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SUMMARY

In this paper we introduce a new algorithm for seismic imag-
ing based on the flow out of Gaussian wave packets. We follow
the standard strategy of decomposing data into wave packets
and flowing them out along rays to approximate the downward
wavefield extrapolation, and finally applying an imaging con-
dition.

‘We revisit each computational step to gain efficiency. Further-
more, we develop procedure for seismic data decomposition
in order to obtain highly sparse representations with Gaussian
wave packets. As a result we get fast algorithm heavily ex-
ploiting sparse data representation and analytic description of
Gaussian wave packets. We tests our algorithm on synthetic
example of migrating common-shot gather.

INTRODUCTION

Gaussian beams were used for modeling seismic wave prop-
agation since early 80s (Popov, 1982; éerven)’/, 2001), while
Gaussian wave packets introduced at the same time (Babich
and Ulin, 1984) were not as popular in practical computations.
The practical implementation of prestack migration with Gaus-
sian beams was proposed by (Hill, 2001). Migration based
on Gaussian packets was discussed in Bucha (2009); Z4cek
(2004); Klimes (2004) with a detailed discussion of the related
issues.

Recently, different versions of so called “beam migration” are
have become popular in the seismic industry. The main strat-
egy is to perform directional analysis of data and ““steer” beams
accordingly into the subsurface following the detected direc-
tions. It was noticed that curvelet frames can be used for
sparse representation of data and migration operators (Douma
and De Hoop, 2007; Chauris and Nguyen, 2008). In this pa-
per we use Gaussian wave packets to represent seismic data,
and use the fact that they are described by explicit analytic for-
mulas that are invariant under many operations, e.g., transla-
tion, scaling, rotation, multiplication, convolution and Fourier
transformation.

We address some new approaches to implementing the seismic
migration operator based on the flow-out of Gaussian wave
packets. Following Bucha (2009), we will discuss the main
steps of the migration strategy for 2D common-shot gathers:

e data decomposition into Gaussian wave packets;
e flow-out of wave-packets into the subsurface;

e imaging condition (cross-correlation of wave packets).

THEORY

Wave-packet design
In two dimensions, we start from from the tensor product of
two Gaussian, along with an oscillatory factor:
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describes the decay coefficients in two orthogonal directions.

In the next step, we apply rotations and translations to obtain
the general Gaussian wave packet
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where Ry is the rotation matrix
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and y= (y,k, o, 3, 0) is the set of parameters. We use a collec-
tion of all wave packets y € I" in our construction of a discrete
transform.

For the typical case, where k = |k|(cos 8,sin0), i.e., when the
oscillation aligns with the semi-axis, L(o, 8,k) describes the
decay in the direction along and orthogonal to the oscillation,
respectively. Then a wave packet (1) can be viewed as “lo-
calized” plane wave as shown in Fig. 1; oscillatory direction
becomes the one orthogonal to wave front and the other direc-
tion is tangent to the front (smoothly decaying).

To summarize, the parameters that define the Gaussian wave
packets are:

e y - central location;
e k - vector of wavenumbers / scale;
e o - number of oscillations within a half-width;

e f3 - ratio of the half-widths along and perpendicular to
the direction of oscillation;

e 0 - orientation / rotation .

Data decomposition - sparse representation

Given a function (seismic data, image or snapshot) f(x) and a
collection of wave packets ¢y, we want to find a set of coeffi-
cients ¢ = {c¢y} such that
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Figure 1: Gaussian wave packet can be viewed as “localized”
plane wave.

where F is a recomposition operator, and we want only few
of the elements ¢y, ¥ € T, being non-zero. A popular way to
obtain such a sparse representation is by solving the problems
of the form

1
min 3 [[Fe — fll2 + plellp, ©)
where || - ||, and || - |2 denote ¢,and ¢, norm, respectively.

The problem of developing computationally efficient algorithms
to solve quadratic programming problems such as (6) for p = 1
has received much attention in recent years (Daubechies et al.,
2004; Herrman et al., 2008). Main problem with these algo-
rithms is that they are usually slowly converging and thus re-
quire many iterations (full image decomposition is required at
each iteration).

We have developed and implemented (in 2D) a new algorithm
for solving non-linear problems of the form (6) for p < 1. Main
novelty is that we use very fast internal iterations with only a
few full decompositions of an image (cf. (Andersson et al.,
2010)).

So far we have implemented a 2D decomposition that can be
used for getting sparse representation of 2D seismic data sets
with rather few wave packets. Sparse data representations are
important for reducing the computational cost for the whole
migration procedure, i.e., reducing the number of rays to be
traced and the cost of applying imaging condition. In addition,
we essentially get a high quality analysis of data directionality
that can be used in many different ways apart from migration:
detecting slopes, data regularization, as a part of event picking
etc.

Flow-out of wave packets

Wave-packet flow-out is the most restrictive step of our migra-
tion strategy. It was noticed by many authors that a smooth mi-
gration velocity model should be used for propagation (flow-
out) of Gaussian wave packets. Even using a smooth model
one gets in trouble trying to propagate Gaussian packets for a
long distance. For spreading waves, holes start to appear be-

tween propagating wave packets. For focusing waves one can
get incorrect interference pattern from wave packets ‘overrid-
ing’ each other.

For now, we restrict ourselves to the so called rigid flow of
wave packets: each packet is moved along a ray and stretched
in the ray direction according to velocity at the packet central
point. Although not ideal, it is illustrative because of its sim-
plicity, and it easily allows for fast flow-out implementations.
We use rigid flow to calculate propagation of ‘source’ and ‘re-
ceiver’ wavefields downwards into subsurface.

Figure 2: Wave-packet decomposition of synthetic data. Top:
original data; bottom: representation with 1129 wave packets.

Imaging condition

While restricting ourselves to a rigid flow of wave packets we
notice that Gaussian wave-packets maintain their analytic de-
scription in coarse of propagation. Thus we can write out an-
alytic formula for applying imaging condition. Parameters of
two Gaussian wave packets (one from the ‘source’ and one
from the ‘receiver’ fields) are recalculated into parameters of
another Gaussian wave packet that corresponds to their zero-

lag cross-correlation assuming that local homogeneity of a medium.
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EXAMPLES

Sparse representation of data and snapshots

In this subsection we apply our Gaussian wave packet decom-

position method for sparse representation of synthetic shot gather

that contains many overlapping events. We show original data
set in Fig. 2, top. In Fig. 2, bottom we show sparse repre-
sentation of this data with 1129 wave packets. It took about
7000 iterations to solve the problem (6) for this image includ-
ing only 7 full decompositions. Total decomposition time was
around 2 minutes on typical quad-core desktop.

Migration for a common-shot gather

In this subsection we test our migration algorithm on a sim-
ple synthetic example. We take one shot gather containing one
wave reflected from a horizontal boundary at depth z = .75 km;
upper layer is homogeneous with velocity vy = 1.5 km/s. Shot
gather was generated by a standard FD method (see Fig. 3,
top) and then decomposed into 26 Gaussian wave packets (see
Fig. 3, bottom). One can see that data can be pretty well rep-
resented by these 26 wave packets. We also use data repre-
sentation with 41 wave packets that provides almost exact data
recovery (not shown).

These wave packets were transformed from the data (space-
time) domain into the subsurface domain. From the parame-
ters of the transformed wave packets we can find initial data
and trace all 26 (or 41) rays (backward in time) describing
downward continuation of the ‘receiver’ field. We also trace
20 rays from the source location (forward in time) with uni-
formly distributed initial angle. These rays are shown in Fig. 4,
top. Black lines correspond to ‘source’ rays while blue lines
correspond to ‘receiver’ rays.

We then define the typical wave-packet width for each ray (it
can be defined varying along the ray in case of heterogeneous
velocity model). While stepping along rays with typical half-
period of wave packets, we check the closest distance between
all source and receiver rays. This procedure can become com-
putationally expensive when there are many rays involved. In
our implementation we rely on the assumption that we can get
a sparse representation of data. Thus we assume that number
of ‘receiver’ rays is always small.

Finally for each pair of wave packets chosen we apply ana-
lytic formula implementing imaging condition and get back a
wave packet that is a part of an image. In Fig. 5 we show final
image that is a stack of all image wave packets. Fig. 5, top cor-
responds to 21 data wave packets that resulted into 47 image
wave packets. It means that each ‘receiver’ wave packet inter-
sected with less than two ‘source’ wave packets. Fig. 5, bot-
tom corresponds to the the case of 41 data wave packets. It is
composed of 117 image wave packets. Thus in this case each
‘receiver’ wave packet intersected with almost three ‘source’
wave packets. One can see the importance of sparse represen-
tation: with increasing number of wave packets used complex-
ity of the algorithm is growing faster then linearly.
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Figure 3: Original shot gather (top) and its representation with
26 packets (bottom).
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Figure 4: Kinematics of wave-packet flow-out. Top: ‘source’
rays (black) and ‘receiver’ rays (blue); bottom: pairs of points
where ‘source’ wave packets (corresponding to the black dots)
come close by ‘receiver’ wave packets (blue dots).
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DISCUSSION

We note that images in Fig. 5 almost perfectly align at cor-
rect depth of the reflector, z = .75 km. There are no artefacts
that will be typical for Kirchhoff migration applied to one shot
gather.

One can see that decomposing data into 41 wave packets is
resulting in a better and more continuous image compared to
using 26 wave packets. Also one can see that image is a bit
stretching at the right side. This part of the image corresponds
to very steep events in data close to aliased region. More care-
ful conversion of wave packets from data to subsurface domain
should be used in this case. Also note that this region is close
to critical reflections that may also affect quality of imaging.

The most crucial step in the migration procedure is the down-
ward extrapolation of ‘receiver’ and ‘source’ field. Here we
implements it as a rigid flow of Gaussian wave packets along
rays: their translation and rotation defined by ray geometry.
There are two reasons for this choice: it is fast and wave pack-
ets during the flow-out are still described by analytic formula

3).
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Figure 5: Migrated image. Top: with data decomposed into
21 wave packets; bottom: with data decomposed into 41 wave
packets.

One drawback of this approach is that we implicitly need to
make an assumption about a smooth migration velocity model
used. However, note that this limiting assumption is typical for

all methods based on wave packet flow-out (cf. Bucha (2009)).

This procedure can become computationally expensive when
there are many rays involved. In our implementation we rely
on the assumption that we can get a sparse representation of
data. Thus we assume that number of ‘receiver’ rays is always
small.

Note also that our decomposition algorithm was not designed
just as a building block of our migration method. It provides
sparse representation of ‘wave-type’ objects: seismic data, im-
age or snapshots. It can be useful in many fields of data pro-
cessing: directionality analysis, data regularization, event pick-
ing etc. This can be illustrated if we draw central points and
orientations for the data representation example from Fig. 2.
Orientations are sown in Fig. 6 with arrows starting from cen-
tral points of corresponding wave packets.

CONCLUSIONS

We have introduced and tested on synthetic data a new algo-
rithm for common-shot gather migration. This algorithm is
based on a flow-out of Gaussian wave packets. Data is first de-
composed into wave packets. These wave packets are further
moved into subsurface along corresponding rays while remain-
ing Gaussian wave packets. Then analytic formula is used for
fast implementation of imaging conditions.

In conclusion we repeat that imaging with wave packets has
natural restriction, i.e., it can be used only for smooth models.
However it has all the flexibility of Kirchhoff migration. Thus
we think that it can be competitive as a tool for preliminary,
iterative or target-oriented migration given that its implemen-
tation is computationally cheap.

Figure 6: Central points and orientations (arrows) of 1129
wave packets used to represent data in Fig. 2.
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