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This article proposes a principled approach to multicriteria decision making (MCDM) where the
worth of decisions along attributes is not supposed to be quantified, as in multiattribute utility
theory, or even measured on a unique scale. This approach actually generalizes additive
concordance rules a la Electre and is rigorously justified in an axiomatic way by representation
theorems. We indeed show that the use of a generalized concordance (GC) rule is the only
possible approach when in a purely ordinal framework and that the satisfaction of very simple
principles forces the use of possibility theory as the unique way of expressing the importance of
coalitions of criteria. © 2003 Wiley Periodicals, Inc.

1. INTRODUCTION

There are at least three decision-making problems that have been studied
rather independently in the past: individual decision making under uncertainty
(DMU), multiagent decision making (MADM), and multicriteria decision making
(MCDM).

DMU research has culminated with the works of Savage1 and advocates a
numerical approach to decision making, whereby uncertainty is represented by a
single probability function, preference is encoded by utility functions, and acts are
ranked according to expected utility. It has been extended, among others, by
Schmeidler,2 and Sarin and Wakker3 on the basis of the Choquet integral. MADM
is, for a large part, based on the works of Arrow4 who formulated it in a qualitative
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framework as a voting problem in which complete preordering relations must be
aggregated. It leads to an impossibility theorem.

However, DMU and MADM are similar problems if the set of states of the
world is viewed as the set of voters in MADM.5 It may be surprizing that, formally,
similar problems lead to different settings, one being quantitative and the other
qualitative. The axiomatic framework of Savage has been reconsidered in the scope
of qualitative decision theory6,7 and it has been shown that keeping the essential
features of Savage’s framework while sticking to an ordinal framework leads either
to an impossibility theorem or to decision rules that generalize Condorcet’s
pairwise relative majority rule.

In this study, we focus on the third problem, namely, MCDM which is also of
the same structure as MADM and DMU, the set of criteria playing the role of
voters (respectively, of states). Interestingly, here, there are two distinct schools of
thought in this area, one deriving from the DMU tradition, and the other from
voting theory. The first school is essentially numerical and puts forward a weighted
sum for the aggregation of scaled utility functions; several principled justifications
have been proposed, principally in conjoint measurement, dealing with additive
utility.8–11 The second school stems from the works of Roy12: preferences along
each criteria (whether numerical or not) are represented by an outranking relation.
So-called additive concordance rules are used to perform criteria aggregation; they
are based on counting the number of criteria that favor one alternative over another.

There are actually very few foundational works in ordinal MCDM in com-
parison with multicriteria numerical utility theory. However, one has to mention
the pioneering work of Fishburn13 (see also Refs. 14 and 15 and more recent works
linked to the application of nontransitive conjoint measurement to MCDM, e.g.,
Ref. 16). Moreover, the problem of deriving aggregation procedures compatible
with a qualitative approach has seldom been considered if we except some works
in artificial intelligence, namely, in information fusion.17–19 The aim of this study
is to lay bare natural axioms that a purely ordinal approach to MCDM should
intuitively satisfy. These axioms characterize generalized concordance (GC) rules,
whose practical use is very limited; this work points out the limitation of such
ordinal approaches. It parallels the one started in Ref. 6, taking advantage of the
similarities between MCDM and DMU (however, the framework adopted here is
more general). In the next Section we present the two approaches to MCDM in
more detail and discuss the strong assumptions underlying the numerical aggre-
gation scheme. Section 3 then proposes a generalization of the usual additive
concordance rule. Finally, Section 4 proposes a rigorous axiomatization of such
generalized decision rules. For the sake of clarity, proofs are given in Appendix A.

2. PRELIMINARY DEFINITIONS AND REMARKS

A multicriteria decision problem can be characterized by a set � of alterna-
tives (possible actions, objects, and candidates) and a set N � {1, . . . , n} of
attributes or criteria used to describe the alternatives. Let Xj denote the set of
possible values for component j � N and X � X1 � . . . � Xn be the multiat-
tribute space. Within X, each alternative x � � is represented by the vector
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( x1, . . . , xn) of attributes values. � can be identified to its image in X and thus
considered as a subset of X. � will actually be identified with X itself because we
need a comparison model allowing the decision of whether x is at least as good as
y (denoted x � y) or not, whatever (x, y) in X2, i.e., a comparison model well
defined on the entire set X.

As a first consequence, for any pair (x, y) of alternatives and for any subset
of attributes A � N, we can soundly construct a mixed alternative xAy in which
its components are those of x on the elements of A and those of y on the other
attributes:

�xAy�j � �xj if j � A
yj if j � A j � 1, . . . , n

More generally, x1A1x2A2 . . . xkAkz is the alternative whose components are those
of xi on the elements of Ai and those of z are on the other elements.

Each attribute j usually defines a marginal utility uj( xj) measuring the
attractiveness of the attribute value xj. We assume that uj( xj) � [0, 1] but any
linear scale could be considered as well. In some models, the scale is ordinal in
nature and the marginal utility only encodes a ranking of the set Xj. In this study,
both � and N are supposed to be finite. Consistently, each Xj also admits a finite
set of values.

MCDM and MADM methods often involve a measure � on 2N that represents
the level of importance of the coalitions (of criteria or of voters). This importance
measure must be a capacity on N, i.e., a mapping defined from 2N to [0, 1] such
that �(A) � 0, �(N) � 1, and �( A) � �(B) for any pair of subsets ( A, B) in
N such that A � B. Important subclasses of capacities are formed by

● Additive capacities (e.g., probabilities) characterized by

@ A � N, ��A� � �
j�A

��� j��

Such measures are autodual and for any additive capacity there obviously exists a
distribution p : N � [0, 1] such that for all A � N, �( A) � ¥j�A p( j).

● Possibility measures characterized by

@ A, B � N, ��A � B� � max���A�, ��B��

Notice that for any possibility measure � there exists a possibility distribution � : N �
[0, 1] such that for all A � N, �( A) � maxj�A�( j).

● Necessity measures characterized by

@ A, B � N, ��A � B� � min���A�, ��B��

Notice that for any necessity measure �, there exists a possibility distribution � : N �
[0, 1] such that for all A � N, �( A) � 1 � maxa�A� �(a). This is because of the fact
the dual of a possibility measure is always a necessity measure (and conversely).
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Finally, the preference relation � on X2 is built through using a decision rule
defining the preference x � y as a function of vectors ( x1, . . . , xn) and ( y1, . . . ,
yn). As said previously, one can distinguish between two approaches to derive �.

2.1. The Aggregate and then Compare Approach

This approach consists of summarizing each vector x by a quantity u(x). This
utility is obtained by aggregation of marginal utilities uj( xj), often by means of a
weighted sum. More formally, the preference relation � is defined by

x � yN �����u1�x1�, . . . , un�xn���, ���u1�y1�, . . . , un�yn��� � 0

where � denotes the aggregation operator and � is a comparison function. A
classical choice for � is �(�, 	) � � � 	 but more sophisticated models using
discrimination thresholds could be used (see, e.g., Ref. 20). We assume here that
� is defined from [0, 1]n to [0, 1] and such that �(0, . . . , 0) � 0 and �(1, . . . , 1) �
1. For example, we can choose for � a particular instance of Choquet or Sugeno
integrals defined by

C���1, . . . , �n� � �
j�1

n

���j� 
 ��j�1������j�, . . . , �n���

S���1, . . . , �n� � �
j�1

n

��j� � ����j�, . . . , �n���

where � is a capacity measure and �( j), j � 1, . . . , n are the components of �
ranked in increasing order:

��1� � ��2� � · · · � ��n�

and �(0) � 0. Choquet integral is a powerful aggregation operator allowing positive
and negative synergies between criteria.21,22 When used with an additive capacity,
it boils down to the weighted sum. Sugeno integral is a qualitative counterpart of
the Choquet integral.23 When used with a possibility (respectively a necessity)
measure, it boils down to a weighted max (respectively a weighted min).24

2.2. The Compare and then Aggregate Approach

This approach consists of comparing, for any pair (x, y) in X2 and each
attribute j in N, the consequences xj and yj so in order to decide whether x is at
least as good as y according to the jth attribute. This yields n preference indices
�j(x, y), j � N. These preference indices restricted to a single attribute then are
aggregated before performing the following preference test:

x � yN ���1�x, y�, . . . , �n�x, y�� � ���1�x, y�, . . . , �n�x, y��

Example 1 (Additive Concordance Rule). Let us define � as
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�j�x, y� � �1 if uj�x� � uj�y�
0 if uj�x� � uj�y�

Choosing �(�1, . . . , �n) � ¥j�1
n wj�j leads to the weighted relative majority

rule. When wj are all equal, we obtain a well-known MADM system where x � y
iff a majority of voters/attributes is concordant with this preference. In MCDM,
interpreting the wj as the weights of criteria leads to a concordance rule used
in Electre methods.25,26

In this example, the integrals C� or S� could be used for �, thus leading to
more sophisticated decision rules using the relative importance of the attributes.

Generally, many ordinal decision rules can be obtained as particular instances
of the general comparison model compare and then aggregate (CA). This is the
case of many voting procedures considered in social choice,27–29 but also the
case of concordance rules used in Electre methods for multicriteria decision
analysis.26,27,30,31

The fact that the CA approach covers ordinal decision rules should be noted.
The choice of �j in Example 1 indeed amounts to constructing n preference
relations, which are aggregated by some � to form the overall preference
relation �.

2.3. On the Commensurability Between Local Preference Scales
and Importance Scales

Both methods AC and CA use n preference scales (Lj, 	), each being
characterized by a set of levels Lj � {uj( xj), xj � Xj} ordered by 	. The two
approaches also require an aggregation operation �. When � explicitly uses an
importance measure � on N (this is the case of Sugeno and Choquet integrals) the
aggregation operator can be denoted ��. In the AC approach, �� is used to
aggregate marginal utility indices uj( xj), whereas in CA �� is used to aggregate
marginal preference indices �j(x, y), resulting from pairwise comparisons. There
is a specific scale L� for criteria importance levels (the range of �, i.e., L� �
{�( A), A � N }). Hence, there are two distinct commensurability problems:

1. Can the same totally ordered preference scale Lu be attached to all criteria?
2. Is there a mapping relating levels of importance in L� and levels of satisfaction in Lj,

j � 1, . . . , n?

In the AC approach an affirmative answer is given to both questions. Indeed,
one commonly assumes that the same utility scale (Lu, 	) is valid for each
attribute. A possible choice for this scale is Lu � �j�N Lj. This choice requires the
comparability of utility levels coming from different scales Lj, which is a strong
assumption. On top of this single utility scale, we also need the importance scale
L�. The conjoint use of scales Lu and L� in the definition of preferences implicitly
makes the two scales commensurate.

To explain how this commensurability between importance and utility is
achieved, consider four alternatives in X defined by
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● The ideal alternative x* such that uj(x*) � 1, for all j � N
● The anti-ideal alternative x* such that uj(x*) � 0, for all j � N
● An alternative a having a constant utility vector (�, . . . , �), for � � Lu

● The alternative x*Ax* for a given proper subset A in N ( A 
 A and N
A 
 A).

Most aggregation functions �� satisfy the two following propertiesa:

Idempotency for all � � [0, 1], ��(�, . . . , �) � �
Coincidence for all A � N, ��(x*Ax*) � �( A)

Following AC we can define the preference order �� corresponding to �� by

x �� yN ���u1�x1�, . . . , un�xn�� � ���u1�y1�, . . . , un�yn��

In this context, it can be shown that

PROPOSITION 1. If �� is idempotent and coincident, then for any proper subset A
in N, we have

�x*Ax*� �� aN ��A� � �

This result reveals an implicit comparison between the level �( A) in the scale
L� and level � in the scale Lu. This shows that in the CA approach, the
intermingling of the scales L� and Lu is instrumental in the comparison of
alternatives, i.e., that L� and Lu need to be commensurate.

Recall that the similarity of the DMU, MADM, and MCDM decision frame-
works lies in the fact that the set of attributes plays the same role as the set of states
and the set of voters. The AC approach, accepting the two commensurability
assumptions appears natural in DMU; the set of consequences of acts is indeed
often independent of the considered state, and because there is a single decision-
maker, there is a single preference scale for the consequences. The second
commensurability problem is a matter of comparing degrees of uncertainty of
events (the counterpart of degrees of importance) and degrees of preference of
consequences. Although clearly distinct notions, uncertainty and preference are
equated in DMU provided that the decision maker is able to compare a sure gain
and a binary lottery (which characterizes an event; see Footnote a).

In the MADM context, the CA approach is much more natural because such
commensurability assumptions are difficult to accept. Indeed, local preference
scales Lj are attached to distinct voters and hence are hard to reconcile. Moreover,
the importance of individual voters or groups thereof generally is determined by an
external agent, not the voters themselves; hence, the commensurability between
individual preference scales and the importance scale is not warranted.

aIn DMU, idempotency holds when a constant act is equated to its unique consequence (a
sure gain), and coincidence means that the confidence of event A is the utility of a binary act
having extremely good consequences if A occurs and extremely bad ones if not, thus pointing out
the commensurability hypothesis between uncertainty and preference scales.
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In MCDM, the presence of a single decision maker makes the AC approach
more natural than in the MADM setting, but it raises an important operational
question. Indeed, to capture the preferences of decision makers in the AC model,
it would be necessary to ask a huge number of questions aiming at defining exactly
how elements of the various utility and importance scales should be intermingled
on a common scale. We will show in the next section that concordance methods
that are particular instances of the CA approach do not face this problem. From this
point of view the MCDM problem appears to be closer to the MADM setting than
to DMU, and it is natural to try and tackle the MCDM problem, making as few
commensurability assumptions as possible.

3. GENERALIZED CONCORDANCE RULES

The additive concordance rules introduced in Section 2.2 can be cast in a more
general setting. First, a preference relation �j is supposed to exist on each attribute
range Xj. It can be derived from the marginal utility functions if any [then xj �j

yj N uj( xj) 	 uj( yj)] or introduced as such from scratch by the decision maker.
Let �j and �j denote the strict preference and the indifference relations derived
from �j. The following coalition of attributes derives from the marginal prefer-
ences:

C��x, y� � �j � N, xj �j yj�

C�(x, y) is the set of criteria where x is as least as good as y.
Finally, assume an importance relation �I exists on 2N, whereby A �I B

means that the group of attributes A is as least as important as the group B. It can
be derived from the importance function, if any, [then A �I B N �( A) 	 �(B)]
or introduced as such from scratch by the decision maker. Such a relation is
supposed to be reflexive and monotonic, i.e.,

A �I Bf A � C �I B and A �I B � Cf A �I B

This property is satisfied if �I derives from a capacity as introduced in Section 2.1.
It implies the usual monotony condition of capacity functions. Indeed, A �I A
implies A � B �I A (i.e., for all A, C such that A � C, C �I A). The converse
is not true, except when �I is supposed to be transitive, as with capacity functions.

Importance relations derived from additive capacities also obey the following
property of preadditivity:

@ A, B, C � N A � �B � C� � Af �B �I CN A � B �I A � C�

However, it is well known that the preadditivity of �I does not imply its additivity
(see the counterexample of Ref. 32, where a preadditive relation is exhibited that
is not representable by an additive capacity).

Now, let us define generalized concordance (GC) rules.

DEFINITION 1 (GC Rules). A generalized concordance (GC) rule defines a pref-
erence relation � on X from the local preference relations �j on Xj, for all j �
1, . . . , n and the importance relation �I on 2N as follows:
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x � yN C�(x, y) �I C��y, x�

This definition is an MCDM counterpart to (and a generalization of) the “lifting
rule” proposed by Ref. 6 for DMU. When �I (resp. �j) derives from a capacity
function � (resp. a utility function uj) or equivalently when they are weak orders
(and thus always representable by capacity and utility functions), the previous rule
becomes

DEFINITION 2 (GC� Rules). A capacity-based concordance rule defines a prefer-
ence relation � on X from the relations �j on Xj, for all j � 1, . . . , n and a
capacity � on 2N as follows:

x � yN �(C�(x, y))	�(C�(y, x))

The additive concordance rule of Section 2.2 is recovered when � is an
additive capacity. When � is a necessity function, one recovers the (necessity-
based) concordance rule proposed by Ref. 6 in the context of DMU, namely,

x � yN Nec�C��x, y))	Nec�C��y, x��

Remark that

● Variants of the GC rule can be obtained using �j (resp. �I) instead of �j (resp. �I) in
Definition 1.

● Applied to alternatives x*Ax* and a introduced in Section 2.3, it is clear that x*Ax* �
a N A �I N
A because C�(x*Ax*, a) � A and C�(a, x*Ax*) � N
A. One can
observe that the result only depends on the inequality A �I N
A, which pertains to two
levels of the same scale. Generally, the GC rule does not require any commensurability
assumption. Only comparisons within Xj and comparisons between sets of attributes are
requested. Hence, when weak orders are considered (Rule GC�), changing the inter-
twining of quantities of type �( A) with quantities uj(x) does not affect the preference
� induced. Thus, assessing utility functions and the capacity � is enough with this
model contrary to the AC approach.

● When the relations �j are complete, C�(x, y) � C�(y, x) � N. In this case, only a
subpart of �I is used, namely, the one that compares sets, the disjunction of which form
the full attribute set.

● It is a priori natural to assume that �I and the �j are complete and transitive. However,
the GC rule makes sense even if these properties do not hold. The transitivity of the
relations �j may be questioned; e.g., consider a numerical attribute that is naturally
ordered (e.g., a price). It may happen that a “small variation” of a value on this attribute
will not modify the subjective value of the alternative considered. Indeed, one can
imagine that the decision maker remains indifferent between two values xj and yj as long
as the difference �xj � yj� does not exceed a certain threshold. Such preferences are
perfectly natural but fail to be transitive. A similar rationale could be developed
concerning the transitivity of relation �I.

● GC rules fit CA approach of Section 2.2 when �I (resp. �j) derives from a capacity
function � (resp. a utility function uj) or equivalently when they are weak orders (Rule
GC�). The general CA scheme is recovered when �j is defined as in Section 2.2 and �
is such that for all � � [0, 1]n, �(�) � �(�(�)), where �(�) is a vector with
component �j(�) � 1 if �j 	 0 and 0 otherwise. The term �(�) is the characteristic
vector of C�(x, y) and �(��) of C�(y, x).
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A natural question is whether it is worth considering a nonadditive importance
function � to define GC rules. The claim that additive capacities are not expressive
enough is based on counterexamples like the following.

Example 2. We evaluate and compare four candidates applying to a commercial
engineering position. Candidates receive grades according to four points of view:
technical skill (X1 � {A, B, C, D, E}), commercial skill (X2 � {A, B, C}), age
(X3 � {20, . . . , 60}), and salary (X4 � {20, . . . , 100}). Within X1 (resp. X2),
A is the best grade and C is the worst. Numerical values in X3 and X4 are to be
minimized. The ratings of the four candidates {x, y, z, w} are

We get

C��x, y� � �1, 3, 4� C��y, x� � �2, 3, 4�

C��x, z� � �1, 2, 3� C��z, x� � �1, 2, 4�

C��x, w� � �2, 4� C��w, x� � �1, 3�

Now assume that the decision maker’s choice is x (a reasonable choice
because this candidate realizes a good trade-off between the various objectives).
An attempt to reconstruct such preferences with the rule (GC�) and an additive �,
leads to the following inequalities:

���1�� � ���3�� � ���4�� � ���2�� � ���3�� � ���4��

���1�� � ���2�� � ���3�� � ���1�� � ���2�� � ���4��

� ��2�� � ���4�� � ���1�� � ���3��

These inequalities being contradictory, the additive rule is unable to describe
the decision maker’s choice.

A sound modeling of the previous example can be built using a nonadditive
capacity �, e.g., a belief function in the sense of Shafer,33 namely, the one based
on the following basic probability assignment: m({1, 3}) � 0.1, m({2, 4}) �
m({1, 2, 3}) � m({1, 3, 4}) � 0.2, m({1, 2, 3, 4}) � 0.3. Taking for � the
Shafer’s belief function defined as �( A) � ¥F�A m(F), we indeed get

���1, 3, 4�� � 0.3 � ���2, 3, 4�� � 0.2

���1, 2, 3�� � 0.3 � ���1, 2, 4�� � 0.2

���2, 4�� � 0.2 � ���1, 3�� � 0.1
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Another well-known argument against additive concordance rules is that they
lead to Condorcet effects, i.e., that even the strict part of global preference � (�)
may fail to be transitive. However, there are some nonadditive concordance rules
that alleviate this lack of transitivity, e.g., the one obtained when � is a necessity
or a possibility measure (see Ref. 6).

Both kinds of measures avoid the Condorcet effect.

PROPOSITION 2. When � is a possibility measure (resp. a necessity measure) and
the relations �j on Xj, for all j � 1, . . . , n are weak orders, the preference order
on N defined by Definition 2 is quasi-transitive.

Remark that possibility and necessity measures are not the sole capacity
functions that ensure the quasi-transitivity of � (i.e., the transitivity of �). This
also is the case of some very particular probability functions (but not all, as shown
in the previous example), namely, the one that encodes a lexicographic ordering of
the attributes.34

4. A CHARACTERIZATION OF THE GC RULE

To better understand the descriptive potential of GC, we now characterize
preference structures that are compatible with this rule. In this study, both X and
N are supposed to be finite (consistently, each Xj admits a finite set of values). We
also investigate the practical construction of the adequate instance of the rule from
a given preference relation � on the entire multiattribute space X. This relation
represents the decision maker’s preferences. It is assumed to be partially observ-
able on a sufficiently rich part of X. From this initial relation �, one can define, for
any attribute, a marginal preference relation �j restricted to the jth attribute.

DEFINITION 3. For all j � N : (xj �j yj N for all z � X, (x{ j}z) � (y{j}z)).
Hence, the concordance sets C�(x, y) are known for all j � N and all pairs

(x, y):

C��x, y� � �j � N, � z � X, �x�j�z� � �y�j�z��

Then, we introduce a first axiom, strongly enforcing the qualitative nature of the
model.

AXIOM NIM (Neutrality-Independence Monotony). For all x, y, z, w � X if
[C�(x, y) � C�(z, w) and C�(y, x) � C�(w, z)] then (x � y f z � w)

NIM says that if the set of criteria where z dominates w is larger than the set
of criteria where x dominates y and the set of criteria where w dominates z is
smaller than the set of criteria where y dominates x, then preferring x to y we
should prefer z to w as well. NIM implies that an improvement of x (resp. a
degradation of y) in relations �j cannot downgrade the position of x in � (resp.
improve the position of y). The NIM axiom is a translation to MCDM of an axiom
used in social choice theory (see Ref. 29). It also can be seen as a reinforcement
of the noncompensation condition used in Refs. 13 and 14 adapted to the case of
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weak preference relations. Under this condition, the preference of x over y only
depends on one-dimensional preferences x �j y defined by Definition 3.

We introduce a second axiom that gives to any attribute the ability of
discriminating at least two elements (x, y) of X.

AXIOM DI (Local Discrimination). For all j � N, there exists x, y � X, (x{j}y)
� y and not (y � (x{j}y)).

A reinforcement of this axiom is the one that gives to any attribute the ability
of discriminating at least three elements (x, y, z) of X.

AXIOM DI�. For all j � N, there exists x, y, z � X

�x�j�y) � y and not �y � (x�j�y))

�y�j�z) � z and not �z � (y�j�z��

Finally, we consider an axiom preserving a minimal comparability between
the alternatives. The relation � is not necessarily transitive or complete. However,
the incomparability is justified for a pair (x, y) only when at least two attributes j
and k are conflicting, i.e., xj �j yj and yk �k xk. Such a conflict does not exist
when x and y differ on a single attribute. This is the meaning of the following.

AXIOM LC (Local Completeness). For all x, y, z, � X, for all j � N, (x{j}z) �
(y{j}z) or (y{j}z) � (x{j}z).

In the sequel, we consider the following five properties derived from the three
fundamental axioms:

● NI (neutrality independence).b For all x, y, z, w � X, [C�(x, y) � C�(z, w) and C�(y,
x) � C�(w, z)] f (x � y N z � w)

● RE (reflexivity). � is reflexive on X
● UN (unanimity). For all x, y � X, C�(x, y) � N f x � y
● IND (independence). For all A � N; for all x, y, z, w � X, (xAz) � (yAz) N (xAw)

� (yAw)
● CO (consistency). For all A, B � N; for all x, y, z, w � X such that for all j � N, (xj

�j yj and zj �j wj), (xAy) � (xBy) N (zAw) � (zBw)
● GDI (global discrimination). There exists x, y � X, for all j � N, (x{ j}y) � y and

not( y � (x{ j}y))
● GDI�: There exists x, y, z � X, for all j � N

�x�j�y� � y and not�y � �x�j�y��

�y�j�z� � z and not�z � �y�j�z��

PROPOSITION 3.

(i) NIM f NI
(ii) LC f RE

(iii) NIM 
 RE f UN

bA similar condition is introduced as a noncompensation axiom in Refs. 13, 14, and 35.
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(iv) NI 
 RE f IND
(v) NI 
 RE f CO

(vi) NIM 
 DI f GDI
(vii) NIM 
 DI� f GDI�

The unanimity condition ensures that � refines the Pareto ordering of vectors.
IND is the classical condition of preferential independence in multiattribute utility
theory and the counterpart of the sure thing principle of DMU. It shows, among
other things, that the comparison of x{ j}z and y{ j}z is independent from z. It
makes the construction of relations �j from � easier, using Definition 3. Indeed,
thanks to IND, �j can be defined simply as follows:

xj �j yjN ? z � X, �x�j�z� � �y�j�z� (1)

CO means that when x is uniformly better than y, the preference between
(xAy) and (xBy) only depends on the choice of A and B. This is the counterpart
of the P4 principle of Savage, which projects the preference between acts into a
likelihood relation between events. When NIM, DI, LC, and thus GDI and CO
hold, it is possible to extract from the decision maker’s preference � an importance
relation on 2N:

A �I BN �? x, y � X : @ j � N, xj �j yj

and �xAy� � �xBy�) (2)

This definition is very natural. Indeed, when x is uniformly better than y, preferring
xAy to xBy clearly is justified by the fact that the coalition of attributes A is
considered as more important than the coalition B.

We are now in a position to establish the main result. First, let us observe that
conditions NIM, DI, and LC are compatible. The additive concordance rule
(Section 2.2, Example 1) indeed satisfies these conditions. The following repre-
sentation theorem shows that any preference relation � verifying NIM, DI, and LC
can be represented by a GC rule.

THEOREM 1. If the decision maker’s preference � satisfies NIM, DI, and LC, then
there exists n complete preference relations �1, . . . , �n, defined on X1, . . . , Xn

respectively, and a monotonic and preadditive relation �I on 2N, such that

@ vv, w � X, vv � wN C��vv, w) �I C��w, vv)

For any attribute j, �j reveals the decision maker’s preferences concerning
the values of attribute Xj. The relation �j can be constructed step by step, by
observing the decision maker’s preferences over pairs of alternatives of type
(x{ j}z), y{j}z) for an arbitrary z. This observation is even simpler if relations �j

are supposed to be transitive or quasi-transitive (�j transitive). Equation 2 also
provides a constructive method to derive the importance relation �I and thus
completes the construction of the model. Notice that the entire construction is
based on pairwise comparisons. Such comparisons do not require a prohibitive
cognitive effort because they only concern alternatives having simple profiles.
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Moreover, such comparisons do not require any explicit questioning but can be
inferred by observing real choices performed by the decision maker.

The use of a preadditive relation of importance is not necessary in a GC rule
in the sense that Theorem 1 only proves the existence of a preadditive �I involved
in a GC rule representing �. If we start from a more general monotonic �M

(possibly not preadditive) and construct � via the GC rule, we still get a preference
satisfying NIM, DI, and LC,c which thus induces a preadditive �I by Equation 2.

The reason for this apparent paradox is the following. First note that C�(x, y)
� C�(y, x) � N. So only the pairs ( A, B) such that A � B � N are compared
in the GC rule. The following propositions can be proved.

PROPOSITION 4. A �I B N A � B� �M B � A�

PROPOSITION 5. A �I B N A �M B whenever A � B � N
So, �I and �M coincide on the useful part of 2N � 2N and the nonpread-

ditivity of �M cannot be revealed by observing a decision maker that would use
a GC rule. Example 2 is a typical case where a decision maker will use a
nonpreadditive relation �M induced by a belief function to describe criteria
importance. In this example, criteria importance also could be represented by any
preadditive relation ��M such that A �M B and A ��M B coincide for A � B �
N. The impossibility of using an additive capacity in this case stresses the gap
existing between preadditivity and additivity.

Let us focus in more detail on the relation �I between the coalitions of criteria
that we induced by the representation theorem (Theorem 1), namely, on the
restriction of its strict part �I to disjoint events. It is easy to show Proposition 6.

PROPOSITION 6. If the decision maker’s preference � satisfies NIM, DI, and LC,
then �I, the strict part of the relation �I defined by Equation 2 satisfies

(i) N �I A
(ii) �I is irreflexive

(iii) �I is monotonic (A �I Bf A � C �I B and A �I B � Cf A �I B)
(iv) When � is quasi-transitive and DI� holds, then �I is transitive and for all

A, B, C disjoint sets A � B �I C and A � C �I B f A �I B � C
(v) For all A 
 A, A �I A

Note that Proposition 6(iv) applies as soon as the preference scales pertaining
to criteria contain more than two levels (i.e., they are not Boolean) and the decision
maker is rational in his/her decisions, i.e., does not exhibit an inconsistent global
preference relation where strict preference would not be transitive. The obtained
property on �I was first suggested by Dubois and Prade36 as well as Friedman and

cIt can be shown that any preference relation � constructed from an importance relation
�M using a GC rule satisfies NIM, DI, and LC as soon as the four following properties hold: for
all j � N, �j is complete, for all j � N, there exist (x, y) � X2xj �j yj, �M is reflexive,
monotonic, and for all j � N, N �M N
{ j}.
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Halpern37 in the setting of nonmonotonic reasoning. An obvious consequence of
Proposition 6(iv) is that if A �I B and A �I C, then A �I B � C for disjoint
coalitions of criteria; A �I B means that the importance of coalition B is negligible
in front of A. Relation �I is also called an acceptance relation in the field of
likelihood representation.38 It can be shown that such a partial order can be
represented by families of possibility relations.36 Thus, we get the following result.

COROLLARY 1. If the decision maker’s preference � is complete, quasi-transitive,
and satisfies NIM, DI�, and LC then there exists n complete preference relations
�1, . . . , �n, defined on X1, . . . , Xn, respectively, and there exists a family � of
nondogmaticd possibility distributions on N such that

@ x, y � X, x � yN @ �i � �, �i�C��x, y�� � �i�C��y, x��

N @ �i � �, ? j � C��x, y� such that �i�j� � �i�j��@ j� � C��y, x�

N @ �i � �, Neci�C��x, y�� � Neci�C��y, x��,

@ x, y � X, x � yN ? �i � �, �i�C��x, y�� 	 �i�C��y, x��

N ? �i � �, Neci�C��x, y�� 	 Neci�C��y, x��

Conversely, any concordance rule based on a family of nondogmatic possi-
bility distributions and a set of marginal utility rankings satisfies NIM and LC and
is quasi-transitive, provided that the marginal utility rankings are weak orders.

PROPOSITION 7. Let � be a family of nondogmatic possibility distributions on N
and {�1, . . . , �n} be a set of weak orders defined on {X1, . . . , Xn}, respectively.
The preference order � defined by

@ x, y � X, x � yN @ �i � �, Neci�C��x, y�� � Neci�C��y, x��

@ x, y � X, x � yN not �y � x�

satisfies NIM and LC and is quasi-transitive. It satisfies DI (resp. DI�) iff each of
the marginal utility rankings �i is such that there exists xi, yi � Xi, xi �i yi (resp.
there exists xi, yi, zi � Xi, xi �i yi and yi �i zi).

This shows the high compatibility of rational concordance rules with possi-
bility theory; the previous theorem indeed means that the global relation can be
viewed as the merging of a family of necessity-based concordance rules of the form

x �Neci yN Neci�C��x, y�� � Neci�C��y, x��

i.e., x �Neci yN Neci�C��x, y�� 	 Neci�C��y, x��

When there is only one necessity measure in the family, we recover the necessity-
based concordance rule.

dA possibility distribution � is said to be nondogmatic iff �( j) � 0, for all j � 1, . . . , n.
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At this point, one should wonder whether the concordance rules based on the
dual of a necessity relation, i.e., the possibility-based concordance rules, are as
attractive as those based on necessity relations. The answer is actually negative.
Indeed, the concordance rule based on a possibility measure turns out to be highly
drastic. This feature appears even if some graduality of importance is available
through the possibility degrees associated with the criteria; the rule only considers
the criteria that receive a possibility degree of 1, and neglects the others, even if
they have a positive importance.

PROPOSITION 8. If � is defined according to Definition 2 from a set of complete
relations �j on Xj, for all j � 1, . . . , n and a possibility measure � on 2N, then

@ x, y � X, �x � yN �? i � N such that ���i�� � 1 and xi �i yi��

Note that unanimity on the criteria of possibility degree 1 is not required for
ensuring the global preference. It is enough that one of the most important criteria
prefers x to y in the wide sense, for x to be preferred to y. None of the other criteria
can prevent it.

Such bad-behaved rules actually are ruled out by our axiomatics in the set of
GC rules. Indeed, they do not satisfy axiom DI. Any possibility-based concordance
rule relying on a distribution � that admits more than one state of possibility 1
forms a counterexample.

PROPOSITION 9. If � is defined according to Definition 2 from a set of complete
relations �j on Xj, for all j � 1, . . . , n and a possibility measure �, then

� satisfies DIN ?! i � N such that ���i�� � 1

So, Theorem 1 accounts for necessity-based concordance rules (among oth-
ers) but excludes possibility-based ones. Finally, it should be noted that GC rules
are not the ultimate answer to qualitative MCDM problems. The following coun-
terexample shows that, despite its apparent generality, GC rules are not always able
to represent ordinal preferences on a multiattribute space.

Example 3. Let us consider the following example mentioned in Ref. 27, giving
the grades obtained by four students a, b, c, and d, according to three courses:
Physics, Math, and Economics.

On the basis of these evaluations it is felt that Student a should be ranked
before Student b. Although Student a has a low grade in Economics, he has
reasonably good grades in both Math and Physics, which makes a good candidate
for an Engineering program; Student b is weak in Math and it seems difficult to
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recommend him for Engineering or Economics programs. Student c has two low
grades and it seems difficult to recommend him at all. Student d is preferred to
Student c because he obtained reasonable grades in Math and Economics and can
be recommended for the program in Economics. The question is, can we represent
preferences a � b and d � c using a GC rule? In this particular case, the answer
is negative. Indeed we have

C��a, b� � �1, 2� C��b, a� � �1, 3�

C��d, c� � �1, 3� C��c, d� � �1, 2�

Trying to represent such preferences using a GC rule a � b implies C�(a, b)
�I C�(b, a) and d � c implies C�(d, c) �I C�(c, d). Observing that C�(a,
b) � C�(c, d) and C�(b, a) � C�(d, c), the two previous inequalities are
contradictory. Note that, as shown in Ref. 37, a comparison model based on a
weighted sum of grades is not able to represent such preferences either.

5. CONCLUSIONS

In this study we have proposed a generalization of MCDM’s additive con-
cordance rules. An example is given where the classical concordance rule is unable
to describe the decision maker’s choice, although a CA rule based on a nonadditive
capacity (namely, a belief function) could solve the example, thus showing the
interest of GC rules. Our general rule also encompasses the necessity-based
concordance rule proposed by Ref. 8 for qualitative DMU. It is worth noticing that
this framework is not restricted to capacity functions but can be applied whenever
the relative importance of the coalitions of criteria can be encoded by a reflexive
and monotonic (partial) relation. Then, we have proposed a well-founded axiom-
atic framework for those multiattribute decision problems where the scales per-
taining to the different attributes and the one describing the importance of the
coalitions are not commensurate. Taking it a step further, a parallel between
MCDM and DMU allowed us to import a representation theorem that states that the
satisfaction of a few simple additional principles (namely, completeness and strong
discrimination) implies a highly possibilistic behavior of the concordance rule. In
this case, we indeed get a semantics in terms of necessity relations, i.e., in terms
of hierarchies of oligarchies.

It is clear that GC rules are not the ultimate answer to qualitative MCDM
problems. One can easily imagine situations in which the preference of a decision
maker cannot be expressed in this way, e.g., when the preference between x and y
depends on a third alternative z, as in MCDM filtering methods39 or in counterparts
to stochastic dominance in DMU.7 Last, as suggested by Example 2, the approach
presented here could benefit multiagent fusion problems17–19 once adapted to a
logical setting.
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APPENDIX A

Proof of Proposition 1. Notice that, for all j � N, uj(x*Ax*) � 1 if j � A,
uj(x*Ax*) � 0 otherwise. Because �� is coincident, we have
��(u1(x*Ax*), . . . , un(x*Ax*)) � �( A). Moreover, �� being idempotent we
have ��(u1(a), . . . , un(a)) � �. Hence, we get ��(u1(x*Ax*), . . . ,
un(x*Ax*)) 	 ��(u1(a), . . . , un(a)) N �( A) 	 �. Because the left side of this
equation is equivalent to (x*Ax*) �� a, we get the result.

Proof of Proposition 2. Let us consider three alternatives x, y, and z. Because the
relations �j on Xi are weak orders, for all i � 1, . . . , n, N can be partitioned as follows:

A � �i, x �i y �i z� B � �i, x �i y �i z� C � �i, x �i z �i y�

D � �i, y �i x �i z� E � �i, y �i x �i z� F � �i, y �i z �i x�
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G � �i, z �i x �i y� H � �i, z �i x � i y� I � �i, z �i y �i x�

J � �i, x �i y �i z� K � �i, x �i z �i x� L � �i, y �i z �i x�

M � �i, x �i y �i z�

When Definition 2 is used, we obviously get a complete relation �. Suppose
that x � y, y � z, and that not x � z, i.e., z � x.

When � is a necessity relation, this writes

● x � y : Nec(C�(x, y)) � Nec(C�(y, x)), i.e., �(C�(x, y)) � �(C�(y, x)), i.e.,
max(�( A), �(B), �(C), �(G), �(K)) � max(�(D), �(E), �(F), �(I), �(L))

● y � z : Nec(C�(y, z)) � Nec(C�(z, y)), i.e., �(C�(y, z)) � �(C�(y, z)), i.e.,
max(�( A), �(D), �(E), �(F), �( J)) � max(�(C), �(G), �(H), �(I), �(K))

● z � x : Nec(C�(z, x)) 	 Nec(C�(x, z)), i.e., �(C�(z, x)) 	 �(C�(x, z)), i.e.,
max(�(F), �(G), �(H), �(I), �(L)) 	 max(�( A), �(B), �(C), �(D), �( J))

Thus, we get a system of equations of the form

�max�a, b, c, g, k� � max�d, e, f, i, l�
max�a, d, e, f, j� � max�c, g, h, i, k�
max�f, g, h, i, l� � max�a, b, c, d, j�

which is inconsistent.
When � is a possibility relation, x � y, y � z, and z � x. writes

● x � y : �(C�(x, y)) � �(C�(y, x)), i.e., max(�( A), �(B), �(C), �(G), �(K),
�(H), �( J), �(M)) � max(�(D), �(E), �(F), �(I), �(L), �(H), �( J), �(M))

● y � z : �(C�(y, z)) � �(C�(z, y)), i.e., max(�( A), �(D), �(E), �(F), �( J),
�(B), �(L), �(M)) � max(�(C), �(G), �(H), �(I), �(K), �(B), �(L), �(M))

● z � x : �(C�(z, x)) 	 �(C�(x, z)), i.e., max(�(F), �(G), �(H), �(I), �(L),
�(E), �(K), �(M)) 	 max(�( A), �(B), �(C), �(D), �( J), �(E), �(K), �(M))

Again, we get a system of equations which is inconsistent:

�max�a, b, c, g, k, h, j, m� � max�d, e, f, i, l, h, j, m�
max�a, d, e, f, j, b, l, m� � max�c, g, h, i, k, b, l, m�
max�f, g, h, i, l, e, k, m� � max�a, b, c, d, j, e, k, m�

Proof of Proposition 3(i). From C�(x, y) � C�(z, w) and C�(y, x) � C�(w,
z), we can apply NIM twice, one time for x, y, z, and w, and we get x � y f z
� w, and one time for z, w, x, and y, and we get z � w f x � y. Thus, when
NIM holds, (C�(x, y) � C�(z, w) and C�(y, x) � C�(w, z)) implies that x �
y N z � w, i.e., NI holds.

Proof of Proposition 3(ii). RE is retrieved when applying LC with x � y � z.
In this case, it indeed writes; for all x � X, for all j � N, (x{ j}x) � (x{ j}x), or
(x{ j}x) � (x{ j}x), i.e., for all x � X, x � x.
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Proof of Proposition 3(iii). By Definition 3, for all x � X, xj �j xj N x{ j}z �
x{ j}z, for all z � X. Because x{ j}z � x{ j}z by RE, we deduce that relations �j,
j � 1, . . . , n are reflexive. Thus, whatever x, C�(x, x) � N.

Consider now two vectors x and y such that C�(x, y) � N. It holds that
C�(x, x) � N � C�(x, y) and that C�(x, x) � N � C�(y, x). So, applying NIM
to the quadruplets (x, x, x, y), we get x � xf x � y. Because x � x holds by RE,
we get x � y, which proves UN.

Proof of Proposition 3(iv). For any x, y, z, w � X, for any A � N, we have:
C�(xAz, yAz) � C�(xAw, yAw) because of the reflexivity of the �j, j � 1, . . . ,
n, that follows from reflexivity (see the previous proof). In the same way, C�(yAz,
xAz) � C�(yAw, xAw). Thus, we get by NI (xAx � yAx N xAw � yAw).

Proof of Proposition 3(v). Let us consider two coalitions A, B � N and four
vectors x, y, z, w � X such that for all j � N, ( xj �j yj and zj �j wj)

● For any j � A � B, (xAy)j � (xBy)j � xj and (zAw)j � (zBw)j � zj. Thus, by RE
of the �j (that follows from RE) (xAy)j �j (xBy)j and (zAw)j �j (zBw)j

● For any j � A � B� , (xAy)j � xj, (xBy)j � yj and (zAw)j � zj, (zBw)j � wj; thus,
(xAy)j �j (xBy)j and (zAw)j �j (zBw)j.

● For any j � A� � B, (xAy)j � yj, (xBy)j � xj and (zAw)j � wj, (zBw)j � zj; thus,
(xBy)j �j (xAy)j and (zBw)j �j (zAw)j.

● For any j � A� � B� , (xAy)j � (xBy)j � yj and (zAw)j � (zBw)j � wj; thus, (xAy)j

�j (xBy)j and (zAw)j �j (zBw)j because of the RE of the Sj.

Thus, we have: C�(xAy, xBy) � C�(zAw, zBw), C�(xBy, xAy) �
C�(zBw, zAw) and C�(xAy, xBy) � C�(zAw, zBw). Thus, C�(xAy, xBy) �
C�(zAw, zBw) and C�(xBy, xAy) � C�(zBw, zAw). By NI, this implies (xAy)
� (xBy) N (zAw) � (zBw).

Proof of Propositions 3(vi) and (vii). By DI, we know that for all j � N, there
exist two vectors aj and bj such that (aj{ j}bj) � bj. Thus, by NIM, we get for any
c, aj{ j}c � bj{ j}c. So, it holds that for all j � N, aj

j �j bj
j. Hence, the vectors

x � (a1
1, . . . , an

n) and y � (b1
1, . . . , bn

n) are such that xj �j yj, j � 1, . . . , n.
So, GDI holds. The proof of item (vii) is similar.

Proof of Theorem 1.

Proof of the Completeness of �j. The proof is direct from LC. Indeed LC means
that for all x, y � X and whatever j � N, it holds that: for all z � X, (x{ j}z) �
(y{ j}z) or for all z � X, (y{ j}z) � (x{ j}z). By Definition 3, this means that xj

�j yj or yj �j xj. Because this holds for any pair (x, y), this proves that the
relations �j, j � 1, . . . , n are complete.

Proof of the main result. Let us now consider a pair (vv, w) � X2 such as vv �
w. Let us denote A � C�(vv, w) and B � C�(w, vv).
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Consider the relation �I between coalitions defined by Equation 2. Because
NIM, DI, and LC are assumed, we know that CO and GDI hold (Proposition 3) and
that there exists x, y such that A �I B iff (xAy) � (xBy).

Now, for any j � N, �j is complete (by LC). So, for criteria j, only three
cases are possible:

vj �j wj: (xAy)j � xj and (xBy)j � yj; thus, (xAy)j �j (xBy)j

wj �j vj: (xAy)j � yj and (xBy)j � xj; thus, (xBy)j �j (xAy)j

vj �j wj: (xAy)j � xj and (xBy)j � xj; thus, (xAy)j �j (xBy)j

So, C�(vv, w) � C�(xAy, xBy), C�(w, vv) � C�(xBy, xAy), C�(vv, w) �
C�(xAy, xBy). Thus, C�(vv, w) � C�(xAy, xBy) and C�(w, vv) � C�(xBy,
xAy). By NI, this proves that v � w N (xAy) � (xBy). Moreover, we know that
(xAy) � (xBy) N A �I B. Thus, vv � w N C�(vv, w) �I C�(w, vv).

Proof of the Monotony of �I. Let us now show that �I is monotonic. Consider
two coalitions of attributes A and B such that A �I B. By definition, this means
that there are two vectors x and y such that xj �j yj, for all j � N, and such that
(xAy) � (xBy). Note that C�(xAy, xBy) � A � B� [this actually holds for ( A, B)
being any pair of events]. Then, for any other coalition C � N such that A � C �
A: C�(xAy, xBy) � C�(x( A � C)y, xBy), C�(xBy, xAy) � C�(xBy, x( A �
C)y), and (xAy) � (xBy) imply (x( A � C)y � (xBy) via NIM. Thus, A � C �I

B. Similarly, if A �I B � C, and then C�(xAy, x(B � C)y) � C�(xAy, xBy),
C�(x(B � C)y, xAy) � C�(xBy, xAy), and (xAy) � (x(B � C)y) imply (xAy)
� (xBy) thanks to NIM.

Proof of the Preadditivity of �I. Finally, we show that �I is preadditive. To this
end, consider three subsets of attributes A, B, and C such that A � (B � C) �
A and B �I C. By definition of �I Equation 2, we know that there exists x and
y such that xj �j yj for all j � N and such that (xBy) � (xCy). Moreover, we have
C�(x( A � B)y, x( A � C)y) � ( A � B) � (A� � C� ) � (( A � B) � A� ) �
(( A � B) � C� ) � ( A � B) � C� � B � ( A � C� ) � B � C� � C�(xBy, xCy).
Similarly, we have C�(x( A � C)y, x( A � B)y) � C � B� � C�(xCy, xBy).
Hence, we get C�(x( A � B)y, x( A � C)y) � C�(xBy, xCy), C�(x( A � C)y,
x( A � B)y) � C�(xCy, xBy), and (xBy) � (xCy), which, by NI, shows that
(x( A � B)y) � (x( A � C)y) and therefore ( A � B) �I ( A � C) by Definition
2 of �I.

Proof of Propositions 4 and 5. By definition, A �I B N there exists x, y � X
such that for all j � N, xj �j yj and (xAy) � (xBy). Because (xAy) � (xBy) iff
C�(xAy, xBy) �M C�(xBy, xAy), we have A �I B N C�(xAy, xBy) �M

C�(xBy, xAy). Moreover, C�(xAy, xBy) � A � (A� � B� ) � A � B� and
C�(xBy, xAy) � B � (A� � B� ) � B � A� . Thus, we get A �I B N A � B� �M

B � A� .
Now, suppose that A � B � N, i.e., A � B� � A and B � A� � B. Then,

A �I B N A �M B.
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Proof of Proposition 6.

(i) N �I A follows from GDI.
(ii) The irreflexivity of �I follows from its definition (strict part of �I).

(iii) The monotony of �I is a direct consequence of the monotony of �I. Indeed,
A �I B implies A � C �I B by monotony of �I. If it were the case that A
� C �I B, we would get B �I A (by monotony of �I again), which
contradicts A �I B. So, A �I B f A � C �I B. Similarly, A �I B � C
implies A �I B. If it were the case that A �I B, we would get B � C �I A,
which contradicts A �I B � C. So, A �I B � Cf A �I B

(iv) The transitivity of �I is a direct consequence of the quasi-transivity of
�. Now, NIM and DI� imply that GDI and GDI� hold. So, we know that
there exists x, y, z � X such that, for all j, for all w (x{j}w) � (y{j}w),
(y{j}w) � (z{j}w) and (x{j}w) � (z{j}w). Suppose that there are
three disjoint coalitions A, B, and C such that A � B �I C, A � C �I

B and build the following alternatives: a1 � xAyBzCw, a2 �
yAzBxCw, and a3 � zAxByCw. If we denote D � N
(A � B � C),
we get

C��a1, a2� � A � B � D C��a2, a1� � C � D

C��a2,a3� � A � C � D C��a3,a2� � B � D

C��a1,a3� � A � D C��a3,a1� � B � C � D

Let us apply Theorem 1. Because �I is additive and complete, A � B �I C
implies that a1 � a2 and A � C �I B implies that a2 � a3. Thus, by
transitivity, we get a1 � a3, which is equivalent to A � D �I B � C � D.
Because �I is additive and complete, this means that A �I B � C

(v) In the proof of Proposition 1, it has been shown that there exists x, y such
that xj �j yj, j � 1, . . . , n, and for all A, B, A �I B N xAy � xBy.
Suppose that there is a A such that A �I A, i.e., y � xAy. Consider any
j � A. By NIM, xAy �I y implies y � x{j}y, i.e., by NIM again, y{j}z
� x{j}x, for all z; so, we get yi �j xj, which contradicts xj �j yj. Hence,
there can be no A �I A.

Proof of Corollary 1. By Theorem 1 we know that for all x, y � X, x � y N
C�(x, y) �I C�(y, x). Because � (and thus �I) is complete, this can be rewritten
as x � y N C�(x, y) �I C�(y, x). Because �I is preadditive, x � y N C�(x,
y) �I C�( y, x). Thus, we have to show that the restriction of �I to disjoint subsets
of N is representable by a family of possibility distributions.

The set of properties of �I obtained in Proposition 6 precisely define what is
called an acceptance order and we know by Ref. 38 that such a relation satisfies the
postulates of Kraus, Lehmann, and Magidor.40 So, by Ref. 36 we know that there
is a family � of nondogmatic possibility measures such that
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@ A, B � N such that A � B � A, A �I BN @ �i � �, �i�A� � �i�B�

This allows a representation of the restriction of �I to disjoint sets. Because
� is complete, so is �I. Therefore, the preadditivity property of �I can be
rewritten as, for all A, B, C � N

A � �B � C� � A f �B �I CN A � B �I A � C�

Hence, the entire �I can be deduced from its restriction to disjoint sets

@ A, B � N, A �I BN @ �i � �, �i�A � B� � � �i�A� � B�

Because x � y N C�(x, y) �I C�(y, x), we can soundly deduce that there
is a family � of possibility measures such that

@ x, y � X, x � yN @ �i � �, �i�C��x, y�� � �i�C
�y, x��

The completeness of the relation implies the completeness of the marginal utility
relations; therefore, C�(x, y) is the complement of C�(y, x).

By completeness of �, this relation can be deduced from its strict part (x �
y N . . . ) not (y � x). This writes

x�yN ? �i � �, �i�C��x, y��	�i�C��y, x��

It only remains to remark that �i(C�(x, y)) 	 �i(C�(y, x)) N Neci(C�(x,
y)) 	 Neci(C�(y, x)).

Proof of Proposition 7. Let � be a family of nondogmatic possibility distribu-
tions on N and �1, . . . , �n be a set of weak orders defined on X1, . . . , Xn,
respectively. Consider the preference order � defined by x � yN for all �i � �
Neci(C�(x, y)) 	 Neci(C�(y, x))

● LC directly follows from the completeness of �.
● Proof of quasi-transitivity. In the proof of Proposition 2, we have shown that, if the

marginal ranking is a weak order, then Neci(C�(x, y)) � Neci(C�(y, x)) and
Neci(C�(y, z)) � Neci(C�(z, y)) imply Neci(C�(x, z)) � Neci(C�(z, x)). So, for
all �i � �, Neci(C�(x, y)) 	 Neci(C�( y, x)) and for all �i � �, Neci(C�(y, z)) 	
Neci(C�(y, z)) imply for all �i � �, Neci(C�(x, z)) 	 Neci(C�(z, x)); � is
quasi-transitive.

● Proof of NIM. The relation � is complete. So, NIM writes for all x, y, z, w � X, [C�(x,
y) � C�(z, w), and C�(y, x) � C�(w, z)] f (w � z f y � x).

● Consider x, y, z, and w � X such that [C�(x, y) � C�(z, w) and C�(y, x) � C�(w,
z)] and w � z. For all �i � � Neci(C�(w, z)) � Neci(C�(z, w)). C�(y, x) � C�(w,
z) implies that Neci(C�(w, z)) � Neci(C�(y, x)). C�(x, y) � C�(z, w) implies that
Neci(C�(z, w)) 	 Neci(C�(x, y)). Therefore, we get for all �i � � Neci(C�(y,
x)) 	 Neci(C�(w, z)) � Neci(C�(z, w)) 	 Neci(C�(x, y)). This yields for all �i �
� Neci(C�(y, x)) � Neci(C�(x, y)), i.e., y 
 x; NIM is satisfied (actually, it is
satisfied by any rule based on a family of capacities; it is enough to replace Neci by a
capacity �i in the proof).

● Let us prove that the marginal utility relations built by Equation 3 coincide with the
original ones, i.e., that ( xj �j yj N for all z � X, (x{ j}z) � (y{ j}z)). If it is the case,
then DI (resp. DI�) holds iff it holds on the original marginal relations.
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Suppose that xj �j yj. Therefore, whatever z, C�(x{ j}z, y{ j}z) � N and
C�(y{ j}z, x{ j}z) � N
{i}. Because the possibility distributions are supposed to
be such that for all i, �(i) � 0 (nondogmatism), it holds that for any �i,
Neci(N) � 1 � Neci(N
{i}). So, for all z � X, (x{ j}z) � ( y{ j}z)). Now,
suppose that xj �j yj. C�(x{ j}z, y{ j}z) � N and C�(y{ j}z, x{ j}z) � N.
Hence, for any �i, Neci(C�(x{ j}z, y{ j}z)) � Neci(C�(y{ j}z, x{ j}z)), i.e., for
all z � X, (x{ j}z) � (y{ j}z)). Because the marginal ranking are supposed to be
complete, the two cases prove that ( xj �j yj N for all z � X, (x{ j}z) �
(y{ j}z)).

Proof of Proposition 8. When based on a possibility measure, the decision rule
of Definition 2 yields

@ x, y � X, x � yN ��C��x, y�� 	 ��C��y, x��

Suppose that there exists i � N such that �(i) � 1 and xi �i yi. Then,
obviously,

��C��x, y�� � max
i�C��x,y�

���i�� � 1

Thus, whatever �(C�(y, x)), �(C�(x, y)) 	 �(C�(y, x,)) holds, i.e., x � y.
Conversely, suppose not ( xi �i yi) holds for all i such that �(i) � 1. Because

the �i are assumed to be complete, this means that for all i � N such that �(i) �
1, yi �i xi. So, �(C�(x, y)) � 1 and �(C�(y, x)) � 1; we get y � x. Thus, by
contraposition, we have shown that x � y implies that there is a criterion i of
possibility 1 such that xi �i yi.

Proof of Proposition 9. Define � from a possibility measure, as in the previous
proof. Note that � is complete because � can compare any pair of sets. Moreover,
the fact that two different states receive a positive possibility degree implies that
the possibility degree of any set of cardinality n � 1 is 1, i.e., that for all j � N,
�(N
{ j}) � 1.

Consider any j � N and suppose that there exists x, y such that (x{ j}y) �
y and not (y � (x{ j}y)). The relation � being complete, this writes: there exists
x, y such that (x{ j}y) � y. Four cases are to be considered, depending on how �j

compares xj and yj:

● xi �i yi. In this case (x{ j}y) � y means �(N) � �(N), which is not possible.
● xi �i yi. In this case (x{ j}y) � y means �(N) � �(N
{ j}). This leads to a

contradiction, because �(N
{ j}) � 1.
● yi �i xi. In this case ( x{ j}y) � y means �(N
{ j}) � �(N), which is not possible.

Therefore, the assumption that there exists x, y � X, (x{ j}y) � y leads to
a contradiction in any case; the satisfaction of DI by a concordance rule based on
a possibility measure is incompatible with the existence of two totally possible
states.
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