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Abstract

There exist many tools for capturing imprecision in probabilistic representations.
Among them are random sets, possibility distributions, probability intervals, and
the more recents Ferson’s p-boxes and Neumaier’s clouds. Both for theoretical and
practical considerations, it is very useful to know whether one representation can be
turned into or approximated by other ones. In the companion paper, we have thor-
oughly studied a generalized form of p-box, relating it with other models. This paper
focuses on so-called clouds and their links with other representations. In particular,
it is shown that they are more general than generalized p-boxes and generally cannot
be represented by convex capacities, hence by random sets.

Key words: imprecise probability representations, p-boxes, possibility theory,
random sets, clouds, probability intervals

1 Introduction

There exist many different representations of imprecise probabilities. Usually,
the more general, the more difficult they are to handle. Simpler represen-
tations, although less expressive, usually have the advantage of being more
tractable. Over the years, several such practical representations have been pro-
posed. Among them are possibility distributions [20], probability intervals [2],
and more recently p-boxes [12] and clouds [15, 16]. With such a diversity of
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Figure 1. Relationships among representations. A −→ B means B is a special case
of A

simplified representations, it is then natural to compare their respective ex-
pressive power. Finding formal relations between such representations also
facilitates a unified handling of uncertainty.

In the companion paper, a generalized notion of p-boxes is studied and related
to representations mentioned above. It is shown that uncertainty modelled by
any generalized p-box can be represented by an equivalent pair of possibility
distributions, or by a particular random set. Generalised p-boxes are thus more
general than single possibility distributions, and a special case of random sets.
Moreover, their interpretation in term of lower and upper confidence bounds
on collection of nested subsets makes them intuitive simple representations.
Figure 1 recalls the situation reached at the end of the companion paper. It
shows the known relation between the studied representations, going from the
most (top) to the least (bottom) general.

The study of the present paper will allow us to complete Figure 1 by adding
clouds to it, making one step further towards the unification of uncertainty
models. As we shall see, generalised p-boxes are a bridge between clouds,
possibility distributions and usual p-boxes.

The paper is divided into two main sections:

• Section 2 briefly recalls the uncertainty frameworks as well as the main
results of the companion paper that will be needed here.
• Section 3 studies the formalism of clouds and relates them to pairs of pos-

sibility distributions and to generalized p-boxes. It is shown that general-
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ized p-boxes are equivalent to a particular subfamily of clouds, named here
comonotonic clouds.
• Section 4 studies non-comonotonic clouds, that are not equivalent to gener-

alized p-boxes. Since the lower probability they induce are not 2-monotone,
simpler outer and inner approximations are proposed.
• Section 5 then studies relations between clouds and probability intervals.

As neither of them is a special case of the other, some transformation of
probability intervals into covering clouds are proposed.
• Section 6 extends some of our results to the case of continuous models

defined on the real line, since such models are often encountered in ap-
plications. The particular case of thin clouds is emphasized, as they have
non-empty credal sets in the continuous setting.

To make the paper easier to read, longer proofs have been moved to the
appendix.

2 Preliminaries

In this section, we briefly recall the notions introduced in the companion
paper, as well as the main results useful in the present study. Unless explicitly
mentioned otherwise, the paper sticks to a finite spaceX of n elements denoted
x. More details can be found in the companion paper.

2.1 Basic notions

Capacities

Definition 2.1 Given a finite space X, a capacity is a function µ defined on
subsets of X such that:

• µ(∅) = 0, µ(X) = 1
• A ⊂ B ⇒ µ(A) ≤ µ(B)

A capacity is said to be super-additive if ∀A,B ⊂ X,A∩B = ∅, µ(A ∪B) ≥ µ(A) + µ(B).
The dual notion, called sub-additivity, is obtained by reversing the inequality.
A capacity is said additive if the inequality is turned into an equality.

Capacities are often characterized by their n-monotonicity, defined as:

Definition 2.2 A super-additive capacity µ is n − monotone, where n > 0
and n ∈ N, if and only if for any set A = {Ai|i ∈ N, 0 < i ≤ n} of events Ai,
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it holds that
µ(

⋃
Ai∈A

Ai) ≥
∑
I⊆A

(−1)|I|+1µ(
⋂
Ai∈I

Ai)

And a capacity that is n-monotone for any n is said ∞-monotone. An n-
monotone capacity is also n−1-monotone, but not forcefully n+ 1-monotone.
The dual capacity µc of a capacity µ is such that µc(A) = µ(X) − µ(A) =
1− µ(A) for any event A ⊆ X.

Credal Sets and coherent lower/upper probabilities

A credal set P is a closed convex set of finitely additive probability distribu-
tions P . Walley [19] systematized their use as uncertainty models. Here, we re-
strict ourselves to credal sets induced by coherent lower probability measures.
A lower probability measure is a super-additive capacity, and it is coherent if
it coincides with the lower envelope of the credal sets it induces.

The credal set PP ,P induced by a coherent lower probability P is the set of
probability distributions P dominating this lower probability:

PP ,P = {P |∀A ⊂ X, P (A) ≥ P (A)}.

The coherent upper probability P such that for any eventA, P (A) = 1−P (Ac),
with Ac the complement of A is the conjugate measure of the coherent lower
probability P . A credal set PP ,P can also be described by a set of constraints
on probability masses:

P (A) ≤
∑
x∈A

p(x) ≤ P (A).

Probability intervals

Probability intervals are lower and upper confidence bounds on a probability
distribution. They are defined by a set of intervals L = {[l(x), u(x)]|x ∈ X}
inducing the credal set

PL = {P |l(x) ≤ p(x) ≤ u(x), x ∈ X}

where p(x) is the probability mass of x. In terms of constraints, PL is only
described by bounds on probability masses of elements (l(x) ≤ p(x) ≤ u(x)).
Lower and upper probabilities P (A), P (A) on all events A ⊂ X of PL are
calculated by the following expressions

P (A) = max(
∑
x∈A

l(x), 1−
∑
x∈Ac

u(x)), P (A) = min(
∑
x∈A

u(x), 1−
∑
x∈Ac

l(x)). (1)
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Probability intervals are extensively studied by De Campos et al. [2]. They
show that the induced lower and upper probabilities are Choquet capacities
of order 2.

Random sets

When X is finite, a random set can be represented as a distribution of positive
masses m over the power set ℘(X) and such that

∑
E⊆X m(E) = 1 and m(∅) =

0. A set E that receives strict positive mass is called a focal set. From this
distribution of masses, Shafer [17] defines two set functions, the belief and
plausibility functions:

Bel(A) =
∑

E,E⊆A
m(E); Pl(A) = 1−Bel(Ac) =

∑
E,E∩A 6=∅

m(E).

It can be shown that a belief function induced by a random set is an ∞-
monotone capacity, and that to any ∞-monotone capacity corresponds one
and only one random set. As ∞-monotone capacities, belief functions can be
identified as special cases of lower probabilities. In this case, a random set
induces the credal set PBel = {P |∀A ⊆ X, Bel(A) ≤ P (A) ≤ Pl(A)}.

Possibility distributions

A possibility distribution [7] is a mapping π : X → [0, 1] from a space X to
the unit interval such that π(x) = 1 for at least one element x in X. From this
distribution, two dual measures on events A ⊆ X are defined, the possibility
and necessity measures:

Π(A) = sup
x∈A

π(x); N(A) = 1− Π(Ac) (2)

and another that will be useful in the paper, called the sufficiency measure,
such that:

∆(A) = inf
x∈A

π(x) (3)

Given a possibility distribution π and a degree α ∈ [0, 1], strong and regular
α-cuts are respectively defined as the sets Aα = {x ∈ X|π(x) > α} and Aα =
{x ∈ X|π(x) ≥ α}. These α-cuts are nested, since if α > β, then Aα ⊆ Aβ.
On finite spaces, a possibility distribution can only take a finite set of distinct
values on elements x in X. Let us note α0 = 0 < α1 < . . . < αm = 1 these
distinct values. Then, there will only be m distinct α-cuts.

As necessity measures are ∞-monotone capacities, they is also a particular
instance of belief functions. A possibility distribution is equivalent to a random
set whose focal elements are nested. Given a possibility distribution π, the
corresponding random set has nested focal elements Ei with masses m(Ei),
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i = 1, . . . ,m: Ei = {x ∈ X|π(x) ≥ αi} = Aαi

m(Ei) = αi − αi−1

(4)

A ncessity measure is also a particular instance of a coherent lower probability
P , and it induces the credal set Pπ = {P |∀A ⊆ X, N(A) ≤ P (A) ≤ Π(A)}.

We recall here a result, proved by Dubois et al. [5], which relates probabilities
P that are in Pπ with constraints on α-cuts, and that will be useful in the
sequel:

Proposition 2.3 Given a possibility distribution π and the induced convex
set Pπ, P ∈ Pπ if and only if 1− α ≤ P ({x ∈ X|π(x) > α}),∀α ∈ (0, 1]

This result means that the probabilities P in the credal set Pπ can also be
described in terms of constraints on strong α-cuts of π (i.e. 1− α ≤ P (Aα)).

2.2 Generalized p-boxes

Generalized p-boxes extend the usual notion of p-boxes [12] to arbitrary finite
spaces X. They are fully studied in the companion paper, and we simply recall
here some of their features as well as the main results needed in the sequel.

Two mappings from X to [0, 1], F : X → [0, 1] and F : X → [0, 1], are said
to be comonotonic if there exists a total ranking {x1, . . . , xn} of X such that
F (x1) ≥ . . . , F (xn) and F (x1) ≥ . . . , F (xn). A generalized p-box is defined as
follows:

Definition 2.4 A generalized p-box [F , F ] over a finite space X is a pair of
comonotonic mappings, F : X → [0, 1] and F : X → [0, 1] such that F is
point-wise lower than F (i.e. F ≤ F ) and there is at least one element x in
X for which F (x) = F (x) = 1.

Any generalized p-box thus induces a complete (pre-)order ≤[F ,F ] on elements
x of X, such that x ≤[F ,F ] y if F (x) ≤ F (y) and F (x) ≤ F (y). To simplify
notations in the sequel, elements x ofX are indexed so as to ensure xi ≤[F ,F ] xj
as soon as i < j.

The credal set P[F ,F ] induced by a generalized p-box is such that

P[F ,F ] = {P |i = 1, . . . , n, F (xi) ≤ P (Ai) ≤ F (xi)}.

with Ai the set such that Ai = {x ∈ X|x ≤[F ,F ] xi}. These sets are nested
(∅ ⊂ A1 ⊆ . . . ⊆ An = X).
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Let F (xi) = αi and F (xi) = βi for all i = 1, . . . , n. Then, the credal set P[F ,F ]

can also be described by the following constraints bearing on probabilities of
nested sets Ai:

i = 1, . . . , n αi ≤ P (Ai) ≤ βi (5)
with 0 = α0 ≤ α1 ≤ . . . ≤ αn = 1, 0 = β0 < β1 ≤ β2 ≤ . . . ≤ βn = 1 and
αi ≤ βi.

Generalized p-boxes and possibility distributions are linked by the following
proposition showing that any generalized p-box can be represented by a pair
of possibility distributions:

Proposition 2.5 Uncertainty modeled on X by a generalized p-box [F , F ] can
also be encoded by a pair of possibility distributions πF , πF such that P[F ,F ] =
Pπ

F
∩ PπF with, for i = 1, . . . , n,

πF (xi) = βi and πF (xi) = 1−max{αj|j = 0, . . . , i αj < αi}

with α0 = 0.

Conversely, any possibility distribution can be seen as a generalized p-box
where one of F or F has extreme values 0 or 1.

The uncertainty modeled by a generalized p-box [F , F ] can also be mapped
into an equivalent random set m, in the sense that P[F ,F ] = PBel. The focal
sets of the random set equivalent to the generalized p-box are of the form
Ai+1 \ Aj, with mass

m(Ai+1 \ Aj) = min(αi+1, βj+1)−max(αi, βj). (6)

where αi+1 > θ ≥ αi and βj+1 > θ ≥ βj, for all thresholds θ ∈ (0, 1].

As emphasized in the companion paper, there is no direct relationships be-
tween sets of probability intervals and generalized p-boxes. Nevertheless, it is
possible to transform one representation into the other, as well as to relate
the two representations. Here, we briefly restate results that will be useful to
study clouds.

Consider a set L of probability intervals defined on an indexed space X =
{x1, . . . , x2}. For all i from 1 to n, we note l(xi) = li and u(xi) = ui. An
approximated generalized p-box [F ′, F

′
] covering the set L of probability in-

tervals can be computed by using Equations (1) of Section 2.1 in the following
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way:

F ′(xi) = P (Ai) = α′i = max(
∑
xi∈Ai

li, 1−
∑
xi /∈Ai

ui) (7)

F
′
(xi) = P (Ai) = β′i = min(

∑
xi∈Ai

ui, 1−
∑
xi /∈Ai

li)

where P , P are respectively the lower and upper probabilities of PL on events
Ai, given by Equations (1). Note that the obtained p-box depends on the
chosen permutation of elements of X. Let Σσ denotes the set of permutations
σ of elements in X and [F ′, F

′
]σ the corresponding p-box obtained by equation

(7). It holds that PL =
⋂
σ∈Σσ P[F ′,F

′
]σ
, showing that the informative content of

a given set L of probability intervals can also be modeled by a set of generalized
p-boxes.

3 Clouds

A cloud is defined as a pair of mappings δ : X → [0, 1] and π : X → [0, 1]
from the space X to [0, 1], such that δ is point-wise less than π (i.e. δ ≤ π.
Moreover, π(x) = 1 for at least one element x in X, and δ(y) = 0 for at least
one element y in X. δ and π are respectively the lower and upper distributions
of a cloud.

Mappings δ, π forming the cloud [δ, π] are formally equivalent to fuzzy mem-
bership functions. A cloud [δ, π] is formally equivalent to an interval-valued
fuzzy set (IVF for short). More precisely, since δ ≤ π, a cloud [δ, π] is formally
equivalent to an interval-valued membership function whereby the member-
ship value of each element x of X is [δ(x), π(x)]. Since a cloud is equivalent to
a pair of fuzzy membership functions, at most 2|X| − 2 values (notwithstand-
ing boundary constraints on δ and π) are needed to fully determine a cloud on
a finite set. Two subcases of clouds considered by Neumaier [15] are the thin
and fuzzy clouds. A thin cloud is defined as a cloud for which δ = π, while a
fuzzy cloud is a cloud for which δ = 0.

The credal set P[δ,π] induced by a cloud is defined by Neumaier [15] :

P[δ,π] = {P, P ({x ∈ X, δ(x) ≥ α}) ≤ 1− α ≤ P ({x ∈ X, π(x) > α})} (8)

where P is a probability measure. In the finite setting, let 0 = γ0 < γ1 < . . . <
γm = 1 be the ordered distinct values taken by both δ and π on elements of
X, then denote the strong and regular cuts as

Bγi = {x ∈ X|π(x) > γi} and Bγi = {x ∈ X|π(x) ≥ γi} (9)
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for the upper distribution π and

Cγi = {x ∈ X|δ(x) > γi} and Cγi = {x ∈ X|δ(x) ≥ γi} (10)

for the lower distribution δ. Note that in the finite case, Bγi = Bγi+1
and

Cγi = Cγi+1
, with γm+1 = 1, and also

∅ = Bγm ⊂ Bγm−1 ⊆ . . . ⊆ Bγ0 = X;

∅ = Cγm ⊆ Cγm−1 ⊆ . . . ⊆ Cγ0 = X

and since δ ≤ π, this implies that Cγi ⊆ Bγi , hence Cγi ⊆ Bγi−1
,∀i = 1, . . . ,m.

In such a finite case, a cloud is said to be discrete. In terms of constraints
bearing on probabilities, the credal set P[δ,π] of a finite cloud is described by
the finite set of inequalities:

i = 0, . . . ,m, P (Cγi) ≤ 1− γi ≤ P (Bγi) (11)

under the above inclusion constraints.

Note that some conditions must hold for P[δ,π] to be non-empty in the finite
case. In particular, distribution δ must not be equal to π (i.e. δ < π). Oth-
erwise, consider the case where Cγi = Bγi−1

(= Bγi), that is π and δ have the
same γi-cut. Clearly, there is no probability distribution satisfying the con-
straint 1− γi−1 ≤ P (Cγi) ≤ 1− γi since γi−1 < γi. So, finite clouds cannot be
thin.

Example 3.1 illustrates the notion of cloud and will be used in the next sections
to illustrate various results.

Example 3.1 Let us consider a space X = {u, v, w, x, y, z} and the following
cloud [δ, π], pictured in Figure 2, defined on this space:

u v w x y z

π 0.75 1 1 0.75 0.75 0.5

δ 0.5 0.5 0.75 0.5 0 0

The values γi corresponding to this cloud are

0 ≤ 0.5 ≤ 0.75 ≤ 1

γ0 ≤ γ1 ≤ γ2 ≤ γ3

and the constraints associated to this cloud and corresponding to Equation (11)
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Figure 2. Cloud [δ, π] of Example 3.1

are

P (Cγ3 = ∅) ≤ 1− 1 ≤ P (Bγ3
= ∅)

P (Cγ2 = {w}) ≤ 1− 0.75 ≤ P (Bγ2
= {v, w})

P (Cγ1 = {u, v, w, x}) ≤ 1− 0.5 ≤ P (Bγ1
= {u, v, w, x, y})

P (Cγ0 = X) ≤ 1− 0 ≤ P (Bγ0
= X)

3.1 Clouds in the setting of possibility theory

To relate clouds with possibility distributions, first consider the case of fuzzy
clouds [δ, π]. In this case, δ = 0 and, Cγi = ∅ for i = 1, . . . ,m, which means
that constraints given by Equations (11) reduce to

i = 0, . . . ,m 1− γi ≤ P (Bγi)

which, by using Proposition 2.3, induces a credal set equivalent to Pπ. This
shows that fuzzy clouds are equivalent to possibility distributions. The follow-
ing proposition is a direct consequence of this observation:

Proposition 3.2 Uncertainty modeled by a cloud [δ, π] is equivalent to the
uncertainty modeled by the pair of possibility distributions 1 − δ and π, and
the following relation holds:

Pδ,π = Pπ ∩ P1−δ

Proof of Proposition 3.2 Consider a cloud [δ, π] and the constraints induc-
ing the credal set P[δ,π]. As for generalized p-boxes, these constraints can be
split into two sets of constraints, namely, for i = 0, . . . ,m, P (Cγi) ≤ 1 − γi
and 1− γi ≤ P (Bγi). Since Bγi are strong cuts of π, then by Proposition 2.3
we know that these constraints define a credal set equivalent to Pπ.

Note then that P (Cγi) ≤ 1 − γi is equivalent to P (Cc
γi

) ≥ γi (where Cc
γi

=
{x ∈ X, 1− δ(x) > 1− γi}). By construction, 1− δ is a normalized possibility
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distribution. Interpreting these inequalities in the light of Proposition 2.3,
it is clear that they define the credal set P1−δ. By merging the two set of
constraints, we get Pδ,π = Pπ ∩ P1−δ. 2

This proposition shows that, as for generalized p-boxes, the credal set induced
by a cloud is equivalent to the conjunction of two credal sets dominated by
possibility distributions [10]. This analogy between generalized p-boxes and
clouds is fully studied in section 3.3. This result also makes it cleat that a
cloud [δ, π] is equivalent to its mirror cloud [1− π, 1− δ].

Example 3.3 shows the two possibility distributions induced from the cloud
[δ, π] of Example 3.1

Example 3.3 We consider the same space X and the same cloud as in Ex-
ample 3.1. Then, possibility distributions π, 1− δ are:

u v w x y z

π 0.75 1 1 0.75 0.75 0.5

1− δ 0.5 0.5 0.25 0.5 1 1

3.2 Clouds with non-empty credal sets

A natural question is, given two possibility distributions π1, π2, whether we
can try to find conditions under which Pπ1 ∩ Pπ2 is ensured to be empty or
non-empty. This would shed light on clouds with non-empty credal sets.

As the minimum is a usual conjunction operator in possibility theory, one could
be tempted to jump to the conclusion that Pπ∩P1−δ = Pmin(π,1−δ). In fact given
any two possibility distributions π1, π2, we do have Pmin(π1,π2) ⊆ Pπ1∩Pπ2 , but
not the converse inclusion [8].From this remark, it is clear that

• Pπ1∩Pπ2 6= ∅ as soon as min(π1, π2) is a normalized possibility distribution.
• Not all pairs of possibility distributions such that Pπ1 ∩Pπ2 6= ∅ derive from

a cloud [1− π2, π1]. Indeed the normalization of min(π1, π2) does not imply
that 1− π2 ≤ π1.

Chateauneuf [3] has found a characteristic condition under which the credal
sets associated to two belief functions intersect. We can thus apply this re-
sult to a pair of possibility distributions and get the following necessary and
sufficient condition for a cloud [δ, π] to have an non-empty credal set:
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Proposition 3.4 A cloud [δ, π] has a non-empty credal set if and only if

∀A ⊆ X,max
x∈A

π(x) ≥ min
y 6∈A

δ(y)

Proof Chateauneuf’s condition applied to possibility distributions π1 and π2

reads ∀A ⊆ X,Π1(A) + Π2(Ac) ≥ 1. Choose π1 = π and π2 = 1 − δ. In
particular Π2(Ac) = 1−miny 6∈A δ(y). 2

However this characterization has exponential complexity. It can be simplified
as follows. Suppose π(x1) ≤ π(x2) · · · ≤ π(xn) and maxx∈A π(x) = π(xi). The
tightest constraint of the form maxx∈A π(x) = π(xi) ≥ miny 6∈A δ(y) is when
choosing A = {x1, . . . xi}. Hence, Chateauneuf condition comes down to the
following set of n− 1 inequalities to be checked:

π(xi) ≥ min
j>i

δ(xj), j = 1, n− 1.

There are simpler sufficient conditions for Pπ1 ∩ Pπ2 = ∅. For instance, if we
consider a finite partition {G1, . . . , Gm} of X, any probability distribution P
defined on X satisfies

∑m
i=1 P (Gi) = 1. As the possibility measures Π1,Π2 in-

duced from π1, π2 are upper probabilities of the credal sets Pπ1 ,Pπ2 , a sufficient
condition for Pπ1 ∩ Pπ2 to be empty is

m∑
i=1

min(Ππ1(Gi),Ππ2(Gi)) < 1 (12)

and in particular, if the two distributions π, 1 − δ derive from a cloud [δ, π]
defined on X, at least the inequality

∑
x∈X min(π(x), 1− δ(x)) ≥ 1 must hold

for P[δ,π] to be non-empty.

Another simple sufficient condition for the emptiness of Pπ1 ∩ Pπ2 can be
established:

Proposition 3.5 If supx∈X min(π1(x), π2(x)) < 0.5 then Pπ1 ∩ Pπ2 = ∅.

Proof of Proposition 3.5 If the premise holds then there is α < 0.5 and a
subset A of X such that

Aπ1 = {x ∈ X|π1(x) > α} ⊆ A and Aπ2 = {x ∈ X|π2(x) > α} ⊆ Ac.

Then Π1(Ac) + Π2(A) ≤ Π1(Acπ1
) + Π2(Acπ2

)≤ 2α < 1, thus violating Equation
(12). 2

In particular, this proposition applies when for all x in X, π1(x) + π2(x) < 1.
However, this is a case when [1− π2, π1] does not correspond to the definition
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of a cloud.

We already know that, a thin finite cloud has an empty credal set. Now con-
sider the extreme case of clouds for which Cγi = Bγi ,∀i in equation (11).
Rank-ordering X in increasing values of π(x) (π(xi) ≥ π(xi−1), ∀i) enforces
δ(xi) = π(xi−1), with δ(x1) = 0. Let δπ be this lower distribution. As then
P (Bγi) = 1−γi,∀i, it follows that this (almost thin) cloud [δπ, π] contains the
single probability measure P with distribution pi = π(xi)− π(xi−1),∀xi ∈ X.
So if a finite cloud [δ, π] is such that if δ > δπ, it has empty credal set; and if
δ ≤ δπ, then the credal set is not empty.

Note that there may exist clouds [δ, π] with non-empty credal set while δ(xi) =
π(xi) for some i. For instance, if δ(xi) = π(xi) < 1 and δ(xj) = 0 if j 6= i, it
defines a non-empty credal set since supx∈X min(π(x), 1− δ(x)) = 1.

3.3 Generalized p-boxes as a special kind of clouds

The previous subsections show that, similarly to generalized p-boxes, clouds
correspond to pairs of possibility distributions. Moreover, the constraints defin-
ing a finite cloud are quite close to the ones defining a generalized p-box on a
finite set, as per equations (5). The lemma below lays bare the nature of the
relationship between the two representations:

Lemma 3.6 A finite cloud [δ, π] can be encoded as as a generalized p-box if
and only if sets {Bγi , Cγj |i, j = 0, . . . ,m} defined from Equations (9) and (10)
form a nested sequence (i.e. these sets are completely (pre-)ordered with respect
to inclusion).

Proof of Lemma 3.6 Assume the sets Bγi and Cγj form a globally nested
sequence whose current element is Ak. Then the set of constraints defin-
ing a cloud can be rewritten in the form αk ≤ P (Ak) ≤ βk, where αk =
1 − γi and βk = min{1 − γj : Bγi ⊆ Cγj} if Ak = Bγi ; βk = 1 − γi and
αk = max{1− γj : Bγj ⊆ Cγi} if Ak = Cγi .

Since 0 = γ0 < α1 < . . . < αM = 1, these constraints are equivalent to those
describing a generalized p-box (Equations (5)). But if ∃ Cγj , Bγi with j < i
s.t. Cγj 6⊂ Bγi and Bγi 6⊂ Cγj , then uncertainty modeled by the corresponding
cloud cannot be exactly modeled by a generalized p-box, since confidence sets
{Bγi , Cγj |i, j = 0, . . . ,m} would not form a complete preordering with respect
to inclusion anymore. 2

If a cloud [δ, π] satisfies Lemma 3.6, then sets {Bγi , Cγj |i, j = 0, . . . ,m} can
be interpreted as nested downsets (x]. In other words, there does not exist
x, y ∈ X such that π(x) > π(y) and δ(y) > δ(x); otherwise the regular δ(y)-
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cut of δ (i.e. Cδ(y)) contains y and not x, and the π(x)-cut of π (i.e. Bπ(x))
contains x and not y, and these two sets wouldn’t be nested. Such distributions
δ and π are comonotonic, and from now on, if a cloud satisfies Lemma 3.6,
the cloud [δ, π] is said to be comonotonic.

To completely relate comonotonic clouds and generalized p-boxes, it remains
to express a given comonotonic cloud [δ, π] as a generalized p-box [F , F ]. As
both clouds and generalized p-boxes correspond to pairs of possibility distri-
bution, we can define π = πF and δ = 1− πF , where δ, π are the distributions
of the cloud and πF , 1−πF are the possibility distributions describing the gen-
eralized p-box equivalent to the cloud [δ, π]. By using Proposition 2.5, F , F
can then be computed for all x in X:

F (x) = π(x) and F (x) = min{δ(y)|y ∈ X, δ(y) > δ(x)} (13)

Let us also note that a comonotonic cloud [δ, π] and the corresponding gen-
eralized p-box [F , F ] induce the same complete pre-orders on elements of X,
that we will note ≤[F ,F ] to remain coherent with the notations of the compan-
ion paper. We will consider that elements x of X are indexed accordingly, as
already specified.

In practice, this relation between comonotonic clouds and generalized p-boxes
means that all the results that hold for generalized p-boxes also hold for
comonotonic clouds, and conversely. In particular, a comonotonic cloud [δ, π]
can be encoded as an equivalent random set, and if we adapt Equations (6)
to the case of the comonotonic cloud [δ, π], we get the random set such that
for j = 1, . . . ,M Ej = {x ∈ X|(π(x) ≥ γj) ∧ (δ(x) < γj)}

m(Ej) = γj − γj−1

(14)

Note that in the formalism of clouds this random set can be expressed in terms
of the sets {Bγi , Cγi |i = 0, . . . ,m}. Namely, for j = 1, . . . ,M :Ej = Bγj−1

\ Cγj = Bγj \ Cγj
m(Ej) = γj − γj−1

(15)

Example 3.7 illustrates the above relations on the cloud [δ, π] used in Exam-
ple 3.1, which is comonotonic.

Example 3.7 From the cloud of Example 3.1, Cγ3 ⊂ Cγ2 ⊂ Bγ2 ⊂ Cγ1 ⊂

14



0 xi

1

x1(z) x2(y) x3(x) x4(u) x5(v) x6(w)
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Figure 3. Generalized p-box [F , F ] corresponding to cloud of Example 3.1
.

Bγ1 ⊂ Bγ0, and the constraints defining P[δ,π] can be transformed into

0 ≤Cγ2 = {w} ≤ 0.25

0.25 ≤Bγ2 = {v, w} ≤ 0.5

0.25 ≤Cγ1 = {u, v, w, x} ≤ 0.5

0.5 ≤Bγ1 = {u, v, w, x, y} ≤ 1.

They are equivalent to the generalized p-box [F , F ] pictured on Figure 3:

u v w x y z

F 0.75 1 1 0.75 0.75 0.5

F 0.5 0.75 1 0.5 0.5 0

The following ranking of elements of X is compatible with the two distributions
(see Figure 3):

z <[F ,F ] y <[F ,F ] x =[F ,F ] u <[F ,F ] v <[F ,F ] w

The corresponding random set, given by Equations (15) or (14), is:

m({x5, x6}) = 0.25

m({x2, x3, x4, x5}) = 0.25

m({x1, x2}) = 0.5

These results provide insight in uncertainty representations based on pairs of
comonotonic possibility distributions. They emphasize different views of the
same tool. Comonotonic clouds being special cases of clouds, it is then natural
to wonder if some of the results presented in this section extend to clouds
that are not comonotonic (and called non-comonotonic). In particular, can
uncertainty modeled by a non-comonotonic cloud be exactly modeled by an
equivalent random set?
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4 The Nature of Non-comonotonic Clouds

We will now study the case of non-comonotonic clouds. For this kind of clouds,
Proposition 3.2 linking clouds and possibility distributions still holds, but
non-comonotonic clouds are no longer equivalent to generalized p-boxes, thus
results valid for comonotonic clouds cannot be used anymore. As we shall see,
non-comonotonic clouds appear to be less interesting, at least from a practical
point of view, than comonotonic ones.

4.1 Characterization

One way of characterizing an uncertainty model is to find the maximal natural
number n such that the lower measure induced by this uncertainty model is
always n-monotone. This is how we will proceed with non-comonotonic clouds.

Let [δ, π] be a non-comonotonic cloud, and P[δ,π] the derived credal set. The
question is: what is the (maximal) n-monotonicity of the associated lower
probability P of P[δ,π]? The next lemma will be useful to address this question:

Lemma 4.1 Let (F1, F2), (G1, G2) be two pairs of sets such that F1 ⊂ F2,
G1 ⊂ G2, G1 * F2 and G1 ∩ F1 6= ∅. Let also πF , πG be two possibility distri-
butions s.t. the corresponding belief functions are defined by mass assignments
mF (F1) = mG(G2) = λ, mF (F2) = mG(G1) = 1 − λ. Then, the lower proba-
bility of the non-empty credal set P = PπF ∩ PπG is not 2−monotone.

Note that in the above lemma, [1−πG, πF ] is a not a cloud, since the inequality
πG + πF ≥ 1 does not hold, even if by construction, P = PπF ∩ PπG is not
empty. Non-emptiness of PπF ∩ PπG comes from πF (x) = πG(x) = 1 for an
element x ∈ G1 ∩ F1. Although [1− πG, πF ] does not satisfy the definition of
a cloud, Example 4.2 shows that the situation described in Lemma 4.1 also
occurs in non-comonotonic clouds.

Example 4.2 Consider a space X of five elements {v, w, x, y, z} and the fol-
lowing non-comonotonic cloud [δ, π] pictured on Figure 4:

v w x y z

π 1 1 0.5 0.5 0.25

δ 0 0.5 0.25 0 0

This cloud is non-comonotonic, since π(v) > π(x) and δ(v) < δ(x). The credal
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Figure 4. Cloud [δ, π] of Example 4.2

set P[δ,π] can also be defined by the following constraints:

P (Cγ2 = {w}) ≤ 1− 0.5 ≤ P (Bγ2
= {v, w})

P (Cγ1 = {w, x}) ≤ 1− 0.25 ≤ P (Bγ1
= {v, w, x, y})

with γ2 = 0.5 and γ1 = 0.25. Now, consider the events Bγ2
, Cc

γ1
, Bγ2

∩ Cc
γ1
,

Bγ2
∪ Cc

γ1
. We can check that

P (Bγ2
) = 0.5 P (Cc

γ1
) = 0.25

P (Bγ2
∩ Cc

γ1
= {v}) = 0 P (Bγ2

∪ Cc
γ1

= {v, w, y, z}) = 0.5

since at most a 0.5 probability mass can be assigned to x. Then the inequality
P (Bγ2

∩ Cc
γ1

) + P (Bγ2
∪ Cc

γ1
) < P (Bγ2

) + P (Cc
γ1

) holds, which shows that the
lower probability induced by the cloud is not 2-monotone.

This example is sufficient to show that at least some non-comonotonic clouds
induce lower probability measures that are not 2-monotone. It suggests that
such non-comonotonic clouds are likely to be less tractable and thus of a
limited practical interest. The following proposition gives a general character-
ization of such non-comonotonic clouds:

Proposition 4.3 Let [δ, π] be a non-comonotonic cloud and assume there is a
pair of events Bγi , Cγj in the cloud s.t. Bγi ∩Cγj 6∈ {Bγi , Cγj , ∅} (i.e. Bγi , Cγj
are just overlapping) . Then, the lower probability measure of the credal set
Pδ,π is not 2−monotone.

The proof of Proposition 4.3 can be found in the appendix. It comes down
to showing that for any non-comonotonic cloud with a pair Bγi , Cγj of events
such that Bγi ∩Cγj 6= {Bγi , Cγj , ∅}, the situation exhibited in Lemma 4.1 and
the above example always occurs, namely the existence of two subsets F and G
(respectively of the form Bγi and C

c
γj
) for which 2-monotonicity fails. Propo-

sition 4.3 also shows that non-comonotonic clouds satisfying this proposition
cannot be viewed as random sets. Note that, although comonotonic clouds
and clouds described by Proposition 4.3 cover a large number of possible dis-
crete clouds, there remains a "small" subfamily of non- comonotonic clouds
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not covered by Proposition 4.3. The following subsectionsheds some light on
them.

4.2 Disjoint-nested finite clouds

Non-monotonic clouds violating conditions of Lemma 3.6 correspond to the
case where, for any pair of events {Bγi , Cγj} i, j = 1, . . . , n, we have Bγi ∩
Cγj ∈ {Bγi , Cγj , ∅}, with at least one pair Bγi , Cγj of non-empty sets such that
Bγi ∩ Cγj = ∅. In other words, ∀i, j, Bγi and Cγj are either nested or disjoint.
They can be called nested-disjoint clouds and they are fully described by the
existence of three indices j > k ≥ l s.t.

the sets {Bγi , i < j} ∪ {Cγi , i ≤ k} form a nested sequence (16)
Cγi ∩Bγj = ∅ ∀i k ≥ i ≥ l (17)
Cγi = ∅ ∀i > k and Cγi 6= ∅ ∀i ≤ k (18)
Bγi ∩ Cγf = Bγi or Cγf i > k, f < l. (19)

and these four statements induce the fact that (Cγl ∪ Bγj) ⊂ Bγj−1
, since we

know thatBγj ⊂ Bγj−1
,Cγl∩Bγj = ∅ (Statement (17)) and Cγl ∩Bγj−1

∈ {Cγl , Bγj−1
}

(Statement (16)). Given these facts, Cγl ∩ Bγj−1
= Cγl , otherwise we end up

with a contradiction. The structure of this particular case is summarized by
Figure 5 (where only the most important sets are represented).

We have strong reasons to think that these particular clouds, although not
generalized p-boxes, can still be represented by random sets. A first reason is
that we can associate to the sets Bγ1

, . . . , Bγj a possibility distribution (i.e.
they are nested and are associated to lower probability bounds), while the sets
{Bγi , i < j} ∪ {Cγi , i ≤ k} form a nested sequence and can thus be associated
to a generalized p-box. The nested-disjoint clouds could then be seen as a
convex mixture of two random sets, thus giving again a random set. Secondly,
this conjecture is reinforced by the following simple example: Let us consider
a cloud whose cuts are such that Bγ2

, Bγ1
, Cγ2 with Bγ2

⊂ Bγ1
, Cγ2 ⊂ Bγ1

and
Cγ1 ∩ Bγ2

= ∅, together with the two weights γ2 > γ1. This cloud is nested-
disjoint, and the belief function such that m(Bγ2

) = 1− γ2, m(Bγ1
) = γ2 − γ1

and m(Cc
γ1

) = γ1 clearly models the same credal set as this cloud (since the
presence of Cγ1 only induces a bound over its upper probability).

Finally, it should be noted that, in the case of continuous clouds, this subclass
doesn’t exist, since when distribution δ is such that supx∈X δ(x) > 0 and δ, π
are not comonotonic, we can always exhibit two cuts that are overlapping.
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Bγ0

Figure 5. Structure of a nested-disjoint cloud

4.3 Outer approximation of a non-monotonic cloud

Since non-comonotonic clouds satisfying property 4.3 are likely to be hard to
handle in practice, we provide, in this section and the next one, some practical
means to compute guaranteed outer and inner approximations of the exact
probability bounds induced by a non-comonotonic cloud. To this aim, we rely
on previous results.

Given a cloud [δ, π], we have proven that P[δ,π] = Pπ ∩ P1−δ, where π and
1 − δ are possibility distributions. As a consequence, the upper and lower
probabilities of P[δ,π] on any event can be bounded from above (resp. from
below), using the possibility measures and the necessity measures induced by
π and π = 1−δ. The following bounds, originally considered by Neumaier [15],
provide, for all event A of X, an outer approximation of the range of P (A):

max(Nπ(A), N1−δ(A)) ≤ P (A) ≤ P (A) ≤ P (A) ≤ min(Ππ(A),Π1−δ(A)),
(20)

where P (A), P (A) are the lower and upper probabilities induced by P[δ,π].
Remember that probability bounds generated by possibility distributions alone
are of the form [0, β] or [α, 1]. Using a cloud and applying Equation (20)
lead to tighter bounds of the form [α, β] ⊆ [0, 1], and thus to more precise
information, while remaining simple to compute. Nevertheless, these bounds
are not, in general, the infinimum and the supremum of P (A) over P[δ,π]. To
see this, consider the following example:

Example 4.4 Let [δ, π] be a cloud defined on a space X, such that distribu-
tions δ and π takes up to four different values on elements x of X (including
0 and 1). These values are such that 0 = γ0 < γ1 < γ2 < γ3 = 1, and the
distributions δ, π are such that

π(x) = 1 if x ∈ Bγ2
;

= γ2 if x ∈ Bγ1
\Bγ2 ;

= γ1 if x 6∈ Bγ1 .

δ(x) = γ2 if x ∈ Cγ2 ;
= γ1 if x ∈ Cγ1 \ Cγ2 ;
= 0 if x 6∈ Cγ1 .
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Since P (Bγ1
) ≥ 1 − γ1 and P (Cγ2) ≤ 1 − γ2, from Equations (11), we

can check that P (Bγ1
\ Cγ2) = P (Bγ1

∩ Cc
γ2

) = γ2 − γ1. Now, by definition
of a necessity measure, Nπ(Bγ1 ∩ Cc

γ2
) = min(Nπ(Bγ1

), Nπ(Cc
γ2

)) = 0 since
Ππ(Cγ2) = 1 because Cγ2 ⊆ Bγ1

and Ππ(Bγ1
) = 1. Considering distribu-

tion δ, we can have N1−δ(Bγ1
∩ Cc

γ2
) = min(N1−δ(Bγ1

), N1−δ(C
c
γ2

)) = 0 since
N1−δ(Bγ1

) = ∆δ(B
c
γ1

) = 0 and Cγ1 ⊆ Bγ1
(which means that the elements x

of X that are in Bc
γ1

are such that δ(x) = 0). Equation (20) can thus result in
a trivial lower bound (i.e. equal to 0), different from P (Bγ1

∩ Cc
γ2

).

Bounds given by Equation (20), are the main motivation for clouds, after Neu-
maier [15]. Since these bounds are, in general, not the infinimum and supre-
mum of P (A) on P[δ,π], Neumaier’s claim that they’re only vaguely related to
Walley’s previsions or to random sets is not surprising. If a cloud is comono-
tonic, Equation (20) becomes less useful. Indeed, since comonotonic clouds are
equivalent to generalized p-boxes, we can easily compute exact values of lower
and upper probabilities of P[δ,π], eg. via the random set representation.

4.4 Inner approximation of a non-comonotonic cloud

The previous outer approximation is easy to compute and allows to make
some of Neumaier’s claims more clear. Nevertheless, it is still unclear how to
practically use these outer bounds in subsequent treatments (e.g., propagation,
fusion). The inner approximation of a cloud [δ, π] proposed now is a random
set, which is easy to exploit in practice. This inner approximation is given by
the following proposition:

Proposition 4.5 Let [δ, π] be a non-comonotonic cloud defined on a space X.
Let us then define, for j = 1, . . . ,M , the following random set:Ej = {x ∈ X|(π(x) ≥ γj) ∧ (δ(x) < γj)}

m(Ej) = γj − γj−1

where 0 = γ0 < . . . γj < . . . < γM = 1 are the distinct values taken by δ, π on
elements of X, Ej are the focal elements with masses m(Ej) of the random
set. This random set is an inner approximation of [δ, π], in the sense that the
credal set PBel induced by this random set is such that PBel ⊆ P[δ,π].

In the case of non-comonotonic clouds satisfying Proposition 4.3, the inclusion
is strict. This inner approximation appears to be a natural candidate, since
on events of the type {Bγi , Cγi , Bγi \ Cγj , i = 0, . . . ,M ; j = 0, . . . ,M ; i ≤ j} it
gives exact bounds, and is exact when the cloud [δ, π] is comonotonic.
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5 Clouds and probability intervals

Since in many cases a cloud is either equivalent to a random set or does not
lead to 2-monotone capacites, there is no direct relationship between clouds
and probability intervals. Nevertheless, we can study how to transform a set
of probability intervals into a cloud. Such a transformation can be useful when
one wishes to work with clouds but information is obtained in terms of sets of
probability intervals.

There are mainly two paths that can be followed to do this transformation:

• the first one is to use the fact that clouds are equivalent to pairs of possibility
distributions, and to extend existing transformations that transform a set
of probability intervals into a single possibility distribution.
• The second uses the correspondence between generalized p-boxes and comono-

tonic clouds, and simply apply the results obtained for generalized p-boxes.

Section 5.1 proposes a transformation following the first path, while Section 5.2
explores the second one. Some elements of comparison between the two meth-
ods are then given in Section ??.

5.1 Exploiting probability-possibility transformations

The problem of transforming a probability distribution into a quantitative
possibility distribution has been addressed by many authors (see [9] for an
extended discussion). A consistency principle between (precise) probabilities
and possibility distributions was first informally stated by Zadeh [20]: what is
probable should be possible. It was later translated by Dubois and Prade [6,11]
as a mathematical constraint. Given a possibility distribution π obtained by
the transformation of a probability measure P , one should have, for all events
A of X:

P (A) ≤ Π(A)

In this case, the possibility measure Π is said to dominate P , and the transfor-
mation from probability to possibility then consists of choosing a possibility
distribution amongst the ones inducing a possibility measure dominating P .
Dubois and Prade [5, 11] proposed to add the following ordinal equivalence
constraint, such that for two elements x, y in X

p(x) ≤ p(y) ⇐⇒ π(x) ≤ π(y)

and to choose the least specific possibility distribution (π′ is more specific than
π if π′ ≤ π) respecting these two constraints.
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Dubois and Prade [6] showed that the solution exists and is unique. Let us
consider probability masses such that the order on probability masses is such
that p1 ≤ . . . ≤ pn with pj = p(xj). When all probability masses are different,
Dubois and Prade probability-possibility transformation can be formulated as

πi =
i∑

j=1

pj

with πi = π(xi). When some elements have equal probability, the above equa-
tion must be used on the ordered partition induced by the probability weights,
using uniform probabilities inside each element of the partition.

Reversing the ordering of the pi’s in the above formula yields another possibil-
ity distribution πi =

∑n
j=i pj, with πi = π(xi). Letting δ = 1− π, distribution

δ is of the form δπ introduced in section 3.2, that is, [δ, π] is a cloud such
that δi = πi−1 for all i > 1, with δ1 = 0 and δi = δ(xi). It is the tightest
cloud containing P , in the sense that P(π) ∩ P(π) = {P}. This shows that,
at least when probability masses are precise, transformation into possibility
distributions can be extended to get a second possibility distribution such
that this pair of distributions is equivalent to a cloud. Moreover, the fact that
P(π)∩P(π) = {P} shows that the cloud models exactly the same information
as the (precise) probability distribution.

When working with imprecise probability assignments, i.e. with a set L of
probability intervals, the order induced by probability weights onX is a partial
order ≤L (actually, an interval order) defined by:

x ≤L y ⇐⇒ u(x) ≤ l(y)

and two elements x, y are incomparable if intervals [l(x), u(x)], [l(y), u(y)] in-
tersect. The problem of transforming a set L of probability intervals into a
covering possibility distribution by extending Dubois and Prade information
is studied in detail by Masson and Denoeux [14]. We first recall their method,
before proposing its extension to clouds.

Let CL be set of linear extensions of the partial order ≤L: a linear extension
<l∈ CL is a ranking of X compatible with the partial order ≤L. Let σl be the
permutation such that σl(x) is the rank of element x in the linear extension
<l. Given this partial order, Masson and Denoeux [14] propose the follow-
ing procedure transforming the set of probability intervals into a possibility
distribution:

(1) For each linear order <l∈ CL and each element x, solve

πl(x) = max
{p(y)|y∈X}

∑
σl(y)≤σl(x)

p(y) (21)
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under the constraints

∑
x∈X

p(x) = 1

∀x ∈ X, l(x) ≤ p(x) ≤ u(x)

p(σ−1
l (1)) ≤ p(σ−1

l (2)) ≤ . . . ≤ p(σ−1
l (n))

(2) The most informative distribution π dominating all distributions πl is:

π(x) = max
<l∈C

πl(x). (22)

This procedure ensures that the resulting possibility distribution π dominates
every probability distribution contained in PL. In other words, the convex set
Pπ is such that PL ⊆ Pπ.

To extend this transformation to a pair of possibility distributions equivalent
to a cloud, we consider that the possibility distribution π given by Equation
(22) is the upper distribution of a cloud [δ, π]. To build the lower distribution
δ of a cloud containing PL, we need to build a second possibility distribution
πδ such that PL ⊆ Pπδ and such that the pair [1− πδ, π] defines a cloud (with
1 − πδ = δ). To achieve this, we propose to use the same method as Masson
and Denoeux [14], simply reversing the inequality under the summation sign
in Equation (21). The procedure to build πδ then becomes

(1) For each order <l∈ CL and each element x, solve

πlδ(x) = max
{p(y)|y∈X}

∑
σl(x)≤σl(y)

p(y) (23)

= 1− min
{p(y)|y∈X}

∑
σl(y)<σl(x)

p(y) = 1− δl(x) (24)

with the same constraints as in the first transformation.
(2) The most informative distribution dominating all distributions πlδ(x) is:

πδ(x) = 1− δ(x) = max
<l∈C

πlδ(x) (25)

Example 5.1 illustrates this procedure.

Example 5.1 Let us take the same four probability intervals as in the exam-
ple given by Masson and Denoeux [14], on the space X = {w, x, y, z}, and
summarized in the following table
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w x y z

l 0.10 0.34 0.25 0

u 0.28 0.56 0.46 0.08

The partial order is given by Ly < Lx;Lz < {Lx, Lw, Ly}. There are three
possible linear extensions <l∈ CL

<1
l = (Lz, Lw, Ly, Lx)

<2
l = (Lz, Lw, Lx, Ly)

<3
l = (Lz, Ly, Lw, Lx)

corresponding to the following πδ’s:

<i
l πδ(w) πδ(x) πδ(y) πδ(z)

1 1 0.16 0.63 1

2 1 0.9 0.46 1

3 0.75 0.5 1 1

max 1 0.9 1 1

and, finally, the obtained cloud is:

w x y z

π 0.64 1 1 0.08

δ 0 0.1 0 0

where π is the possibility distribution obtained by Masson and Denoeux [14] for
the same example by applying the first transformation. Note that the cloud is
only a little more informative than the upper distribution taken alone (indeed,
the only added constraint is that p(x) ≤ 0.9).

We can verify the following property:

Proposition 5.2 Given a set L of probability intervals, the cloud [1 − πδ, π]
built from the two possibility distributions πδ, π obtained via the above proce-
dures is such that the induced credal set P[1−πδ,π] contains PL. In the degenerate
case of a precise probability distribution, this cloud contains this distribution
only.

The proof can be found in the appendix. So, this method allows to get a cloud
encompassing the information contained in any set of probability intervals. It
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directly extends known methods used in possibility theory.

5.2 Using generalized p-boxes

We have previously shown that generalized p-boxes and comonotonic clouds
were equivalent representations. Thus, we can directly use transformations
from probability intervals to generalized p-boxes and get an approximation as
a comonotonic cloud .

Consider the following example:

Example 5.3 Let us consider the same probability intervals as in example 5.1
and the following order relationship R on the elements: z <R w <R y <R x. We
can then build the generalized p-box associated to this order (using Equations
(7)), and then take the comonotonic cloud associated to this p-box (by using
transformations in Proposition 2.5)

w x y z

F = π 0.36 1 0.66 0.08

F 0.1 1 0.44 0

δ 0 0.44 0.1 0

And, by Proposition 3.8 and related results in the companion paper, we know
that the credal set P[δ,π] induced by this cloud is such that PL ⊆ P[δ,π] and that
we can recover the information modeled by a set L of probability intervals by
means of at least |X|/2 clouds built by this method.

Both methods transform a set L of probability intervals into a cloud [δ, π] such
that PL ⊂ P[δ,π], thus guaranteeing that no extra information is added in the
transformation.

In general, since finite clouds can model precise probability distributions with-
out any loss of information, the cloud resulting from any transformation of a
discrete probability distribution should contain this probability distribution
only. Both methods proposed here satisfy these requirements in the finite
case.

However, if we compare the clouds resulting from Examples 5.1 and 5.3, it is
clear that the cloud resulting from the second method (Example 5.3) is more
precise than the one resulting from the first one (Example 5.1). Moreover,
using the first method, it is in general impossible to recover the information
provided by the original set L of probability intervals. This shows that the first
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method can be very conservative. This is mainly due to the fact that even if
it considers every possible ranking of elements, it is only based on the partial
order induced by probability intervals.

If a ranking of elements is naturally present in a considered problem, then
the first method seems to be the best solution. If no natural order is present,
it is hard to justify the fact of considering one particular order rather than
another one, and the first method should be applied. In this case, one has to
be aware that a lot of information can be lost in the process. One may also
use the ranking inducing one of the most precise comonotonic clouds, but this
question remains open.

6 Continuous clouds on the real line

In many applications, the available information concerning some parameters
is defined on the (continuous) real line. It is thus important to know if results
obtained so far can be extended to this particular setting. We consider clouds
defined on a bounded interval [r, r].

First, let us recall that, as in the discrete case, a cloud [δ, π] defined on the
real line is a pair of distributions such that, for any element r ∈ R, [δ(r), π(r)]
is an interval and there is an element r for which δ(r) = 0, and another r′
for which π(r′) = 1. Thin clouds (π = δ) and Fuzzy clouds (δ = 0) have the
same definition as in the case of finite space. The credal set P[δ,π] induced by
a cloud on the real line is such that:

P[δ,π] = {P |P ({r ∈ R, δ(r) ≥ α}) ≤ 1− α ≤ P ({r ∈ R, π(r) > α})} (26)

where P is a σ-measurable probability distribution 1

As Proposition 2.3 has been originally proven for the case of continuous possi-
bility distributions π, results whose proof is based on this proposition directly
extend to continuous models on the real line. In particular, the following state-
ments still hold:

• if [δ, π] is a cloud, 1− δ, π are possibility distributions, and P[δ,π] = Pδ ∩Pπ,
• if [F , F ] is a generalized p-box defined on the reals, then P[F ,F ] = PπF ∩PπF

with, for all r ∈ R:
πF (r) = F (r)

1 To avoid mathematical subtleties that would require a study of their own, we
restrict ourselves to σ-measurable probability distributions rather than considering
finitely additive probabilities
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Fig. 6.B: Non-comonotonic cloud

Figure 6. Illustration of comonotonic and non-comonotonic clouds on the real line.

and
πF (r) = 1− sup{F (r′)|r′ ∈ R;F (r′) < F (r)}

with πF (r) = 0.
• a generalized p-box [F , F ] represents the same information as the comono-

tonic cloud [1 − πF , πF ] (and, similarly, any comonotonic cloud can be
mapped into a generalized p-box).

Note that π = πF and δ = 1 − πF satisfy the nestedness property of {r ∈
R, δ(r) ≥ α} and {r ∈ R, π(r) > α},∀α ∈ (0, 1). To preserve it, we need more
than comonotonicity here. One way of preserving this property is to require
that π and δ be strongly comonotonic. Namely for any two numbers r, r′,
π(r) = π(r′) if and only if δ(r) = δ(r′). In other words, there exists a mapping
f from [0, 1) to [0, 1] that is non-decreasing and for which {f(r) ≤ r|r ∈ [0, 1]}
and such that for any r ∈ R, δ(r) = f(π(r)). The non-decreasingness condition
ensures the strong comonotonicity of δ, π, while the condition {f(r) ≤ r|r ∈
[0, 1]} ensures that δ ≤ π. On the values r for which π(r) = 1, δ can take
any value in [f(1), 1]. Figures 6.A and 6.B respectively illustrate the notion
of strongly comonotonic and non-comonotonic clouds on the reals. Figure 6.A
illustrates a comonotonic cloud (and, consequently, a generalized p-box) for
which elements are ordered according to their distance to the mode m (i.e., for
this particular cloud, two values x, y in R are such that x <[δ,π] y if and only
if |m− x| > |m− y|). MONTRER UN COMON CLOUD NON STRONGLY
COMON.

We can now extend the propositions linking clouds and generalized p-boxes
with random sets. In particular, the following result extends Proposition 4.3
to the continuous case:

Proposition 6.1 Let the distributions [δ, π] describe a continuous cloud on
the reals and P[δ,π] be the induced credal set. Then, the random set defined
by the Lebesgue measure on the unit interval α ∈ [0, 1] and the multimapping
α −→ Eα such that

Eα = {x ∈ X|(π(x) ≥ α) ∧ (δ(x) < α)}
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describe a credal set PBel which is an inner approximation of Pπ,δ (PBel ⊂
Pπ,δ).

The proof can be found in the appendix. This proposition has two corollaries:

Corollary 6.2 Let [δ, π] be a strongly comonotonic cloud with continuous dis-
tributions on the real line. Then the credal set is P[δ,π] also the credal set of a
continuous random set with uniform mass density, whose focal sets are of the
form, for α ∈ [0, 1]:

Eα = {x ∈ X|(π(x) ≥ α) ∧ (δ(x) < α)}

Another interesting particular case is the one of uniformly continuous p-boxes.

Corollary 6.3 The credal set P[F ,F ] described by two continuous cumulative
distributions F , F on the reals is equivalent to the credal set described by the
continuous random set with uniform mass density, whose focal sets are sets of
the form [x(α), y(α)] where x(α) = F

−1
(α) and y(α) = F−1(α).

This is because strictly increasing continuous p-boxes are special cases of
strongly comonotonic clouds (or, equivalently, of generalized p-boxes). The
strict increasingness property can be relaxed to intervals where the cumula-
tive functions are constant (the cloud will not be strongly monotonic, but the
nestedness property of all cuts is then preserved).

From a practical and computational perspective, these results are appealing.
For example, they can facilitate the computation of lower and upper expec-
tations over continuous generalized p-boxes. Another interesting point is that
all the framework developed by Smets [18] concerning belief functions on reals
can be applied to comonotonic clouds (generalized p-boxes). Let us also note
that the results given in this section extend and give alternative proofs to
some results given by Alvarez [1] concerning continuous p-boxes.

6.1 Thin continuous clouds

Thin clouds are defined by Neumaier [15] as clouds [δ, π] for which π = δ.
Hence, constraints defining the credal set, given by Equation (11), reduce to
P (π(x) ≥ α) = P (π(x) > α) = 1 − α for all α ∈ (0, 1). On a finite space X,
these constraints are generally conflicting as shown earlier, because for some
α, P ({x ∈ X|π(x) ≥ α}) > P ({x ∈ X|π(x) > α}) will hold.

When the thin cloud is a uniformly continuous distribution defined on the real
line, this is no longer a difficulty, and the following proposition holds:
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Proposition 6.4 If π is a continuous possibility distribution, then its credal
set Pπ ∩ P1−π is not empty.

Proof of Proposition 6.4 Let F (x) = Π((−∞, x]), with x ∈ R. F is the dis-
tribution function of a probability measure Pπ such that ∀α ∈ [0, 1], Pπ(π(x) >
α) = 1 − α, where the sets {x ∈ R|π(x) > α} form a continuous nested se-
quence (see [5] p. 285). Such a probability lies in Pπ. Moreover,

Pπ({x ∈ R, π(x) > α}) = Pπ({x ∈ R|π(x) > α})

due to uniform continuity of π. We also have
Pπ({x ∈ R|π(x) > α}) = 1− Π({x ∈ R|π(x) ≥ α}c) = 1−∆({x ∈ R|π(x) ≥ α})
again due to uniform continuity. Since
1−∆({x ∈ R|π(x) ≥ α}) = supx|π(x)≥α 1− π(x), this means Pπ ∈ P(1−π). 2

A continuous thin cloud is obviously a particular case of strongly comonotonic
cloud. It induces a complete pre-ordering on the reals. If there are no ties,
meaning that this pre-order is linear, it means that for any α ∈ [0, 1], there
is only one value r ∈ R for which π(r) = α, and that Pπ ∩ P1−π contains
only one probability measure. In particular, if the order is the natural order
of real numbers, this thin cloud reduces to a usual continuous cumulative
distribution.

When the pre-order has ties, it means that for some α ∈ [0, 1], there are several
values in x ∈ R such that π(x) = α. Using Corollary 6.2, we can model the
credal set Pπ ∈ P(1−π) by the random set with uniform mass density, whose
focal sets are of the form

Eα = {r ∈ R|π(r) = α}

In this case, we can check that Bel({r ∈ R|π(r) ≥ α}) = 1−α, in accordance
with Equation (11).

Finally, consider the specific case of a continuous thin cloud modeled by an
unimodal distribution π (formally, a fuzzy interval). In this case, each focal
set associated to a value α is a doubleton {x(α), y(α)} where {x|π(x) ≥ α} =
[x(α), y(α)]. Noticeable probability distributions that are inside the credal set
modeled by such a thin cloud are the cumulative distributions F+ and F−
such that for all α in [0, 1] F−1

+ (α) = x(α) and 1 − F−1
− (α) = y(α) (they

respectively correspond to the case where the mass density of the random
set is concentrated on values x(α) and y(α)). All probability measures with
cumulative finctions of the form λ ·F+ + (1− λ) ·F− also belong to the credal
set (for λ = 1

2
, this distribution correspond to the case where mass density is

evenly divided between elements x(α) and y(α)). Other distributions inside
this set are considered by Dubois et al. [5].
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Lower/upper prev.

Lower/upper prob.

2-monotone capacities

Random sets (∞-monot)

Comonotonic clouds

Generalized p-boxes

P-boxes

Probabilities

Probability Intervals

General clouds

Possibilities

Figure 7. Representation relationships: completed summary with clouds. A −→ B:
B is a special case of A

Representation Capacity Fully determined

of order by .. values

Random set ∞ 2|X| − 2

Possibility ∞ |X| − 1

Probability Interval 2 2 · |X|

Generalized p-box ∞ 2 · (|X| − 1)

Comonotonic cloud ∞ 2 · (|X| − 1)

Non-comonotonic cloud 1 2 · (|X| − 1)

Table 1
Characteristics of representations

7 Conclusion

In this paper clouds are compared to other practical representations of un-
certainty, including generalized p-boxes introduced in the companion paper.
Properties of the cloud formalism are explained in the light of other represen-
tations. The fact that lower probabilities induced by non-comonotonic clouds
are not 2-monotone capacities tends to indicate that, from a computational
standpoint, they look less attractive than the other formalisms. Nevertheless,
as far as we know, clouds are the only simple numerical model generating
capacities that are not 2-monotone.
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We are now ready to complete Figure 1 with clouds. This completed picture is
given by Figure 7. New relationships and representations coming from this pa-
per and its companion are in bold lines. Table 1 recalls the complexity of each
representation. Such practical representations are easier to handle than more
general models: they often require less evaluations to be fully specified and
they allow many mathematical simplifications, which increase computational
efficiency (except, perhaps, for non-comonotonic clouds).

The next step is to explore computational aspects of each formalism as done by
De Campos et al. [2] for probability intervals. In particular, we need to answer
the following questions: how do we define operations of fusion, marginalization,
conditioning or propagation for each of these models? Are the representations
preserved after such operations, and under which assumptions? What is the
computational complexity of these operations? Can the models presented here
be easily elicited or integrated? If many results already exist for random sets,
possibility distributions and probability intervals, few have been derived for
generalized p-boxes or clouds, due to their novelty. Note that all the results
presented in this paper and its companion can be helpful to perform such a
study. In particular, we have shown that generalized p-boxes and comonotonic
clouds are equivalent formalisms that can be represented by random sets. It
implies that sampling methods and interval analysis can be easily applied to
them, just like for p-boxes and possibility distributions, without fear of a loss
of information.

Nevertheless it is not clear that random set calculation methods would pre-
serve the simplified representations described here. So their merits are at the
elicitation level and also to provide simple accounts of results in the forms
of credal sets, so as to explain them to a user. In connection with the latter
issue, it would be useful to evaluate the cognitive relevance of these repre-
sentations, particularly from a psychological standpoint (even if some results
already exist [?, 13] for possibility distributions, for instance).

Another issue is to extend presented results to more general spaces, to general
lower/upper previsions or to cases not considered here (e.g. continuous clouds
with some discontinuities), possibly by using existing results [4, 18].
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Appendix

Proof of Lemma 4.1 To prove Lemma 4.1, we first recall a useful result by
Chateauneuf [3] concerning the intersection of credal sets induced by random
sets. This result is then applied to the possibility distributions defined in
Lemma 4.1 to prove that the associated lower probability is not 2-monotone.
The main idea is to exhibit two events such that 2-monotonicity is not satisfied
for them. Consider the setM of matrices M of the form

G1 G2

F1 m11 m12

F2 m21 m22

where

m11 +m12 = m22 +m12 = λ

m21 +m22 = m21 +m11 = 1− λ∑
mij = 1

Each such matrix is a normalized (i.e. such thatm(∅) = 0) joint mass distribu-
tion for the random sets induced from possibility distributions πF , πG, viewed
as marginal belief functions. Following Chateauneuf [3], the lower probability
P induced by the credal set P = PπF ∩ PπG has, for any event E ⊆ X, value

P (E) = min
M∈M

∑
(Fi∩Gj)⊂E

mij (27)

Now consider the four events F1, G1, F1 ∩G1, F1 ∪G1. Studying the relations

33



between sets and the constraints on the values mij, we can see that

P (F1) = λ

P (G1) = 1− λ
P (F1 ∩G1) = 0.

For F1 ∩ G1, just consider the matrix m12 = λ,m21 = 1 − λ. To show that
the lower probability is not even 2−monotone, it is enough to show that
P (F1 ∪G1) < 1. To achieve this, consider the following mass distribution

m11 = min(λ, 1− λ)

m12 = λ−m11

m21 = 1− λ−m11

m22 = min(λ, 1− λ)

it can be checked that the matrix corresponding to this distribution is in the
setM, and yields

P (F1 ∪G1) = m12 +m11 +m21

= m11 + λ−m11 + 1− λ−m11

= 1−m11 = 1−min(λ, 1− λ)

= max(1− λ, λ) < 1

since (F2∩G2) * (F1∪G1) (due to the fact that G1 * F2). Then the inequality

P (F1 ∪G1) + P (F1 ∩G1) < P (F1) + P (G1)

holds, which ends the proof. 2

Proof of Proposition 4.3 To prove Proposition 4.3, we again use the result
by Chateauneuf [3] as in the proof of Lemma 4.1, and given . These results
are clearly applicable to clouds, since possibility distributions are equivalent to
nested random sets. Consider a finite cloud described by the general Equation
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(11) and the following matrix Q of weights qij

Cc
γ1
· · · Cc

γj
· Cc

γi+1
· · · Cc

γm

Bγ0
q11 . . . q1j · q1(i+1) . . . q1m

...
... . . . ...

...

Bγj−1
qj1 . . . qjj · qj(i+1) . . . qjm

...
...

...
...

... . . . ...

Bγi q(i+1)1 . . . q(i+1)j · q(i+1)(i+1) . . . q(i+1)m

...
...

...
...

... . . . ...

Bγm−1
qm1 . . . qmj · qm(i+1) . . . qmm)

Respectively call Bel1 and Bel2 the belief functions equivalent to the possi-
bility distributions respectively generated by the collections of sets
{Bγi |i = 0, . . . ,m− 1} and {Cc

γi
|i = 1, . . . ,m}. From Equation (4),m1(Bγi) =

γi+1 − γi for i = 0, . . . ,m − 1, and m2(Cc
γj

) = γj − γj−1 for j = 1, . . . ,m. As
in the proof of Lemma 4.1, we consider every possible joint random set such
that m(∅) = 0 built from the two marginal belief functions Bel1, Bel2.

Following Chateauneuf, let Q be the set of matrices Q s.t.

qi· =
m∑
j=1

qij = γi − γi−1

q·j =
m∑
i=1

qij = γj − γj−1

If i, j s.t. Bγi ∩ C
c
γj

= ∅ then qij = 0

and the lower probability of the credal set P[δ,π] on event E is such that

P (E) = min
Q∈Q

∑
(Bγi∩C

c
γj

)⊂E
qij. (28)

Now, by hypothesis, there are at least two overlapping sets Bγi , Cγj i > j
that are not included in each other (i.e. Bγi ∩ Cγj 6∈ {Bγi , Cγj , ∅}). Let us
consider the four events Bγi , C

c
γj
, Bγi ∩ C

c
γj
, Bγi ∪ C

c
γj
. Considering Equation

(28), the matrix Q and the relations between sets, inclusions Bγm ⊂ . . . ⊂ Bγ0
,
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Cc
γ0
⊂ . . . ⊂ Cc

γm and, for i = 0, . . . ,m, Cγi ⊂ Bγi imply:

P (Bγi) = 1− γi
P (Cc

γj
) = γj

P (Bγi ∩ C
c
γj

) = 0

for the last result, just consider the mass distribution qkk = γk−1 − γk for
k = 1, . . . ,m.

Next, consider event Bγi ∪ C
c
γj

(which is different from X by hypothesis).
Suppose all masses are such that qkk = γk−1−γk, except for masses (in boldface
in the matrix) qjj, q(i+1)(i+1). Then, Cc

γj
⊂ Cc

γi+1
, Bγi ⊂ Bγj−1

, Cc
γj

* Bγj−1
by

definition of a cloud and Bγi∩C
c
γj
6= ∅ by hypothesis. Finally, using Lemma 4.1,

consider the mass distribution

q(i+1)j = min(γi+1 − γi, γj − γj−1)

q(i+1)(i+1) = γi+1 − γi − q(i+1)j

qjj = γj − γj−1 − q(i+1)j

qj(i+1) = min(γi+1 − γi, γj − γj−1.)

It always gives a matrix in the set Q. By considering every subset of Bγi∪C
c
γj
,

we thus get the following inequality

P (Bγi ∪ C
c
γj

) ≤ γj−1 + 1− γi+1 + max(γi+1 − γi, γj − γj−1).

And, similarly to what was found in Lemma 4.1, we get

P (Bγi ∪ C
c
γj

) + P (Bγi ∩ C
c
γj

) < P (Bγi) + P (Cc
γj

),

which shows that the lower probability is not 2−monotone. 2

Proof of Proposition 4.5 First, we know that the random set given in
Proposition 4.5 is equivalent toEj = Bγj−1

\ Cγj = Bγj \ Cγj
m(Ej) = γj − γj−1

Now, if we consider the matrix given in the proof of Proposition 4.3, this
random set comes down, for i = 1, . . . ,M to assign masses qii = γi − γi−1.
Since this is a legal assignment, we are sure that for all events E ⊆ X, the
belief function of this random set is such that Bel(E) ≥ P (E), where P is the
lower probability induced by the cloud. The proof of Proposition 4.3 shows
that this inclusion is strict for clouds satisfying the latter proposition (since
the lower probability induced by such clouds is not 2-monotone). 2
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Proof of Proposition 5.2 The two possibility distributions π, πδ are such
that PL ⊂ Pπ and PL ⊂ Pπδ by construction, so PL ⊂ (Pπ ∩ Pπδ). The final
result is thus more precise than a single possibility distribution dominating
PL. When L reduces to a precise masses {p}, the transformations give the
following possibility distributions (elements of X are ordered in accordance
with the order of probability masses):

π(xi) =
∑
j≤i

pj

and
πδ(xi) =

∑
j≥i

pj = 1−
∑
j<i

pj = 1− δ(xi) = 1− π(xi−1).

Hence, the only probability distribution in the cloud [δ, π] is given by pi =
π(xi)− π(xi−1). 2

Proof of Proposition 6.1 We build outer and inner approximations of the
continuous random set that converge to the belief measure of the continuous
random set, while the corresponding clouds of which they are inner approxi-
mations themselves converge to the uniformly continuous cloud.

First, consider a finite collection of equidistant levels αi s.t. 0 = α0 < α1 < . . . < αn = 1
(αi−1 − αi = 1/n∀i = 1, . . . , n). Then, consider the following discrete non-comonotonic
clouds [δn, πn], [δn, πn] that are respectively outer and inner approximations
of the cloud [δ, π]: for every value r in R, do the following transformation

π(r) = α with α ∈ [αi−1, αi] πn(r) = αi πn(r) = αi−1

δ(r) = α′ with α′ ∈ [αj−1, αj] δn(r) = αj−1 δn(r) = αj

This construction is illustrated in Figure 8 for the particular case when both
π and δ are unimodal. In this particular case, for i = 1, . . . , n

{x ∈ R|π(x) ≥ α} = [x(αi−1), y(αi−1)]α ∈ [αi−1, αi]

{x ∈ R|δ(x) > α} = [u(αi), v(αi)]α ∈ [αi−1, αi]

{x ∈ R|π(x) ≥ α} = [x(αi), y(αi)]α ∈ [αi−1, αi]

{x ∈ R|δ(x) > α} = [u(αi−1), v(αi−1)]α ∈ [αi−1, αi]

Given the above transformations, P(πn) ⊂ P(π) ⊂ P(πn), and limn→∞P(πn) =
P(π) and also limn→∞P(πn) = P(π). Similarly, P(1 − δn) ⊂ P(1 − δ) ⊂
P(1 − δn), limn→∞P(1 − δn) = P(1 − δ) and limn→∞P(1 − δn) = P(1 − δ).
Since the set of probabilities induced by the cloud [δ, π] is P(π)∩P(1− δ), it
is clear that the two credal sets P(πn)∩P(1− δn) and P(πn)∩P(1− δn), are
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Figure 8. Inner and outer approximations of a non-comonotonic clouds

respectively inner and outer approximations of P(π) ∩ P(1− δ). Moreover:

lim
n→∞

P(πn) ∩ P(1− δn) = P(π) ∩ P(1− δ)

and
lim
n→∞

P(πn) ∩ P(1− δn) = P(π) ∩ P(1− δ).

The random sets that are inner approximations (by proposition 4.5) of the
finite clouds [δn, πn] and [δn, πn] converge to the continuous random set defined
by the Lebesgue measure on the unit interval α ∈ [0, 1] and the multimapping
α −→ Eα such that

Eα = {x ∈ X|(π(x) ≥ α) ∧ (δ(x) < α)}.

In the limit, it follows that this continuous random set is an inner approxima-
tion of the continuous cloud. 2
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