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Multifractal analysis, which mainly consists in estimating scaling exponents, has become a popular tool for empirical data
analysis. Although widely used in different applications, the statistical performance and the reliability of the estimation procedures
are still poorly known. Notably, little is known about confidence intervals, though they are of first importance in applications. The
present work investigates the potential uses of bootstrap for multifractal estimation:

1) Can the bootstrap be used to improve current estimation procedures?

2) Can the bootstrap be used to obtain reliable confidence intervals for scaling exponents?

Comparing the statistical performance of different estimators, our major result is to show that bootstrap based procedures provide

us both with accurate estimates anc

' reliable confidence intervals.
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3. Weighted linear regression in log, S(7, q) vs. logsa = j diagrams:
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Bi1As AND CONFIDENCE LIMITS:
Bias

9(J,q) = Elog, S(j, q) — log, ES(3, q)
Estimate of ¢(7, q¢): Asymptotic expansion or bootstrap

Confidence limits
Asymptotic expansion or bootstrap
1. Asymptotic Limits: |
VarC(Q) = ;2:]'1 wiqu(ja Q)
where 0°(7,q) = Var log, S(7, q)
Wavelet coeflicients display only weak interscale correlation

Estimate of o%(7, q): Asymptotic expansion or bootstrap

2. Bootstrap Limits:
From simulated distribution (*(¢) of ()
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2. Calculate, for each of t!

he BB resamples, and for each scale y and moment ¢ of interest:
- structure functions BS replica
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log, S(4,q) — 9(559)

3. Calculate the bootstrap estimates g3(7,

and %(7, ¢) for each j and ¢ of interest:

,&B(ja Q) = It 1Og2 S*(jv Q) o 1Og2 0S™ ]
4. Calculate the B bootstrap estimates CA i

OA_QB(ja Q) = Var 1Og2 S*(]a Q)
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ASYMPTOTIC EXPANSION
Asymptotic Expansion: Wavelet coeflicients assumed uncorrelated at each scale ASYMPTOTIQ\ EXPANSION: B
- Approximate formulae for change of variable = Estimates §4(7, ¢) and 6%(7, ¢) 9a(d,q) = giegg '?j(;’q;f; 5%(5,q) = “O%fje)Q\(%g '?j(;’q;f
Gaussian Expansion: Wavelet coefficients assumed uncorrelated and Gaussian (# AUSSIAN EXPANSION:
- Analytic expressions g¢(7, ¢) and 67(j, ¢). No quantity needs to be estimated. daj, q) = —loe <ﬁ£§§jf))2 1) - 624(j, q) = o) (ﬁigﬁ 5))2 1)
NON PARAMETRIC BOOTSTRAP APPROACH o
Wavelet coeflicients at each scale only weakly correlated = Moving blocks bootstrap: QOIS TRAD: |
1. At each scale 7, draw B bootstrap resamples blockwise, with replacement from sample e U ° onaey . o o
7@ ® ® o D-
of original coefficients (Block length: L): S ® o o o o o o,
. . repeat B times (1), - x(n;), . 12 3 4 - ® 0000600000000
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