the exploration of the state space of an SDL model, using a technique similar
to that of a verification tool. Currently, the tests generated by the tool contain information
only on the discrete events exchanged between system components and the environment. We
are thinking about extending the tool to include selected timing information in the generated
tests. The main problem is to provide a flexible mechanism through which the user might select
the timing information that is actually important for testing, from the quantity of information
that a timed state space exploration provides.

On the side of test specification and execution, the available techniques are better prepared
for tackling the testing of timed systems. In our previous work [OK99] we studied the problem
of specifying timing information in a visual MSC-based test specification formalism, and took an
approach similar to that of the standard test description language TTCN [ISO92]. However, we
are aware of ongoing research aiming to improve the support for testing real-time requirements

in TTCN [WG97, HKNO1].

Integration within other languages. The spectrum of languages preponderantly used in
the industrial production of real-time systems is continually changing, and newer languages
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are becoming de facto standards. This is the case of the Unified Modeling Language (UML,
[OMGY9]), which has a growing importance in all branches of system modeling. Hence, the
possibility to adapt the modeling and analysis techniques presented in this work to new languages
is an important issue.

A preliminary study [Obe00] we have performed concerning the application of these methods
to UML shows no apparent incompatibility. UML uses a state machine based approach for spec-
ifying the behavior of system components, which can accommodate the constructs for specifying
timing information introduced here. Moreover, the proposed UML profile for schedulability,
performance and time [tadwg00] introduces some of the necessary modeling concepts, such as
time values (that may be attached to certain constructs in the model), time events, etc., without
however giving a clear semantics for these.

We also note that, because UML has several types of diagrams presenting different views
of a system, it is more difficult to make a formal analysis of a system specification. This
assertion is supported by the fact that all approaches to define a formal semantics for UML of
which we are aware (see the overview in [Sta0l]) tackle only a part of the language. Also, the
language definition still contains a number of deficiencies. In this context, we have worked on
the clarification of the concurrency model of UML [OS99], but other points need to be worked
out in order to obtain specifications amenable to formal analysis. Among them, we mention: the
semantics of actions, the semantics of time and the level of atomicity of transitions and actions,
the construction of the initial system state, the exact semantics of communication between
objects.

Nevertheless, as many efforts in the industry, academia and standardization bodies are put
into making UML more formal and precise, the perspective of doing model-based timing analysis
on UML models should become realistic in the long run.
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Appendix A

List of abbreviations

ASM Abstract State Machines

DBM Difference Bounds Matrix

GOAL GEODE Observer Automata Language

HMSC High-Level Message Sequence Charts

ITU-T International Telecommunication Union, Telecommunication Standardization Sector
LTS Labeled Transition System

MSC Message Sequence Charts

SAM SDL Abstract Machine

SDL Specification and Description Language

TA Timed Automata

TBA Timed Biichi Automata

TPA Timed Property Automata

UML Unified Modeling Language

7.100 ITU-T Recommendation Z.100 — Specification and Description Language
2.120  ITU-T Recommendation Z.120 — Message Sequence Charts
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Appendix B

Proofs

Proof of lemma 8.1. We prove the equality in two steps:

1.

(q,5") C time-succ((q, S))

Let v € S’. This implies the following:

(a) ve S, and
(b) Ve; eager transition originating in ¢, v € restrict-eager(.S, (;), and

(c) Ve; delayable transition originating in ¢, v € restrict-delayable(S, ¢;).

We aim to prove that 30 € Ry such that v — ¢ € S and the time progress conditions are
met for the transition (g, v — 0) SN (q,v).

From (a), we have that 3dp € R;.. v—0y € S. In the following we will define §1,...,0;, each
d; corresponding to a transition e;, such that the following conditions (the time progress
conditions imposed by e;) are met by each §;:

i) v—-9,€8.
(ii) if e; is eager, then V&' € (0,0;], v — &' & (;.
(iii) if e; is delayable, then V¢', 0" such that 0 < §" < ¢’ < §;, (v—0 € = v 08" € ().

We define 6y ,...,d; as follows:

— if e; is lazy: &; = dg,
— if ; is eager: from (b) we have that v € restrict-eager(.S, (;). From the definition of
restrict-eager, the following three cases are possible:

v € SN In this case, we choose §; = 0. It is easy to see that ¢; satisfies (i) and (ii)
(e; being eager, (iii) does not concern ;).

ve (/SN G\G)) N (G \ open-inf(¢;)) In thiscase v e (7 (SN( Gi\Gi)))
= v €, 5. We choose §; arbitrary such that v —0; € S (i.e. satisfying (i)). We
prove that 0; satisfies (ii).
v € (v ¢\ open-inf((;)) = v € ¢ and v & open-inf(¢;). The following two
cases are possible:
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— v & (. Since v €/ (; and (; is a convex polyhedron', it is easy to see that
this implies V¢’ € Ry, v — ¢’ € (;, so we have (ii).

— v € (;. But v & open-inf({;), and from the definition of open-inf this implies
that V&' € Ry, v — ' € (;, so we have (ii).

ve, N (S\ v ¢) We have v e 7 (S\ /() = v eSS, We choose §; arbitrary such
that v —§; € S (i.e. satisfying (i)). We prove that ¢; satisfies (ii).
ve S\ ¢G) = VY eRy.v—0d &/ (;, whence v — § & (;, whence (ii).
— if e; is delayable: from (c) we have that v € restrict-delayable(S, ;). From the defini-
tion of restrict-delayable, the following two cases are possible:

ve( (SN ¢G) N (Y ¢) In this case, v €/ (SN (Y G) = v e S We
choose 0; arbitrarily such that v — ¢; € S (i.e. satisfying (i)). We prove that d;
satisfies (iii) (e; being delayable, 0; is not concerned by (ii)).
Since v € (;, it follows that 34" € Ry such that v + 0" € ;. Assume that
(iii) is not satisfied. Then, 340’,0"”. 0 < ¢§" < ¢’ < §; such that v — ¢ € (; and
v—0" & (.
The relative position of v — §',v —§” and v + ¢"” imply that the polyhedron ¢; is
not convex, which contradicts the definition of timed automata transitions. We
conclude that (iii) is satisfied.

ve, (S ¢) We have v e (S\ v () = v €, S. We choose ¢; arbitrarily
such that v —§; € S (i.e. satisfying (i)). Similarly to the eager case, we have:
ve NS\ ¢G) =V eRy. v—4§ & (;, whence v — ¢ & ;. This means the
the premise of the implication from (iii) is false, and therefore (iii) is satisfied.

As each §; satisfies the conditions of (i), (ii) and (iii) for the transition e;, it is easy to see
that by taking § = min{dy,d1,...,d;}, the number ¢ satisfies the time progress conditions
for all transitions ey, ..., e;.

Therefore, we conclude that 3§ € Ry such that (¢,v —46) € (¢, S) and (¢,v —9) LI (q,v),
which implies that (g, v) € time-succ((g, S)).

2. | time-succ((q, S)) C (q,5")

Let (¢, v) € time-succ((g, S)). This implies that 34. (g, v—0) LI (q,v), which by definition
means that:

(a) 36 such that v—¢ € S, and

(b) Ve; eager transition starting from ¢, Vo' € (0,6], v — ¢ & ¢;, and

(c) Ve; delayable transition starting from ¢, V&', §” such that 0 < §”" < § <6, (v—49§ €
Gi = v—0"€g).

From (a), it follows that v € 7 S. In order to prove that v € S’, we show that for every
transition e; starting from g:

(i) if e; is eager, then v € restrict-eager(.S, (;),

YIf ¢ is convex, then 2 ¢N /¢ = (.



193

(ii) if e; is delayable, then v € restrict-delayable(sS, (;),

If e; is eager, we distinguish the following cases:
—v—40€(.

If § # 0, by taking ¢’ = § in (b), we get v —§ ¢ (;, which contradicts the hypothesis.
Therefore, § =0, and v =v — § € SN, which by definition implies (i).

—v-0e (W G\G)-

Then v -3 € SN (v G\ ), which implies v e 7 (SN (v ¢\ ¢i)). We further need
to prove that v € (/ ¢; \ open-inf((;)), which we do in two steps:
—v—0€/¢\¢ = v—0¢€/ (= 39" such that (v —§) + 9" € .
Since (v — ) & (;, we have that 6" # 0. Assume that 0 < ¢” < ¢. Then
(v—=0)4+d"=v—(0—-09") € and 0 < (6 —0") < § which contradicts (b).
The above considerations imply §” > §. But since v + (6" — ) € (;, this implies
v e G
— To prove that v & open-inf({;), we proceed by negation.
Assume that v € open-inf({;). Then, by definition, 3§’ > 0. v—¢' € {;. Asv € (;
and v — § € (;, from the convexity of (; it results that 0 < ¢’ < §. However, this
contradicts (b), and therefore v ¢ open-inf((;) holds.

We conclude that in this case v € 7 (SN (v G\ G)) N (G \ open-inf(¢;)), which
by definition implies (i).

—Vv-0&L G

Since v—49 € S and v — § € (;, it results that v — ¢ € (S\  (;), which implies
that v € 7 (S\  ¢;). By definition, this implies (i).

If e; is delayable, we distinguish the following cases:

- v—0€/G.
v—0¢€/ ¢Gand v—4§ € S imply that v €~ (SN v (;). We further prove that
v €/ (;. We distinguish two cases:
—v—4€ordd,0<d < dsuch that v — 4" € ¢;. In this case, from (c¢) by
choosing §” = 0, we have v € (;, which implies v €/ (;.
- V& €]0,6], v—10 &¢.
But v—4§ €/ (; implies that 36" such that (v—§)+4" € (;. The above hypothesis
implies however that ¢” > 4, and therefore v €,/ ;.
The above considerations lead to v €, (SN v (;), N v (;, which by definition
implies (ii).
- v-0&/ G
Since v—49 € S and v — § € (;, it results that v — ¢ € (S\  (;), which implies
that v € 7 (S\  ¢;). By definition, this implies (ii).

To conclude, we have proved that (¢,v) € time-succ((q,S)) = v € S’ and therefore the
sought inclusion holds.



