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Abstract

Spatial information associates properties to labeled areas. Space is
partitioned into (elementary) parcels, and union of parcels constitute ar-
eas. Properties may have various level of generality, giving birth to a
taxonomy of properties for a given universe of discourse. Thus, the set of
properties pertaining to a conceptual taxonomy, as the set of areas and
parcels, are structured by a natural partial order. We refer to such struc-
tures as ontologies. In fusion problems, information coming from distinct
sources may be expressed in terms of different conceptual and/or spatial
ontologies, and may be pervaded with uncertainty. Dealing with several
conceptual (or spatial) ontologies in a fusion perspective presupposes that
these ontologies be aligned. This paper introduces a basic representation
format called attributive formula, which is a pair made of a property and
a set of parcels (to which the property applies), possibly associated with
a certainty level. Uncertain attributive formulas are processed in a possi-
bilistic logic manner, augmented with a two-sorted characterization: the
property may be true everywhere in an area, or at least true somewhere in
the area. The fusion process combines the factual information encoded by
the attributive formulas provided by the different sources together with
the logical encoding of the conceptual and spatial ontologies (obtained
after alignment). Then, inconsistency encountered in the fusion process
may be handled by taking advantage of the existence of different fusion
modes, or by relaxing when necessary a closed world-like assumption stat-
ing by default that what is true somewhere in an area may be also true
everywhere in it (if nothing else is known). A landscape analysis toy
example illustrates the approach.
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1 Introduction

The management of multiple sources raises many fusion problems due to the
uncertainty and the heterogeneity of the information. Geographical informa-
tion has all these problems [4, 2, 12, 18], its specific aspect being to deal with
geographical-space areas, called parcels, on which we need to operate union and
intersection.

A popular representation is the so called “field model”, f:(x,y) — f(x,vy),
with a Cartesian coordinate domain as space, and real numbers as target do-
main. Though widely used in geophysics, meteorology, etc. and in most applica-
tions that involve imagery, terrain or any “gridded data”, it is much too limited
in many situations that deal with non quantitative data. Landscape analysis is
one such situation. Spatial information may involve a mix of numeric and sym-
bolic attributes, using different vocabularies more or less structured, but rarely
unstructured. The sources may use different space partitions. Moreover, there
may exist several kinds of dependencies, and spatial fusion must keep consistent
with all of them. A previous paper [7] started an informal discussion of these
problems. The present paper provides a logical framework for handling spatial
information and ontological information. Another step is made by handling
the merging of spatial information in the general setting of logical information
fusion. Lastly, both numeric and symbolic information may be pervaded by
several forms of uncertainty and imprecision [14]. This is why we allow for
“uncertain attributive formulas” linking parcels to a property associated with a
certainty degree: it expresses that for any parcel of a given set, we are sure at
least at this degree that a property is true.

Hence, dealing with spatial data requires relatively powerful representation
languages, as discussed in [15]. Ontology is often used for representing a struc-
tured vocabulary [12], and the fusion of ontology-based geospatial information
must face the problem of heterogeneous vocabularies [10]. This paper deals with
terminology integration and discusses the merging of information provided by
different sources using multiple space partitions, and expressed with more or less
precise labels from the same ontology resulting from a preliminary alignment.

Following Papini et al. [23], we use a logical framework for processing onto-
logical information, and “attributive formulas” to link sets of parcels to property
or attribute statements. We need a simple type of ontology that can be logically
expressed by three and only three conditions: 1) a label may be a sub-label of
another label, 2) a label is the reunion of its sub-labels, 3) labels referring to
the most specific classes are mutually exclusive two by two. This representa-
tion allows us to express both ontological information and attributive formulas.
Besides, the spatial extent on which an attributive formula applies may vary
within a parcel: it means that we must distinguish between statements true
everywhere, or only somewhere in a parcel.

The paper is organized as follows. Section 2 discusses representation needs,
proposes a logical formalism for representing geographic information in ontolo-
gies, and introduces the notion of an attributive formula as a reified formula
that links space and labels. Section 3 details the fusion process that helps to



merge heterogeneous descriptions of the same space. In Section 4, “uncertain
attributive formulas” are defined, and we introduce the explicit precision of
the “somewhere” or “everywhere” reading associated to an attributive formula.
Section 5 shows how to integrate possibilistic principles in the context of “at-
tributive formulas”. It is illustrated on a landscape information fusion example.

2 Geographic ontologies and attributive formu-
las

In geographic information we can distinguish the geo part, the info part, and the
association that links them (the what, the there and the is, of Quine[20]). Hence,
three aspects should be considered for representing geographic information:
1) the (attributed) space: one single space for all applications, but many different
ways to split it into parts. Parcels have a spatial extent, and it is assumed that
after intersecting all parcels from the different splittings, the most elementary
parcels form a finite partition of the space. This is called a partonomy structure.
2) the (attribute) properties: many property domains, more or less independent,
can serve different purposes. A taxonomy structure can represent a hierarchy of
properties, reflecting some partial order. A consistent fusion of partial orders
may help to detect, and to remove errors when mixing such structures.
3) the attribution: it results from an observation process, where the associations
are often multiple, and largely pervaded by uncertainty for space and properties.
A similar, but not formalized, approach was proposed in [17]: an ontology is
built on three main concepts: (1) a partonomy of physical objects of which the
attributes represent most of the relevant information, (2) a simple taxonomy
of informational objects, (8) a relation between the informational objects and
those physical objects they inform about. In order to have a representation
model more appropriate than the “field model”, we use a logical “attributive
formalism” to represent “property-parcel” information. Beside the attributive
link, there are two other basic links: property-property (from the knowledge
encoded in a property taxonomy), and parcel-parcel (from a partonomy). The
logical representation is satisfactory for encoding such qualitative links too. The
ontology representation we use is simpler than the ones offered by description
logics since we remain propositional. The ontological relations are not uncertain
here.

2.1 A logical encoding of an ontology of information

In fusion problems, it is advantageous to encode taxonomies in a logical manner,
which makes the information merging easier. Let {(set of nodes), C} be a
poset structure that we name ontology [22], where nodes are concepts, and C
encodes specialization/subsumption relations: these relations are represented
graphically by edges where arrow direction refers to generalization. Let .Z be a
propositional logical language built on a vocabulary ¥ with connectives A, V,
— (“and”, “or”, material implication).



Definition 1 (poset definition of an ontology) An ontology is a directed
acyclic graph (dag) G = (X,U). X C Z is a set of formulas (one per concept,
or node); U is a set of directed arcs (¢,1) denoting that ¢ is a subclass of ).
An ontology admits one single source, L, and one single sink T.

Definition 2 (levels in an ontology) Levels are defined inductively: Lo is
the set of formulas that have no predecessor (it contains only the contradiction
1) L; is the set of formulas that have no predecessor in G\ (LoU...L;_1), etc.
It (z) and T~ (z) are the sets of successors and predecessors of x.

Level L; nodes are called leaves (i.e., formulas ¢ s.t. the edge (L,¢) € U).
Moreover, we impose: (a) G: to be a lattice, (b) all the sub-classes of a class: to
appear in the ontology, (c) all the leaves: to be mutually exclusive two by two.

Proposition 1 Providing that:

(1) we add the appropriate formulas and arcs that turn a dag into a lattice;
(2) we add to each not-leave formula ¢, a sub-formula “other elements of p”;
(8) we split leaves, wherever necessary, to make them mutually exclusive;

then, we can insure properties (a), (b) and (c) because the operations (1), (2)
and (8) can always be done in the finite case.

Hence, an ontology will be encoded in the following way.

Definition 3 (logical encoding of an ontology) Any dag G = (X,U) rep-
resenting an ontology can be associated to a set Lg of formulas that hold:

1. Y(e,) €U, it holds that  — .
2. Voe X \{L ULy}, it holds that ¢ — \/ . cr- (o) Pi-
3. Yy, € L, it holds that @AY — L.

4. Y(p,¥) € X x X, s.t. o), it exists a directed path from ¢ to ¥ in G.

Rule 1 expresses that an inclusion relation holds between two classes, 2 is a
kind of closed world assumption version of property (b), 3 expresses property
(c), 4 expresses completeness, as follows: if all the inclusion relations are known
in the ontology, hence all corresponding paths must exist in G. From this, it
follows that: Vo € X, ¢ — /\%GN(W w;. and Yo € X, ¢ — T. Given any pair
of formulas (p, 1) € X x X, the logical encoding of the ontology G = (X,U)
allows us to decide if {¢ A9} U Lg is consistent or not; and if ¢ U Lg F 9 or
not. Taxonomy 1 of Figure 2 provides a toy example of such an ontology, where
e.g. Lo ={Ll}, Ly = {conifer,wetland, agriculture}.

2.2 Attributive formulas

Since we need to express binary links, our representational language is built on
ordered pairs of formulas of .%; x %, here denoted (¢, p). Such formulas should
be understood as formulas of .Z; reified by association with a set of parcels
described by a formula of .%;. In other words, to each formula is attached a set
of parcels, where this formula applies. More precisely, (¢, p) expresses that ¢



is true for each elementary parcels satisfying p. Another understanding would
view (¢, p) as the material implication —pV ¢ in the language based on the union
of the two vocabularies ¥; and ¥;. Alternatively, in a first order logic language
view, this may be also understood as Vz,p(z) — ¢(x), here p(z) means that the
parcel x satisfies p, equating formula p with the union of elementary parcels xg
satisfying p. A pair (¢, p) will be called an attributive formula.

Definition 4 (attributive formula) An attributive formula f, denoted by a
pair (p,p), is a propositional language formula based on the vocabulary ¥; U ¥
where the logical equivalence f = —pV ¢ holds and p contains only variables of
the vocabulary Vs (p € £s) and ¢ contains only variables of ¥; (p € Z;).

The intuitive meaning of f = (¢, p) is that for the set of elementary parcels
that satisfy p, the formula ¢ is true. Observe that there exist formulas built
on the vocabulary ¥%; U ¥ which cannot be put under the attributive form,
e.g., a A p; where a is a literal of ¥; and p; a literal of #;. The introduction
of connectives A, V and — does make sense, since any pair (p,p) is a classical
formula. From the above definition of (¢,p) as being equivalent to —p V ¢,
several inference rules straightforwardly follow from classical logic:

Proposition 2 (inference rules on attributive formulas)
1L (meV,p), (Ve p) (¢ Ve, pAp)
2. (¢,p), (¢',p) F (p N, p); 3. (¢,p), (. 0") F (p.p
4. if p' Ep then (p,p) F (0,0); 5. if o ¢ then (o,

p
From these rules, we can deduce the converse of 2: (¢ A ¢',p) F (,p), (¢, p)
and that (¢,p), (¥,p") F (¢ Vb, pVp') and (p,p), (¥,p") F (9 A, pAp'). Thus,
reification allows us to keep potential inconsistency local, namely restricted to
a subset of parcels rather than pervading the whole knowledge base.

2.3 Taxonomy of properties and partonomy of parcels

The previous formalization of an ontology can be applied both to parcels, which
gives birth to partonomies, and to properties for describing conceptual tax-
onomies. The properties associated to parcels can be labels taken from a vocab-
ulary. It might seem more suitable to develop first on parcels, before developing
on properties that we will attribute to parcels. But, in fact we agree with [13]
who says that “the tazonomic basis of single-resource classifications precludes
their direct placement in a spatially based ecological hierarchy (partonomy).”
Taxonomies divide and organize items into hierarchies of kind-of relations
[21]. “They work well for arranging entities possessing distinct, identifiable char-
acteristics [...] (soils, vegetation, etc.). But, this strict and rigid identification
is also a limitation, as announced in [13]: Applying tazonomic classifications
to characterize ecological patterns over space proves difficult.” A taxonomy is
an ontology, hence a lattice where the nodes are labeled on a given vocabulary,
and where the partial order entails a relation, named sort-of or is-a, with the
following peculiarities in practice: (i) Any level can exist without antecedent;
(ii) If a sort-of b, then a may be unique. Let’s name tazxon a node of this graph.
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Figure 1: Two partonomies (space ontologies) for the same set of parcels.

Partonomies reflect part-of relations based on space or proximity [21]. [13]
says: “Recognition of patterns at different spatial resolutions is fundamental to
partonomies. Fortunately, there is a natural tendency for humans to perceive
and subdivide the environment on the basis of part-whole relationships [5]. [...]
most patterns or structures originate from ecological processes that are inherently
spatial and thus partonomic in nature.” In a partition of a territory, particular
subsets of parcels may have names, hence any partition equipped with the set
inclusion relation, can be represented by partonomy. We further assume that
all these partonomies share the same set of elementary parcels. Fig.1 exhibits
two partonomies Gs and Gs’ and their common elementary parcels p, ..., ps.

A partonomy [1] is an ontology, hence a lattice, where the nodes are labeled
by the elementary parcels, and the partial order entails a part-of relation which,
in practice, has the following properties: (i) A class exists if and only if all its
sub-classes exist; (ii) Only leaves can exist without antecedent; (iii) If a part-of
b, then b made-of a, and it exists ¢ (in the parcel vocabulary), complement of
a in b. The union of two taxons can always exist, but it is not the case for
two elements of a partonomy (partons), because taxons are classes, but partons
are individuals that must exist when used by an operator. Figure 1 represents
two partitions G and G’, of the same space, leading to two partonomies where
elementary parcels are identified by ovals.

3 Fusion of properties as an ontology alignment
problem

Because the vocabulary is often insufficient for describing any subset of objects
in a non-ambiguous way; or conversely because there may be no proper set
of objects that satisfy a given set of properties and only them, only many-to-
many relationships are really useful for representing geographic information.
For a many-to-many relationship between the parcels of a given subset P; of the



partonomy, and the properties of a given list L; of excerpts from the taxonomy,
we need classically to build three database relations:
- R that distributes the subset P; over its parcels;
- R, that distributes the subset L; over its properties;
- R, made of the attributive formulas: pairs from R, x R, (learning samples).
What interests us is to discover if some additional knowledge emerges from
the fusion of two information sources (Rs1, Rp1, Ra1) and (Rs2, Rp2, Ra2). The
fusion of partonomies is not a problem, if we accept to ignore data matching
issues, and that the geometric intersection between parcels of Rs; and Rgo, be-
come leaves of the fusion R,. The fusion of taxonomies is more difficult (many
papers in FCA, semantic web, database integration), and it converges now to the
notion of ontology alignment (see: Euzenat and Shvaiko [11]). We can distin-
guish several aspects: (a) the construction of R, = R,1 + Rq2 (concatenation),
(b) the structural alignment that will identify th number of nodes for candidate
attributive formulas, and their partial order (classical FCA); (c¢) the labeling of
this nodes that may unify them possibly on either R,; or Ry, or may need to
form a new label by coupling (sign &) concepts from both R,; and R,; (d) the
decision to keep or discard these candidates nodes, according to one or several
criteria (this aspect is skipped here, but similar to the discussion of section 5).
Let’s now illustrate the problem with a landscape analysis example. Fig. 2
exhibits two concurrent taxonomies about land cover, as often, when experts
from different disciplines try to build a domain ontology that reflects their own
knowledge. Here, taxonomy 1, seems broader than taxonomy 2, which focuses
on moor lands (shrubs, heath, and grass that can be natural or cultivated). We
also notice that taxonomy 1 accepts multi-heritage, while the second does not.

top taxonomy 1 top taxonomy 2

AN

agriculture heath/grass herbaceous

shrubs natural grass

\y\ +

Figure 2: an example of two taxonomies

One solution is to combine the two taxonomies with the assumption that
they are totally disjoint, and that only one type of information is possible at
one parcel (full mutual exclusion: Fig.3). This first solution means that for
each parcel, we must choose only one label, from either taxonomy. This is a
much too strong constraint, e.g.: Agriculture and Herbaceous are not necessarily
incompatible.

A second approach is to consider every association as equally possible, under



disjunctive taxonomy

agriculture

natural grass wetland

Figure 3: mutual exclusion taxonomy (solution 1).

the only constraint to preserve both original partial orders (Fig.4). It doesn’t
impose anything: consequently, it doesn’t provide any additional knowledge.
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Figure 4: corresponding cross product taxonomy (solution 2).
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Figure 5: corresponding aligned taxonomy (solution 3).

The third solution is to use the relation R, built for each p with all the at-



tributive formulas (¢}, p) expressed in taxonomy 1, together with all the (2 s D)
expressed in taxonomy 2. Using a FCA algorithm [16], we can compute the tax-
onomy of Fig. 5: this is the most informative solution, which filters only the
concepts that fit with the actual observations. The principle of the algorithm
is to ’learn’, among several partial orders compatible with both taxonomies,
the minimal which complies with the given set of observations. Of course, this
data-mining technique, if used with different observations, may lead to differ-
ent "learned taxonomies”, but a stability can be obtained with reliable enough
samples.

4 Representing uncertain geographical informa-
tion

Our attributive language is now extended in a possibilistic logic manner, by
allowing uncertainty on properties. Let us recall that a standard propositional
possibilistic formula [8] is a pair made of a logical proposition (Boolean), associ-
ated with a certainty level. The semantic counterpart of a possibilistic formula
(p, @) is a constraint N(p) > « expressing that « is a lower bound on the ne-
cessity measure N [9] of logical formula ¢. Possibilistic logic has been proved
to be sound and complete with respect to a semantics expressed in terms of the
greatest possibility distribution m underlying N (N(p) = 1 — sup -, 7(w)).
This distribution rank-orders interpretations according to their plausibility [8].

Note that a possibilistic formula (p, «) can be viewed at the meta level as
being only true or false, since either N(p) > « or N(¢) < «. This allows
us to introduce possibilistic formula instead of propositional formula inside our
attributive pair, and leads to the following definition.

Definition 5 (uncertain attributive formula) An uncertain attributive for-
mula is a pair ((p,@),p) meaning that for the set of elementary parcels that
satisfy p, the formula ¢ is certain at least at level «.

The inference rules of possibilistic logic [8] straightforwardly extend into the
following rules for reasoning with uncertain attributive formulas:

Proposition 3 (inference rules on uncertain attributive formulas)

1 (= V¢'sa),p), ((p V &", 8),p) F (¢ V ¢, min(e, 5)),p A p')

2. (¢, @),p), ((¢',8), p) - (¢ A ¢', min(a, §)), p)

3.4. ((p,a),p), (¢, 8), ') F (¢, min(a, ), pV ')

3.B. (¢, @), p): (¢, 0),0) ((%maX(a ); pAp)

?( lfg? F) ' then (¢, ), p") & ((p.)p); 5. if ¢ = ¢ then ((p,a),p)
¢ a),p

Rules 3.B. and 3.A. correspond respectively to the fact that either i) we
locate ourselves in the parcels that satisfy both p and p’, and then the certainty
level of the formula ¢ can reach the maximal upper bound of the certainty levels
known in p or in p’, or ii) we consider any parcel in the union of the models of



p and p’ and then the certainty level is only guaranteed to be greater than the
minimum of a and 5. Note that this formalism allows us to express a greater
uncertainty about a rather specific label than about a more general label, as in:

Example 1 In order to express that parcel p1 has either “Conifer” or “Wet-
land” and more plausibly “Conifer”, we use the two uncertain attributive for-
mulas: ((Conifer,ay),p1) and (Wetland V Conifer,as),p1) where a; < as.
At the semantic level, this is represented by the possibility distribution w1 for
p1-

1 if w = Conifer,
mw)=<¢ 1—a1 <1 ifwkE= Wetland A ~Conifer,
1— oo otherwise.

Suppose that parcel ps has almost certainly Forest and more plausibly Conifer,
knowing that Conifer are Forest ((—mConifer V Forest,1),T). Then for ps:

0 if w = Conifer N = Forest,
1—as ifwE—~Conifer AN —Forest,
1—a; ifwf—~Conifer A Forest,

1 if wE Conifer A Forest,

7T2(w) =

This distribution can be syntactically encoded by the three formulas ((~ConiferV
Forest,1),p2), ((Forest,as),p2) and ((Conifer,ar),p2), with as > ay.

Fusion operations. The syntactic counterpart of the pointwise combina-
tion of two possibility distributions 7, and 75 into a distribution 7 @ mo by any
monotonic combination operator ¢ such that 141 = 1, can be easily computed.
Namely, if 3 is associated with m; and Y5 with mo, a possibilistic base that is
semantically equivalent to w1 @ 79 can be computed as [3]:

{(30“1—(1—041)@1) S.t. ((pi,()éi) S 21},
Yie2=| U {(¥,1-1a6(1-5)) s.t. (¢5,8)) € Ea},
U {(pi V1 -1 —ay)®(1—-55)) st (pi, ) €51, (45, 585) € Xa}.

For @ = min, we get mx,ux, = min(my, m2) as expected. For @ = max, we
get Emax(‘ﬂ'],ﬂ'z) ={(¢s \/Q/Jj,min(ozi,ﬁj)) s.t. (pi, ;) € X9, and (’l/)j,ﬂj) € 3o}

Localization of attributive knowledge. Still, attributive information
itself may have two different intended meanings, namely when stating (¢, p)
one may want to express that:

e cverywhere in each parcel satisfying p, ¢ holds as true, denoted by (¢, p, €).
Then, for instance, (Agriculture, p, e) cannot be consistent with (Forest, p, e)
since “Agriculture” and “Forest” are mutually exclusive in taxonomy 1.

e somewhere in each parcel satisfying p, ¢ holds as true, denoted by (¢, p, s).
Then, replacing e by s in this example is no longer inconsistent, since in
each parcel there may exist “Agricultural” parts and “Forest” parts.

Note that these two meanings differ from the case where two exclusive labels
such as “Water” and “Grass” might be attributed to the same parcel because
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they are intimately mixed, as in a “Swamp”. This latter case should be handled
by adding a new appropriate label in the ontology. More formally, for a given
parcel p in the partonomy, if p is:

-not a leave, (p,p, s) means: Vp',p' b p, (¢,p’, s) holds;

-a leave, but made of parts o, (¢, p, s) means that Jo € p, p(0).

Thus, it is clear that inference rules that hold for “everywhere”, not nec-
essarily hold for “somewhere”. Indeed, the rule 2.2 (p,p), (¥,p) F (© A1, p)
is no longer valid since Jo € p, (o) and o' € p,¢(0’) doesn’t entail Jo” €
p,0(0") A p(0"). More generally, here are the rules that hold for the “some-
where” reading:

Proposition 4 (inference rules on attributive formulas)
1 (mp Ve pApse), (pV "0, s)F (@' V", pAY, 5)
2% (¢,ps 8), (@'sp, ) F (@ A@sp, 8); 3% (@,ps ), (0,0, 8) F (p,p VD, 8)
47 if ' p then (p,p, ) (p,p', 8); 5. if o=’ then (p,p, 8) = (¢, p, )
where (@, p, s) stands Vp',p' +p Jo € p', 0(0), and (¢, p, €) for Yo € p, p(0).
Moreover, between “somewhere” and “everywhere” formulas, we have:

6" =(¢,p,5) = (-, p,e)

Taxonomy information and attributive information should be handled sep-
arately, because they refer to different types of information, and, more im-
portantly, because taxonomy distinctions expressed by mutual exclusiveness of
taxons do not mean that they cannot be simultaneously true in a given area:
the taxonomy-formula (@ < =b), with a,b € ¥; coming from the same taxon-
omy, differs from the attributive-formula (a < —b, T), applied to every parcel
(with the everywhere reading), since it may happen that for a parcel p, we have
(a,p) A (b,p) (with a somewhere reading). The latter may mean that p contains
at least two distinct parts, and that Jo € p, p(0) A o’ € p,¥(0).

However, subsumption properties can be added to attributive formulas with-
out any problem. Indeed ¢ F ¢ means Vo, ¢(0) — ¥(0), and if we have (¢, p),
implicitly meaning that Jo € p, (o), then we obtain Jo € p, ¢ (o), i.e., (¥, p).
Thus we can write the subsumption property as (¢ — ¥, T).

5 Information fusion: general discussion on an
example

Generally speaking, fusing consistent knowledge bases merely amounts to apply
logical inference to the union of the knowledge bases. In presence of inconsis-
tency, another combination process should be defined and used. In this sec-
tion, we develop an example, represented in the language of section 4, on two
sources using the same taxonomy (possibly aligned: section 3), but different
partonomies.

Possibilistic information fusion easily extends to attributive formulas: each
given (p,p) is equivalent to the conjunction of the (p,p;), where the p;’s are
the leaves of the partonomy, such that p; = p. Using finite partonomies, it is

11



always possible to refine them by taking the non-empty intersection of pairs of
leaves, and possibilistic information fusion takes place for each p;.

Source 1 Source 2
Heath Conifer po Forest P12
Natural grass Forest
D13 Marsh — py Herbaceous p3 Wetland
Natural grass D4

Figure 6: The information given by the sources (inspired from [19]).

Let us detail the example of Fig.6: two sources report observations about an
area which is partitioned in four elementary parcels, after refinement: py, p2, p3, p4,
using the aligned taxonomy from Fig.5. Clearly, we have four possible logical
readings of two labels a and b associated with an area covered by two elementary
parcels p; and ps:

i. (aAb, p1V p2): means that both a and b apply to each of p; and po.

il. (@Ab, p1)V (aAb, ps): both a and b apply to p; or both apply to pa.

ili. (aVb, p1Vp2): aapplies to each of p1, p2 or b applies to each of p1, pa.

ili. (aVb, p1)V(aVb, p2): we don’t know what of a or b applies to what of p;
or po. This may be particularized by adding the mutual exclusiveness constraint
=(a,p1 V p2) A =(b,p1 V p2): that a label cannot apply to both parcels.

When a and b are mutually exclusive the everywhere meaning is impossible
(if we admit that sources provide consistent information).

Another ambiguity is about if the “closed world assumption” (CWA) holds
or not, e.g.: if a source says that p; contains Conifer and Agriculture, does it
exclude that p; would also contain Marsh ? It would be indeed excluded by
applying CWA. Also, CWA may help to induce “everywhere” information from
“somewhere” information. Indeed, if we know that all formulas attached to p
are @1, ... p with a somewhere meaning: (p1,p, 8) A ... A (@n,p, 8)), then
CWA entails that if there were another ¢ that holds somewhere in p, it would
have been already said, hence we can jump to the conclusion that (\/i:Ln iy D,
e).

Let’s consider the non ambiguous reading i. of the example with the formu-
las:
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Spatial formulas Property formulas
14. Natgrass — Wet-

L p1 — p12, land,

2. p1 — p13, 15. Natgrass N 22. AgriHerb — Herbac,
3. p2 — pi2, ForHeath, 23. AgriHerb — Agric,
4. p3 — pis, 16. gngerb - Wet- 24. Wetland — Marsh,
5. p12VpisVpa, , 25. Wetland — Forest,

17. WetHerb — Herbac,

6. p12 — p1Vpa, 26. ForHeath — Forest,

18. Conifer —
7. p13 — p1Vps, ForHeath, 27. ForHeath — Heath,

19. Conifer — Shrubs, 28. Shrubs — Heath,
8. P1 /\p2 - Jﬂ .

20. AgriShrub - 29. + 20 mutual excl.
9.+ 5 mut. Shrubs,

excl.

Under the CWA:

21. AgriShrub — Agric

Source 1 Source 2

49. (Heath, p13, s)

54. (Forest, p1a, s)
50. (Natural grass, p13, s)

55. (Herbaceous, ps, s)
51. (Conifer, pa, 8)

56. (Natural grass, ps, s)
52. (Forest, po, s)

57. (Wetland, py, s)

53. (Marsh, py, )
Let’s project on: p; = p12 Ap1s, using formula 7: p13 — p1Vps, and inference

rule 4’ (with py F p13 and p3 F p13). Idem with p5. We obtain:

Source 1 Source 2
58. (Heath, pq, s)
59. (Heath, ps, s) 62. (Forest, py, s)
60. (Natural grass, p1, s) 63. (Forest, po, s)

61. (Natural grass, ps, s)
With the closed world assumption, we deduce:

Source 1 Source 2
64. (Heath Vv Natural grass, p1, €) 68. (Forest, p1, €)
65. (Heath V Natural grass, ps, €) 69. (Forest, ps, €)
66. (Conifer V Forest, po, €) 70. (Herbaceous V Natural grass, ps, e)
67. (Marsh, py, €) 71. (Wetland, py, €)

Now we can proceed with the fusion step, in the conjunctive mode. We
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obtain:

parcel pp: (64) and (68) yields (Conifer, p;, e), which contradicts (60).
parcel po: the conjunction of (51), (52), (66), (63) is consistent, and yields
(Woods, ps, €) A (Conifer, ps, s).

parcel p3: the conjunction of (59), (61), (65), (55), (56),(70) consistently yields
(Herbaceous V Naturalgrass, ps, e) A (Herbaceous, ps, s) A (Naturalgrass, ps,
)

parcel py: (67) and (71) yields (Rivers, pq, €).

Conclusion:
1 (Conifer,s)
(Forest,e)
(Herbaceous, s) (Wetland, e)
(Naturalgrass, s)

Sources 1 and 2 are conflicting on p;: we can perform a disjunction of their
formulas on this parcel. This conflict may come from the application of CWA
to each source prior the fusion: the induction from (Forest, p1, s) to (Forest, pi,
e) is perhaps too adventurous. We can check that (Forest, p1, s) would yield
(Conifer V Natural grass, p1, €) A (Conifer, py, s) A (Natural grass, p1, s).

The treatment of this kind of fusion problem in [19] and [16] distinguishes
between pessimistic and optimistic fusion modes. Our approach uses i) a pure
logical representation setting (with an explicit distinction between conjunction
and disjunction of labels), ii) distinguishes between somewhere and everywhere
statements, iii) allows to express CWA (or not), iv) applies the general setting
of logic-based information fusion. Our fusion result may also be more precise,
thanks to a greater expressivity power of the representation framework.

Our logical framework also allows us to have a possibilistic handling of un-
certainty, and then a variety of combination operations, which may depend on
the level of conflict between the sources, or on their relative priority [3], can
be encoded. The uncertainty setting enables us to enrich the reading of the
example. Consider the information given by source 1 on ps, namely “Conifer,
Forest”. As discussed in section 4.2, such an information may express that ps
is covered by Forest, and plausibly by Conifer. With the “everywhere” reading,
this can be syntactically encoded by the possibilistic formulas ((Forest, 1), ps, €)
and ((Conifer,a),ps,e), with a < 1, together with the ontology information
((=Conifer V Forest,1), T). Similarly, the information given by source 2 on
p2 can be encoded as ((Forest,1),pa,e). Here, there is no inconsistency, hence
((Forest, 1), pz, €) A ((Conifer, o), ps2, €).

Imagine that, now, source 2 says ((Forest, 1), pa, e) and ((Wetland, ), p2, e).
The two sources are now partially inconsistent on ps, and it can be checked that
the level of possibilistic inconsistency of the information provided by the two
sources, about pe, is Inc = min(a, 3).

Different fusion modes can be used. One may use a renormalized conjunc-
tion [3]: the syntactic counterpart of this operator yields, if we assume « > g,
((Woods, 1), pa,e) A ((Conifer,a),ps,e). Or one may choose a disjunctive atti-
tude (® = max), one gets ((Forest, 1),pa,e) A ((Conifer vV Wetland, 3), ps, €).
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In case we again combine the two previous results obtained with the above
fusion modes, by a product-based conjunction (& =product), one would ob-
tain ((Woods, 1),p2,¢e) A ((Orchards vV Wetland,1 — (1 — «)(1 — 3)),p2,€) A
((Conifer,a),ps,e). Thisis a more refined result, since it keeps track of the con-
flict, and of a preference for the more certain information ((Conifer,a),pa,e)
since a > . Observe however that 1 — (1 — a)(1 — 3)) > «, which makes the
statement Conifer V Wetland more certain.

6 Conclusion

After having identified representational needs (use of two vocabularies referring
respectively to parcels and to properties, references to ontologies, uncertainty)
when dealing with spatial information and restating ontology alignment proce-
dures, a general logical setting has been proposed. It offers a non-ambiguous
representation, propagates uncertainty in a possibilistic manner, and provides
also the basis for handling multiple source information fusion. Moreover, we
have seen that it is often important to explicitly distinguish between the cases
where a property holds everywhere or somewhere into a parcel. An issue of in-
terest for further research would be to allow for uncertain or default inheritance
in ontologies. Note that, since subsumption relations can be easily added to the
pieces of attributive spatial information, it would be possible to make some of
these relations uncertain in our framework.
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