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Abstract

There exist several simple representations of imprecise probability models of uncer-
tainty that are easier to handle than the general approach. Among them are random
sets, possibility distributions, probability intervals, and more recently Ferson’s p-
boxes and Neumaier’s clouds. Both for theoretical and practical considerations, it is
very useful to know whether one representation is equivalent to or can be approxi-
mated by other ones. In this paper, we define a generalized form of usual p-boxes.
These generalized p-boxes have interesting connexions with other previously known
representations. In particular, we show that they are equivalent to pairs of possibil-
ity distributions on finite or infinite sets, and that they are special kinds of random
sets. They are also the missing link between p-boxes and clouds, which are the topic
of the companion paper.

Key words: imprecise probability representations, p-boxes, possibility theory,
random sets, clouds, probability intervals

1 Introduction

Different formal frameworks have been proposed to reason under uncertainty.
The best known and oldest one is the probabilistic framework, where uncer-
tainty is modeled by classical probability distributions. Although the proba-
bilistic framework is of major importance in the treatment of uncertainty due
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to variability, many arguments converge to the fact that a single probability
distribution cannot adequately account for incomplete or imprecise informa-
tion. Alternative theories and frameworks have been proposed to this end. The
three main such frameworks, are, in decreasing order of generality, Imprecise
probability theory [35], Random disjunctive sets [8,24,32] and Possibility the-
ory [12,36].

Generally speaking, the more general a theory, the more expressive, but the
more computationally demanding. In practice, simplified representations can
greatly increase the efficiency of uncertainty handling. Among these simpler
representations are possibility distributions [36], probability intervals [2], p-
boxes [15] and, more recently, clouds [26,27|. Such representations can be
viewed as encoding special sets of probabilities, some of them special kinds
of random sets. They are potentially important when trading expressiveness
(possibly losing some information) against computational efficiency. Some-
times, the available information is simple enough to be faithfully captured by
one of these representations. Moreover, simpler representations are instrumen-
tal in elicitation tasks. They also facilitate the presentation and interpretation
of complex results.

Such a diversity of simplified representations motivates the study of their re-
spective expressive power. Finding formal links between them also facilitates
a unified handling and treatment of uncertainty, and suggest how tools used
for one theory can eventually be useful in the setting of other theories. Find-
ing such links is the purpose of the present study which, among other things,
extends some results by Baudrit and Dubois [1] concerning the relations be-
tween p-boxes and possibility measures. This paper introduces a generalized
form of p-box, that is also more general than a possibility distribution, thus
bridging the gap between them. A generalized p-box basically consists of two
comonotonic fuzzy sets, and is thus easy to represent. It is also the missing
link between p-boxes, possibility distributions, and clouds, the latter being
more general and studied in the companion paper.

The paper is divided in two main sections:

e Section 2 recalls the basic settings of imprecise probability theory, random
disjunctive sets and possibility theory, as well as some of their previously
known practical representation tools, and their already known relationships.

e Section 3 introduces generalized p-boxes. Section 3.2 bridges the gap be-
tween possibility theory and generalized p-boxes. The relationship between
random sets and generalized p-boxes is explored in Section 3.3. It is shown
that generalized p-boxes can be interpreted as a special case of random
sets. Probability intervals and generalized p-boxes are less closely related,
but Section 3.4 discusses some transformation methods to extract probabil-
ity intervals from p-boxes, and vice-versa. We prove that the information



modeled by probability intervals correspond to a set of generalized p-boxes.

Generalized p-boxes are defined on arbitrary finite spaces. The infinite setting
is studied in the companion paper. To make the paper easier to read, longer
proofs have been moved to the appendix.

2 Non-additive uncertainty theories and some representation tools

Bayesian subjectivists advocate the use of single probability distributions in
all circumstances. If enough statistical information is available, probability
distributions are good models of uncertainty due to variability, but if the
available information lacks precision or is incomplete, then choosing a unique
probability distribution to represent uncertainty is debatabld!] It generally
forces to engage in too strong a commitment about the current situation than
what is actually known.

Roughly speaking, alternative theories recalled here (imprecise probabilities,
random sets, and possibility theory) have the potential to lay bare the existing
imprecision or incompleteness in the information. They evaluate uncertainty
on a particular event by means of a pair of (conjugate) lower an upper mea-
sures rather than by a single one. The difference between the upper and lower
measures than reflecting the lack of precision in our knowledge.

In this section, we first recall basic mathematical notions used in the sequel,
concerning capacities and the Moebius transform. Each theory mentioned
above is then briefly introduced, with focus on practical representation tools
available as of to-date, like possibility distributions p-boxes and probability
intervals, their expressive power and complexity. Although no particular em-
phasis is given to interpretation issues in this paper, we nevertheless feel that
is important to recall that such theories were often motivated by the modeling
of specific phenomena such as variability, belief and so on, which still remains
a matter of debate.

We recall that, in this paper, unless explicitly stated otherwise, we restrict
ourselves to a finite arbitrary space X containing n elements denoted x or x;.

I For instance, the following statement about a coin: "We are not sure that this
coin is fair, so the probability for this coin to land on Heads (or Tails) lies between
1/4 and 3/4" cannot be faithfully modeled by a single probability.



2.1 Basic mathematical notions

Uncertainty is often represented by set-functions called capacities.

Definition 2.1 Given a finite space X, a capacity on X is a function pu,
defined on the set of subsets of X, such that:

o u(0)=0,pu(X)=1
e AC B=pu(A) < u(B).
A capacity such that
VA BC X, ANB=0,u(AUB) > u(A) + u(B)

18 said to be super-additive. The dual notion, called sub-additivity, is obtained
by reversing the inequality.

A capacity is said to be additive if the inequality is turned into an equality.
Then the capacity is called a probability measure and denoted P. As the set X
is finite, a probability P can also be expressed by its probability distribution p
defined on X such that p(x) = P({z}). ThenVz € X, p(z) >0, > cxp(z) =1

and P(A) =>,cap(x).

Capacities were first introduced in Choquet’s work [4]. Given a capacity g,
one can also define a conjugate capacity pu°, defined by p(E) = u(X) —
w(EC) = 1 — p(E°), for any subset E of X, E° being its complement. Here
we consider capacities such that either VE C X, u(F) 4+ pu(E°) < 1 or VE C
X, 1W(E) + pu(E°) > 1. The former can be called cautious capacities (since
w(E) < pf(E),VE) and the latter bold capacities. Super-additive capacities
are cautious and sub-additive capacities are bold. A probability measure is
self-conjugate (P = P°), ie. is both cautious and bold.

In the following, the capacity of a subset evaluates the degree of confidence in
the corresponding event. Cautious capacities are tailored for modelling the idea
of certainty. Bold capacities may account for the weaker notion of plausibility.
These kinds of capacities are also the basic tool for modelling lower and upper
probabilities.

The core of a capacity p is the (convex) set of probability measures that
dominate pu, that is, P(u) = {P > p}. This set may be empty even if the
capacity is cautious. We need stronger properties to ensure a nonempty core.

Definition 2.2 A super-additive capacity p is n — monotone, where n > 0
and n € N, if and only if for any set A = {A;|i € N,0 <i < n} of events A;,



it holds that

pw(J A4) = > (=0 u( ) A)

AeA ICA A€l

An n-monotone capacity is also called a Choquet capacity of order n. If a
capacity is n-monotone, then it is also (n — 1)-monotone, but not necessarily
(n+ 1)-monotone. An co-monotone capacity is a capacity that is n-monotone
for every n > 0. On a finite space, a capacity is co-monotone if it is n-monotone
with n = |X|. The two particular cases of 2-monotone (also called convex)
capacities and oo-monotone capacities have deserved special attention in the
literature [3,23,35]. Indeed, 2-monotone capacities have a non-empty core. So,
n-monotone capacities can be viewed as lower probabilities. Dual capacities,
corresponding to upper probabilities, are called n-alternating capacities. co-
monotone capacities have interesting mathematical properties that greatly
increase computational efficiency. As we will see, many of the representations
studied in this paper possess such properties. Extensions of the notion of
capacity and of n-monotonicity have been studied by de Cooman et al. |7]

Given a capacity p on X, one can obtain multiple equivalent representations
by applying various (bijective) transformations [16] to it. One such transfor-
mation, useful in this paper, is the M&bius inverse:

Definition 2.3 Given a capacity i on X, its Mébius transform is a mapping
m : 2% = R from the power set of X to the real line, which associates to any
subset E of X the value

m(E) = > (=1 u(B)

BCE
BeX

Since u(X) =1, Y pex m(E) = 1 as well, and m(0) = 0. Moreover, it can be
shown [32] that the values m(E) are non-negative for all subsets F of X (hence
VE € X,1>m(E) > 0) if and only if the capacity u is co-monotone. Then m
is called a mass assignment. Otherwise, there are some (non-singleton) events
E for which m(FE) is negative. Such a set-function m is actually the unique
solution to the set of 2" equations

VAC X, pu(Ad) =Y m(E),

given any capacity u. The Mobius transform of a probability measure P coin-
cides with its distribution p, assigning positive masses to singletons only.



2.2 Imprecise probability theory

The theory of imprecise probabilities has been systematized and popularized
by Walley’s book [35]. In this theory, uncertainty is modeled by closed convex
sets P of (finitely additive) probability measures P on X. In the rest of the
paper, such convex sets will be named credal sets (as is often done). It is
important to stress that, even if they share similarities, Walley’s behavioral
interpretation of imprecise probabilities is different from the one of classical
robust statisticd?] [18].

Imprecise probability theory is very general, and, from a purely mathematical
point of view, it encompasses all theories studied in this paper. Thus, in all
approaches presented here, a corresponding credal set can be generated, which
facilitates their comparison.

2.2.1 Lower/upper probabilities

Credal sets in Walley’s theory can be represented by lower bounds (called lower
previsions) on the mean values of so-called gambles (bounded real-valued func-
tions with domain X). In this paper, credal sets induced by lower probabilities
(lower previsions assigned to events) are sufficient to our purpose. A lower
probability P is a super-additive capacity. Its conjugate P(A4) = 1 — P(A°)
is called an upper probability. The credal set Pp 5 induced by a given lower
probability is its core: B

Ppp = {P|VA C X, P(A) > P(A)}.

Conversely a credal set P induces a lower envelope P, on events, defined by
VA, P.(A) = infpep P(A). As a lower envelope is a super-additive capacity,
it is a lower probability. The upper envelope P % (A) = suppep P(A) is the
conjugate of P,. In general, a credal set P is included in the core of its lower
envelope: P C Pp 5, since Pp 5 can be seen as a projection of P on events.

In this paper, we consider so-called coherent lower probabilities P, that is,
lower probabilities that coincide with the lower envelopes of their core, i.e. for
all events A of X,

P(A) = inf P(A).

PEP, 5

In other words, Pp 5 is such that for every event A, there is a probability

2 Roughly speaking, in Walley’s approach, the primitive notions are lower and upper
previsions or sets of so-called desirable gambles, and the fact that there always exists
a "true" precise probability distribution is not assumed.



distribution P in Pp 5 such that P(A) = P(A). The same property holds for
the associated upper probability (suppcp P(A) = P(A)).

A credal set Pp 5 can also be described by a set of constraints on probability
assignments to elements of X:

P(A) < Y pla) < P(A).

z€EA

Finally, let us note that, since the measures P, P are conjugate, specifying one
of them on all events is enough to completely characterize the credal set Pp 5.
This means that, when X is finite, 21X/ —2 values (| X| being the cardinality of
X), are needed in addition to constraints P(X) = 1, P() = 0 to completely
specify Pp 5.

2.2.2  Simplified representations

Although credal sets induced by lower probabilities are already a restriction
compared to more general representations, they can still be difficult to handle
or to elicit. This is why, in practice, simpler representations are used. P-boxes
and interval probabilities are two such simplified tools.

P-boxes

Let us first recall some background on cumulative distributions. Let P be
a probability measure on the real line R and p its probability density. Its
cumulative distribution P((—oo,r]),r € R is denoted F”.

Let F} and F5 be two cumulative distributions. Then, Fj is said to stochasti-
cally dominate F5 if only if F} is point-wise lower than Fy: Fy < F5.

A p-box [15] is then defined as a pair of (discrete) cumulative distributions
[F, F'] such that F stochastically dominates F' (F < F). A p-box induces a
credal set Py 7 such that:

P = {PIE(r) < P((—o0,7]) < F(r) Vr € R} (1)

We can already notice that since sets (—oo, x] are nested, Pyp 7 is described
by constraints that are lower and upper bounds on a collection of nested sets.
This interesting characteristic will be crucial in the generalized form of p-box
we introduce in section 3. Conversely we can extract a p-box from a credal
set P by considering its lower and upper envelopes restricted to events of the
form (—oo, z|, namely, letting F(z) = P,((—o0,z]), F(z) = P*((—o0, z]). The
core of this p-box is a gross approximation of P.



Cumulative distributions are often used to elicit probabilistic knowledge from
experts [5]. P-boxes can thus directly benefit from such methods and tools,
with the advantages of allowing some imprecision in the representation (e.g.,
allowing experts to give imprecise percentiles). P-boxes are also sufficient to
represent final results produced by imprecise probability models when only a
threshold violation has to be checked.

Probability intervals

Another example of a simple representation of imprecise probability is pro-
vided by probability intervals on a finite set X. They are defined as lower and
upper bounds of probability distributions. They are defined by a set of inter-
vals L = {[l(x),u(x)]|x € X} such that I(z) < p(x) < u(x),Vx € X, where
p(z) = P({z}). Probability intervals are extensively studied by De Campos et
al. [2]. A probability interval induces the credal set

Pr=A{P|l(z) <pz) <u(z), z€ X}

Py, is thus totally determined by 2|X| values only. De campos et al. [2] have
shown that probability intervals have numerous computational advantages.

A probability interval L is called reachable if its credal set is not empty and,
for each x, we can find at least one probability measure P € Py, s.t. p(x) = [(x)
and one for which p(z) = u(z). In other words, each bound can be reached
by a probability measure in P). Non-emptiness and reachability respectively
correspond to the conditions [2]:

S l(z) <1< ) u(x) non-emptiness

zeX reX

u(zr) + Z (y) <1 and I(z)+ Z u(y) > 1 reachability
yeX\{z} yeX\{z}

If a probability interval L is non-reachable, it can be transformed into a proba-
bility interval L', by letting I'(x) = infpep, (p(7)) and v/(x) = suppep, (p()).
More generally, coherent lower and upper probabilities P(A), P(A) induced
by P, on all events A C X are easily calculated by the following expressions

P(A) =max()_ l(z),1—- > u(z)),P(A) =min(>_u(z),1- Y l(z)). (2)

€A TEAC €A TrEAC

De Campos et al. [2] have shown that these lower and upper probabilities are
Choquet capacities of order 2.

Probability intervals are very convenient tools to model uncertainty on multi-
nomial data, where they can express lower and upper confidence probabil-
ity bounds. They can thus be easily used when one has a sample of small



size [22]. On the real line, discrete probability intervals correspond to im-
precisely known histograms. Probability intervals can be extracted, as use-
ful information, from any credal set P on a finite set X, by constructing

Lp ={[L({z}, P({z}], = € X}.

2.3 Random disjunctive sets

A more specialized setting for representing partial knowledge is that of a
random set, where each set represents an incomplete observation, and the
probability bearing on this set could potentially be shared among its elements,
but is not by lack of sufficient information.

2.3.1 Belief and Plausibility functions

Formally, a random set is a mapping I' :  — ©(X) from a probability space
(Q, A, P) to the power set p(X) of another space X (here finite). It is also
called a multi-valued mapping I'. Insofar as sets I'(w) represent incomplete
knowledge about a random variable, such sets contain mutually exclusive el-
ements and are called disjunctive setﬂ. Then this mapping induces the fol-
lowing coherent lower and upper probabilities on X for all events A [8] (rep-
resenting all probability functions on X that could be found if the available
information were complete):

P(A) = P({w € Ql(w) € A}) (3)
P(A) = P{w e Ql'(w) N A # 0}) (4)

When X is finite, a random set can also be represented as a mass assignment
m over the power set p(X) of X, letting m(E) = P{w,I'(w) = E}),VE € X.
Then, Y pcx m(E) = 1 and m(0) = 0. A set E that receives strict positive
mass is called a focal set, and the mass m(FE) can be interpreted as the prob-
ability that the most precise description of the actual solution to the problem
is of the form "x € E". From this mass assignment , Shafer [32] define two set
functions, called belief and plausibility functions, respectively:

Bel(A) = ZAm(E); Pl(A)=1-Bel(A%) = @m(E).
E,EC E,EnA#

On finite spaces, since the mass assignment is positive, the belief function
derived from a random set is an oo-monotone capacity. The mass assignment

3 as opposed to sets as collections of objects, i.e. sets whose elements are jointly

present, such as a region in a digital image.



m is indeed the Mobius transform of the capacity Bel. Conversely, any oo-
monotone capacity is induced by one and only one random set. We can thus
speak of the random set underlying Bel. In the sequel, we will use this nota-
tion for lower probabilities stemming from random sets (Dempster and Shafer
definitions being equivalent on finite spaces). Smets [34] has studied the case
of continuous random intervals defined on the real line R, where the mass
function is replaced by a mass density bearing on pairs of interval endpoints.

Belief functions can be considered as special cases of coherent lower probabili-
ties, since they are oo-monotone capacities. This lower probability is given by
equation (3). A random set thus induces the credal set Ppy = {P|VA C X,
Bel(A) < P(A) < PI(A)}.

Note that Shafer [32] does not refer to an underlying probability space, nor
does he uses the fact that a belief function is a lower probability: in his view,
extensively taken over by Smets [33], Bel(A) is supposed to quantify an agent’s
belief per se with no reference to a probability. However, the primary mathe-
matical tool common to Dempster’s upper and lower probabilities and to the
Shafer-Smets view is the notion of (generally finite) random disjunctive set.

2.3.2  Practical aspects

In general, 21X — 2 values are still needed to completely specify a random
set, thus not forcefully reducing the complexity of the model representation
with respect to capacities. However, simple belief functions defined by only
a few positive focal elements do not exhibit such complexity. For instance, a
simple support belief function is a natural model of an unreliable testimony,
namely an expert stating that the value of a parameter x belong to set A C
X. Le a be the reliability of the expert testimony, i.e.the probability that
the information is irrelevant. The corresponding mass assignment is m(A) =
a,m(X) = 1—a. More generally, imprecise results from statistical experiments
are easily expressed by means of random sets, m(A) being the probability of
an observation of the form x € A.

As practical models of uncertainty, random sets have many advantages. First,
as they can be seen as probability distributions over subsets of X, they can be
easily simulated by classical methods such as Monte-Carlo sampling, which is
not the case for other Choquet capacities. On the real line, a random set is
often restricted to a finite collection of closed intervals with associated weights,
and one can then easily extend results from interval analysis [25] to random
intervals [14,17].

10



2.4 Possibility theory

The primary mathematical tool of possibility theory is the possibility dis-
tribution, which is a set-valued piece of information where some elements are
more plausible than others. To a possibility distribution are associated specific
measures of certainty and plausibility.

2.5 Possibility and necessity measures

A possibility distribution is a mapping 7 : X — [0,1] from a (here finite)
space X to the unit interval such that 7(z) = 1 for at least one element
x in X. Formally, a possibility distribution is equivalent to the membership
function of a fuzzy set [36] Twenty years earlier, Shackle [31] had introduced
an equivalent notion called distribution of potential surprise (corresponding
to 1 — m(x)) with a view to represent non-probabilistic uncertainty.

Several set-functions can be defined from a possibility distribution 7 [11]:

Possibility measures: II(A) = sup m(x). (5)
z€A

Necessity measures: N(A)=1—TII(A°). (6)

Sufficiency measures: A(A) = irellf4 m(x). (7)

The possibility degree of an event A evaluates the extent to which this event
is plausible, i.e., consistent with the available. Necessity degrees express the
certainty of events, by duality. In this context, distribution 7 is potential
(in the spirit of Shackle’s), i.e. m(z) = 1 does not guarantee the existence
of x. Their characteristic property are: N(A N B) = min(N(A), N(B)) and
II(AU B) = max(II(A),II(B)) for any pair of events A, B of X.

On the contrary A(A) measures the extent to which all states of the world
where A occurs are plausible. Sufficency (or guaranteed possibility) distribu-
tions [11]| generally denoted by 4, are understood as degree of empirical support
and obey an opposite convention: §(xz) = 1 guarantees (= is sufficient for) the
existence of x.

Given a possibility distribution 7 and a degree « € [0, 1], strong and regular
a-cuts are subsets respectively defined as Az = {z € X|n(z) > a} and A, =
{z € X|m(x) > a}. These a-cuts are nested, since if a« > 3, then A, C Az. On
finite spaces, the set {m(x),z € X}isoftheformay=0< oy < ... < ay = 1.
Then, there will only be M distinct a-cuts.

11



2.6 Relationships with previous theories

A necessity measure (resp a possibility measure)can be viewed as a belief
function (resp. a plausibility function), with nested focal elements (already
in [32]). A possibility distribution 7, defines a random set having the following
focal sets F; order on Xes m(E;),i=1,...,m:

s ={x m(x) > o} = Ag,
Bi = o € Xlr(@) 2 ai} = A, N

m(EZ) = ; — QG

In this nested situation, the same amount of information is contained in the
mass function m and the possibility distribution 7(z) = PIl({z}). For instance
a simple support belief function such that m(A) = a,m(X) = 1 — « forms
a nested structure, and yields the possibility distribution w(z) = 1 if x € A
and 1 — « otherwise. In the general case, m cannot be reconstructed from .
Outer and inner approximations of general random sets in terms of possibility
distributions have been studied by Dubois and Prade in [13].

Since the necessity measure is a particular belief function it is also an oo-
monotone capacity, hence a particular coherent lower probability. If the ne-
cessity measure is viewed as a coherent lower probability, its possibility distri-
bution induces the credal set P, = {P|VA C X, N(A) < P(A) <II(A)}.

We recall here a result, proved by Dubois et al. [10], and which links proba-
bilities P that are in P, with constraints on a-cuts, that will be useful in the
sequel:

Proposition 2.4 Given a possibility distribution 7™ and the induced convex
set Py, we have for all a in (0,1], P € Py if and only if

l1-—a<P({r e X|r(z) > a})

This result means that the probabilities P in the credal set P, can also be
described in terms of constraints on strong a-cuts of 7 (i.e. 1 —a < P(Ag)).

2.6.1 Practical aspects

At most | X| values are needed to fully assess a possibility distribution, which
makes it the simplest uncertainty representation explicitly coping with impre-
cise or incomplete knowledge. This simplicity makes this representation very
easy to handle. This also implies less expressive power, in the sense that, for
any event A | either TI(A) = 1 or N(A) = 0 (i.e. intervals [N(A),II(A)] are

12



of the form [0, a] or [3,1]). This means that, in several situations, possibility
distributions will be insufficient to reflect the available information.

Nevertheless, the expressive power of possibility distributions fits various prac-
tical situations. Indeed, they can be interpreted as a set of nested sets with
different confidence degrees (the bigger the set, the highest the confidence
degree). Moreover, a recent psychological study [29] shows that possibility
distributions are convenient in elicitation procedures. On the real line [10],
possibility distributions can model, for example, an expert opinion concern-
ing the value of a badly known parameter by means of a finite collection of
nested confidence intervals. Similarly, it is natural to view nested confidence
intervals coming from statistics as a possibility distribution. Another practical
case where uncertainty can be modeled by possibility distributions is the case
of vague linguistic assessments concerning probabilities [6].

2.7 P-boxes and probability intervals in the imprecise probability landscape

P-boxes, reachable probability intervals, random sets and possibility distri-
butions can be modeled by credal sets and define coherent upper and lower
probabilities. Kriegler and Held [20] show that the credal set of any discrete
p-box can be described by an equivalent random-set. However, there are dif-
ferent random sets inducing a given p-box. So p-boxes are a special case of
random sets.

There is no inclusion relationship between the sets of possibility distributions,
p-boxes and probability intervals. None can be seen as a special case of the
other. Baudrit and Dubois [1] showed that a possibility distribution 7 induces
a p-box whose credal set is larger than P,. The rest of our paper is devoted
to a generalized version of p-boxes that covers possibility distributions as a
special case, and is also representable by a random set.

There is no direct relationship between probability intervals and random sets.
Indeed upper and lower probabilities induced by reachable probability intervals
are order 2 capacities only, while belief functions are co-monotone. In general,
one can only approximate one representation by the other.

Transforming a belief function Bel into the tightest set L of probability inter-
vals such that Pp. C Py, (i.e. L is an outer approximation of the random set)
is simple, and consists of taking for all z € X:

[(x) = Bel(x) and u(z) = Pl(x)

and since belief and plausibility functions are the lower envelope of the induced
set Pper, we are sure that the so-built probability interval L is reachable. This

13



’ Coherent Lower /upper probabilities

I

’ 2-monotone capacities ‘

’ Random sets (co-monotone)

Probability Intervals ‘

Possibilities

Probabilities

Figure 1. Representation relationships: summary A — B: B is a special case of A

method can be used to extract probability intervals from any credal set as
shown earlier.

The converse problem, i.e. to transform a set L of probability intervals into
a random set was studied by Lemmer and Kyburg [21]. They concentrate on
transforming the set L into an inner approximation (i.e., Pge C Pr). On the
contrary, Denoeux [9], extensively studies the problem of transforming a set L
of probability intervals into a random set that is an outer approximation (i.e.,
Pr C Ppger). The transformation of a given set L of probability intervals into a
possibility distribution is studied by Masson and Denoeux [22], who propose
efficient methods to achieve such a transformation.

The main relations existing between imprecise probabilities, lower /upper prob-
abilities, random sets, probability intervals, p-boxes and possibility distribu-
tions, are pictured on Figure 1. From top to bottom, it goes from the more
general, expressive and complex theories to the less general, less expressive but
simpler representations. An arrow is directed from a general representation to
a less general one.

3 Generalized p-boxes

As recalled in Section 2.2, p-boxes are useful representations of uncertainty in
many practical applications. So far, they only make sense on the (discretized)
real line and their definition requires the natural ordering of numbers. This is
a bit restrictive, and since the model is already quite useful in this restrictive
setting, it would be interesting to extend the model to more general settings.
Moreover, such extensions can give a better understanding of the nature of
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this representation.

This extension, called here generalized p-bozes, and its study is the subject of
the present section. We first define the extension of p-boxes to arbitrary finite
spaces in Section 3.1. Then we show that this model has very close link with
possibility distributions and random sets. Actually, we show in Section 3.2
that a generalized p-box corresponds to a pair of possibility distributions. In
Section 3.3 that any generalized p-box is a particular case of random set. We
then explore in Section 3.4 transformations between generalized p-boxes and
probability intervals.

3.1 Definition of generalized p-boxes

Two mappings f and f’ from a finite set X = {xy,...,x,} to the real line are
said to be comonotonic if there is a common permutation o of {1,2,...,n}
such that f(5(1)) > f(0(2) > -+ > f(o(n)) and f(a(1)) > f(0(2)) > -+ >
f'(o(n)). We define a generalized p-box as follows:

Definition 3.1 A generalized p-boz [F, F| over a finite space X is a pair of
comonotonic mappings F,F, F : X — [0,1] and F : X — [0,1] from X to
0,1] such that F is pointwise less than F (i.e. F < F) and there is at least
one element x in X for which F(x) = F(z) = 1.

Since each distribution £, F' is fully specified by | X | — 1 values, it follows that
2| X| — 2 values completely determine a generalized p-box. Contrary to usual
p-boxes, no notion of ordering is used in this definition. In order to relate
this definition with usual p-boxes, we must notice that, given a generalized

p-box [F, F'], we can always define a complete pre-ordering <(p.7 on X such
that © <7 y if F(r) < F(y) and F(z) < F(y), due to the comonotonicity
condition. If X is the real line and if <(r 7] 18 the natural ordering of numbers,
then we retrieve usual p-boxes.

To simplify notations in the sequel, we will consider that, given a generalized
p-box [F, F|, elements x of X are indexed such that x; <iFF L if and only if

i < j. A [F, F]-downset, denoted (2] 7, will be of the form {z;|z; <p7 x}.
The credal set induced by a generalized p-box [F, F'] can now be defined as
Pirr = APIE (i) < P((w)p ) < Fli)}.

It induces coherent upper and lower probabilities such that F'(z;) = P((zi]p 7)

and F(x;) = P((z:]p 7). Again, if we consider real numbers R and the natural
ordering on them, then Vr € R, (T][F,F] = (—o00,r], and the above equation
coincides with Equation (1). B
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In the following, the sets (z;] 7 are denoted A;, for all i = 1,...,n. These
sets are nested, since ) € A; C ... C A4, = XEL For all © = 1,...,n, let
F(z;) = o; and F(x;) = ;. With these conventions, the credal set PirF
can now be described by the following constraints bearing on probabilities of
nested sets A;:

i=1,...,n a; < P(4;) < G 9)
withO=ay <o <...<a,=1,0=0 <0 <[B<...<,=1and
a; < f;.

As a consequence, a generalized p-box can be generated in two different ways:

e Either we start from two comonotone functions F, F' on the space X, and
the order on X is then induced by the values taken by these functions,

e or a generalized p-box is built by assigning upper and lower bounds on
probabilities of nested sets, (i.e. sets A; built or not from a complete ordering
on X).

The second approach is likely to be more useful in practical assessments of
generalized p-boxes.

Example 3.2 All along this section, we will use this ezample to illustrate re-
sults on generalized p-boxes. Consider a space X made of siz elements {x1, ..., x¢}.
These elements could be, for instance, successive components on a production
line. For various reasons (cost, production constraints, ... ), when a component
breaks down, the safety system only informs us whether the broken component

is in the set Ay = {x1,x0}, Ay = {x1, 22, 23},

As = {x1, 29, 3,24, 25}, or the whole X (= Ay). Asking an expert to evaluate
breakdowns, he can only give us lower and upper probability bounds for each

of these sets:

P(A;) €]0,0.3]  P(A) €[0.2,0.7]  P(A43) €[0.5,0.9]

Since these sets are nested, the uncertainty can be modeled by the generalized
p-box pictured on Figure 2:

(r1) = 0.3 F(22) = 0.3 F(x3) =
E(Cﬁ) =0 E(Iz) =0 F

4 Since there is a complete pre-order on X, we can have x; =17 Titl and A; =
Aii1, which explains the non-strict inclusions. They would be strict if <|p,F) Were
a linear order.
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Figure 2. Generalized p-box [F, F] of Example 3.2

3.2 Connecting generalized p-boxes with possibility distributions

Kozine and Utkin [19] discussed the problem of building p-boxes from par-
tial information. They already noticed that, for usual p-boxes, sets A; can be
interpreted as nested confidence intervals with upper and lower bounds. It is
therefore natural to search a connection with possibility theory, since possi-
bility distributions can be interpreted as a collection of nested sets with lower

probability bounds. Given a generalized p-box [F, F], the following proposition
holds:

Proposition 3.3 A generalized p-box [F, F| on a finite set X can be encoded
by a pair of possibility distributions mg, g, such that Pirr = Prz 0 Prg,
where:

() = B and mp(x;) =1 —max{o;|j =0,...,i a; < oy}
fori=1,....n, with ag = 0.

Proof of Proposition 3.3 Consider the set of constraints given by Equa-
tion (9) and describing the convex set P 7. These constraints can be sep-
arated into two distinct sets: (P(4;) < Bi)izim and (P(AS) < 1 — @)izin.
Now, rewrite constraints of Proposition 2.4, in the form Vo € (0,1]: P €

P, if and only if P({zx € X|n(z) < a}) < a.

The first set of constraints (P(A;) < f;)i=1., defines a credal set Pr_ that is
induced by the possibility distribution 74, while the second set of constraints
(P(AS) <1 — a;)i=1, defines a credal set Py, that is induced by the possi-
bility distribution 7g, since A¢ = {zy,...x,}, where k = max{jla; < o;}.
The credal set of the generalized p-box [F, F|, resulting from the two sets of
constraints, namely i = 1,...,n, (; < P(4;) < «;, is thus Pr N Prp. O

Note that if F is injective, it induces a complete order <(EF) and then
WE(I‘J =1- (7]

Example 3.4 The possibility distributions g, mp for the generalized p-box
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defined in Example 3.2 are:

Wf(lll’l) =0.3 Wf(l’z) =0.3 Wf(l‘g) = 0.7 Wf(l‘;l) =0.9 Wf(ng,) =0.9 Wf(%f;) =1

mp(x) =1 7wp(ry) =1 7wp(xs) =1 mp(rs) =0.8 mp(zs) = 0.8 mp(xg) = 0.5

So, generalized p-boxes allow to model uncertainty in terms of pairs of comono-
tone possibility distributions. In this case, contrary to the case of only one
possibility distribution, the two bounds describing uncertainty on a particular
event A can be tighter, i.e. no longer restricted to the form [0, o] or [, 1], since
the corresponding probability interval containing P(A) will be contained in
the intersection of intervals of this form.

An interesting case is the one where, for all i = 1,... ,n — 1, F(z;) = 0
and F(z,) = 1. Then, 7p = 1 and Pr_ 0 Prp = Pr_ and we retrieve the
single distribution 7. We recover 7p if we take for all i = 1,...,n, F(z;) =

1. This means that any possibility distribution can be viewed a generalized
cumulative distribution function F' (it an be understood either as an upper or
a lower function of a generalized p-box) associated to the specific ordering the
possibility degrees induce on X.

3.8 Connecting Generalized p-bozxes and random sets

The existing result relating p-boxes to random sets can be extended to gener-
alized p-boxes.

Proposition 3.5 For any generalized p-box [F, F], there always exist a belief
function Bel that encodes the same information as the generalized p-box. In
particular, the credal set Pir 7 induced by the generalized p-box and the credal
set Ppe tnduce the same lower probabilites.

In order to prove Proposition 3.5, we show that the lower probabilities on
events induced by a generalized p-box are the same as the belief function
given by Algorithm 1. To do that, we first build the partition of the space X,
induced by sets A;, and we formulate lower probabilities on events by means
of elements of this partition. We then calculate lower bounds of these lower
probabilities on all events, and show that these bounds are reached. We then
check that the lower probabilities on all events coincide with the belief function
induced by the algorithm. The detailed proof can be found in the appendix.

Algorithm 1 below provides an easy way to build the random set encoding
a given generalized p-box. It is similar to algorithms given in |20, 30|, and
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extends them to more general spaces. The main idea of the algorithm is to use
the fact that a generalized p-box can be seen as a random set whose focal sets
are obtained by thresholding the cumulative distributions (as in Figure 2).
Since the sets A; are nested, they induce a partition of X whose elements are
of the form G; = A; \ A;_1. The focal sets of the random set equivalent to the
generalized p-box are made of unions of consecutive elements of this partition.

Basically, the procedure comes down to considering a threshold 6 € [0, 1].
When ;11 > 0 > a; and 3,41 > 0 > 3;, then, the corresponding focal set is
Aiq \ A, with mass

m(Aip1 \ Aj) = min(aiy, G41) — max(a, 5;). (10)

Example 3.6 illustrates the application of Algorithm 1.

Algorithm 1: R-P-box — random set transformation

Input: Generalized p-box [F, F] and corresponding nested sets
0= Ay, Ay,..., A, = X, lower bounds «; and upper bounds [;

Output: Equivalent random set
fori=1,....n+1do

| Build partition G; = A; \ Ai_4
Build set of values
{ull=1,....2n—=1}={wali=1,...,n}U{Bli=1,...,n}
With ~; indexed such that v < ... <y < ... <7y, 1 =0, =a,=1
Set g =0 =% =0
Set focal set £y = ()
fork=1,...,2n—1do
if v4_1 = o; then

| Ex=Er1 U Gipy
if Ye—1 — 57, then

| Ex=FEr1 \ G;
| Set m(Ey) =% — k-1

Example 3.6 Consider again the generalized p-box given in Example 3.2 and
let us build the associated random set by applying Algorithm 1. We have:

Gy = {z1, 22} Gy = {13} Gs = {w4, 25} Gy = {s}
and

0<0<02<03<05<07T<09<1
<o << f<az< B <3< ay
V<M< <n<7u<75 <%
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which finally yields the following random set

m(Ey) =m(Gy) =0 m(Ey) = m(Gy UGs) = 0.2

m(Es) = m(G1 UGy UG3) =0.1 m(Ey) = m(Gy U G3) = 0.2
m(Es) = m(GaUG3UGy) =0.2 m(Eg) = m(G3UGy) = 0.2
m(E;) =m(Gy) = 0.1

This random set can then be used as an alternative representation of the pro-
vided information. This representation lays bare the high imprecision of the
information This imprecision can only be alleviated by seeking more informa-
tion.

Proposition 3.5 shows that generalized p-boxes can be seen as a particular
case of general random sets. Generalized p-boxes are thus more expressive
than single possibility distributions and less expressive than random sets, but,
as emphasized in the introduction, less expressive (and, in this sense, sim-
pler) models are often easier to handle in practice. As shown by the following
remark, we can expect it to be the case for generalized p-boxes.

Remark 3.7 Let [F, F] be a generalized p-box over X, and, fori=1,...,n,
G; be the elements of the partition induced by nested subsets A;. For an event
A, let A, = Ug,ca Gi. We know that P(A) = P(A,). Then, there is an explicit
expression of this lower probability in terms of bounds oy, Bk. If A, = i:i G
then, we have

P(A,) =max(0,a; — Bi—1). (11)
And in the case were A, is a union of "disjoint" subsets, each of this subset
being a union of elements Gy whose indices k are consecutive, then P(A)
remains simple to compute and just becomes a sum of lower probabilities of
those subsets formed of unions of consecutive Gy, included in A.

This simple remark shows the potential advantages of using generalized p-
boxes rather than general random sets, since the computation of lower proba-
bilities is faster than checking which focal elements F; are included in a given
event A.

So far, results in this section mainly exploit the fact that a collection of nested
subsets on a space X induces a partition on this space, useful when computing
lower probabilites of events. In the following we explain the links between this
partition and the complete pre-ordering < (P ] 88 well as the two possibility
distributions 7, mp. First notice that Equation (11) can be restated in terms
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of the two possibility distributions 7, 7p, rewriting P(A,) as

P(A,) = max(0, N@(L]J F) — HWF(D F),

k=1

where N, (A), I, (A) are respectively the necessity and possibility degree of
event A (given by Equations (5)) with respect to m;. It makes P(A,) even
easier to compute.

We can also directly derive the random set equivalent to a given generalized

p-box [F, F: let us note 0 = 7o < 71 < ... <y = 1 the distinct values taken

by F, F over elements z; of X (note that M is finite and M < 2n). Then, for
j=1,...,m, the random set defined as:

Ej={z;: €X|(F(zi)2v;)ANmax{E (k) |j=1,....i F(z)<E(x:)}<v;)} (12)

m(E;) =7 —7j-1

is the same as the one built by using Algorithm 1, but this formulation lays
bare the link between Equation (8) and the possibility distributions 74, 7p.

3.4 Probability intervals and generalized p-boxes

As in the case of random sets, there is no direct relationship between proba-
bility intervals and generalized p-boxes. The two representations have compa-
rable complexities, but do not involve the same kind of events. Nevertheless,
given previous results, we can state how a set L of probability intervals can

be transformed into a generalized p-box [F, F], and vice-versa.

Let us first consider a set L of probability intervals on a space X and some
indexing of elements in X. For all i = 1,...,n, let [(z;) = [; and u(x;) = ;.
A generalized p-box [E’, F'] covering the set L of probability intervals can be
computed by means of Equations (2) of Section 2.2.2 in the following way:

F'(z;) = P(4) = o) =max( Y [;,1— > ) (13)

T, €A; Z‘i¢Ai
Fl(z)=P(A) =8 =min( Y u,1— Y 1)
T EA; $1¢Az

where P, P are respectively the lower and upper probabilities of Py, for events
A;, given by Equations (2). Each permutation of elements of X would provide
a different generalized p-box. There is no tightest covering among them.

Now we consider a generalized p-box [F, F] with nested sets A; C ... C A,,.
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The set L’ of probability intervals on elements z; corresponding to [F, F] is
given by:

) = P(x;) = l; = max(0,; — B 1) (14)
) = Pla:) = u; = fi = ain

I

F;
(F;
where P, P are the lower and upper probabilities of P[ET]’ given by Equation

(11), and with By = a9 = 0. This is the tightest set of probability intervals
induced by the generalized p-box.

Of course, transforming a set L of probability intervals into a p-box [F, F]
and vice-versa generally induces a loss of information, as shown by the two
following propositions:

Proposition 3.8 Given an initial set L of probability intervals over a space
X, and given the two consecutive transformations

Prob. Intervals L — 5 p-box [E',F| — .y Prob. Intervals L"

we have Pr, C Prn, and the differences between bounds of intervals in the sets
L" and L are given, fori=1,...,n, by

L= =min(l;,0+ > (ui—04),0+ > (wi— L), L+ > u)—1,1-=> 1)

T, €EA; 1 {EZGA;’ xﬂéa:i z,€X
ZjEX
(15)
ug’—ui :mln(0—|— Z (’Uq —li),O—F Z (uz —11'),1— (’Uq—i— Z lj), Z Ui — 1)
T, €A;_1 :EZ'EAE T AT r,€EX
ijX

with Ay = 0. Under the assumptions that set L is non-empty and reachable,
these differences are positive.

Proposition 3.9 Given an initial generalized p-box [F, F| over a space X,
and given the two consecutive transformations

p-box [E,F) — 1y Prob. Intervals L' — 15 p-box [E" F"]

we have that Pip g S Prpn 7, and the differences between values of [F, F]
and [F",F"| are, fori=1,...,n

Fe) = ) =min(3 (0, = 0). & (05 =5)) (19
P (@) = Fla) = min(¥le; — ). Y (= )
j=1 j=i+1
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The proofs can be found in the appendix. Example 3.10 illustrates both the
transformation procedure and the fact that this procedure implies an infor-
mation loss.

Example 3.10 Let us take the same four probability intervals as in the ex-
ample given by Masson and Denoeux [22], on the space X = {w,z,y, 2z}, and
summarized in the following table

w x Y z
l 0.10 0.34 0.25 0
U 0.28 0.56 0.46 0.08

if we consider the order R such that w <r x <py <g z. After application of
Equations (13), we have the following generalized p-box

-/

F F
Ay = {w) 0.10 0.28
Ay ={w,z} 0.46 0.75
Ay =A{w,z,y} 0.92 1
A =X 11

and if generate probability intervals from this generalized p-box by applying
FEquations (14), we obtain the set L”

w x Y z
1" 0.10 0.18 0.17 0
u” 0.28 0.65 0.54 0.08

a result which is less informative than the first probability intervals.

As no natural order exists on X, as many as n! generalized p-boxes can be
generated from a set of probability intervals. Let Y, the set of all possible
permutations o of elements of X, each defining a linear order. A generalized
p-box according to permutation o is denoted [F" /,F/]O and called a o-p-box.
We then have the following proposition:

Proposition 3.11 Let L be a set of probability intervals, and let [E’,F/]U
be the o-p-box obtained from L by applying Equations (13). Moreover, let L
denote the set of probability intervals obtained from the o-p-box [E',F/]a by
applying Equations (14). Then, the various credal sets thus defined satisfy the
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Figure 3. Representation relationships: summary with generalized p-boxes A — B:
B is a special case of A

following property:
PL: m P[E/’f’]d — ﬂ ,PL:T/ (17>

UEZ(T UGZO‘

Concretely, this means that, given initial information modeled by a set L of
probability intervals, this information can be entirely recovered by considering
the set of all o-p-boxes, varying all permutations. Since there are |X|! such
permutations, representing a set of probability intervals L by a set of general-
ized p-boxes does not look very interesting at first glance. In practice, L can be
exactly recovered if a reduced set S of | X|/2 permutations is used to generate
the generalized p-boxes, provided that {z,1),0 € S} U{2,m),0 € S} = X.
Since P[ET} = Prp N Pr_, then it is immediate from Proposition 3.11,that , in

terms of credal sets, Pr, = N,ex, (73@0 N Pﬂfd), where mp_, 75 are respec-

tively the possibility distributions corresponding to £, and F,.

Figure 3 summarizes the results of this paper, by placing generalized p-boxes
inside the graph of Figure 1. New relationships and representations obtained
in this paper are in bold lines.

4 Conclusions

This paper has proposed a generalized notion of p-box, that remains a special
kind of random set but subsumes possibility distributions. In particular, we
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have shown that a generalized p-box can be represented by means of a pair of
comonotone possibility distributions, and the equivalent random set has been
laid bare. Generalized p-boxes are thus more expressive than single possibil-
ity distributions and likely to be more tractable than general random sets.
Moreover, the fact that they can be interpreted as lower and upper confidence
bounds over nested sets makes them quite attractive tools for subjective elic-
itation. Finally, we showed the gap existing between generalized p-boxes and
sets of probability intervals.

Computational aspects of calculations with generalized p-boxes need to be
explored in greater detail (as is done by De Campos et al. [2| for probabil-
ity intervals) as well as their psychological relevance (as done by Raufaste et
al. [29] for possibility distributions). Another issue is to extend presented re-
sults to more general spaces, to general lower /upper previsions or to cases not
considered here (e.g. continuous p-boxes with discontinuity points), possibly
using existing results [7,34].

Interestingly, the key condition when representing generalized p-boxes by two
possibility distributions is their comonotonicity. In a companion paper, we
pursue the present study by dropping this assumption. We get very close to
the so-called clouds, recently proposed by Neumaier [26].
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Appendix

Proof of Proposition 3.5 From the nested sets A; C A, C ... C A, =X
we can build a partition s.t. G; = Ay, Go = A3\ Ay,...,G, = A, \ An—1. Once
we have a finite partition, every possible set B C X can be approximated from
above and from below by pairs of sets B, C B* |28]:

B* =|J{G:,Gin B # 0}
B, =|{G:,G; C B}

made of a finite union of the partition elements intersecting or contained in
this set B. Then P(B) = P(B.),P(B) = P(B*), so we only have to care about
unions of elements G; in the sequel. Especially, for each event B C G; for some

i, it is clear that P(B) = 0 = Bel(B) and P(B) = P(G;) = PI(B).
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Let us first consider union of consecutive elements Ul_; Gx (when k& = 1,
we retrieve the sets A;). Finding P(Uj_; Gx) is equivalent to computing the
minimum of >>;_, P(Gj) under the constraints

%

i=1,...,n a; < P(A) =Y P(Gy) < B

k=1

which reads .

j

0, < P(Ai) + 3 P(GL) < 5,

k=i
so Y1 _; P(Gy) > max(0, o; — 3;_1). This lower bound is optimal, since it is al-
ways reachable if a; > Bi_1, take Ps.t. P(Ai—1) = Bi—1, P(Ui—; Gi) = aj — Bi—1,

PUp=j1Gr) =1 —aj. Ifa; < By, takePst P(A;_1) = Bi-1, P(Ui_; Gx) =0,

P(UZ:j+1 Ek) =1- 5171

And we can see, by looking at Algorithm 1, that Bel(Ui_; G%) = max(0, a; —
Bi—1): focal elements of Bel are subsets of Uk:z Gy, if @—1 < o only.

Now, let us consider a union A of non-consecutive elements s.t.
A= UG, U UL iv14m Gr) with m > 1. As in the previous case, we must
compute min (Z”l P(Gr) + Xhmitiom (Gk)) to find the lower probability

on P(A). An obvious lower bound is given by

min (lZHP Gr)+ Z P(Gk)) > min (;iiP(G;J) —i—min( i P(Gk)>

k=i+l+m k=i+l4+m

and this lower bound is equal to
max(0, a4y — Fi—1) + max(0, oy — Bitiym—1) = Bel(A)

Consider the two following cases and the probability assignments showing that
bounds are attained:

o oy < fBi_1, @j < Bititm—1 and probability masses P(A;,_1 = Bi_1),
P(Ui Gr) = aip — Bima, PIUET S Gr) = Bitiem—1 — Qis,
(Uk:i+l+m Gr) = @ = Bivigm—1 and P(Up_; 11 Gi) = 1 — o

o a;1; > fBis1, aj > Bitiym—1 and probability masses P(A;_; = B;_1, P(U};;li Gy) =0,
P(UEEES Gr) = oy = Bi = 1, P(Ujzisiam Br) = Oand P(Up_j1, Gx) = 1 —

A same line of thought can be followed for the two remaining cases. As in the
consecutive case, the lower bound is reachable without violating any of the
restrictions associated to the generalized p-box. We have P(A) = Bel(A) and
this result can be easily extended to any number n of "discontinuities" in the
sequence of GY.
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The proof is complete, since for every possible union A of elements Gy, we
have P(A) = Bel(A) O

Proof of Proposition 3.8 Let X be a finite set and define a ranking of their
elements x; < z; if and only if « < j. Given this ranking, and to prove Propo-
sition 3.8, we start from a set L with, for ¢ = 1, ..., n, initial bounds u;, [;. We
then apply successively Equations (13) and (14), with the aim of expressing
bounds u, 1! of the set L” in terms of initial bounds u;, ;. Computation of
(I; = 1) and (w] — w;) then follows. The positiveness of these two differences
is sufficient to prove inclusion between credal sets Py, and P~ To shorten the

proof, we focus on lower bounds (proof for upper bounds is similar).

Let us then consider the p-box [F”, F/] built from a given reachable non-empty

set L of probability intervals, given, for ¢ = 1,...,n, by equations
P(A) =a,=max( > l;;1— Y w)
P(A) =6 =min( Y u,1— > 1)

with P, P the lower and upper probabilities of P;. Now, given these bounds,
we can compute the set L” of probability intervals s.t.

1 = P'(e;) = max(0,0f = f_,)

1

with P’ the lower probability of P[E’,F’]‘

l;,u; of the original set L, I} is given by

l;':max(O,Zli— Z ui,ZlH— Z l; — 1,

When expressed in term of values

T, EA; T, €EA; 1 T, €EA; xiEAg_l
I DRTEED DT D ot
$i€AS T, €A1 17116147?71 $i€Af

and, given that the set L is reachable and non-empty, we have that [ < [,.
Equation (15) giving (I; — [!') then follows.

The same procedure can be followed for the bounds u, and we have P, C Pp.
The set L” is non-empty (since Py, C Pr») and reachable (by construction,
the new bounds [I7,4/] are reached by one distribution in the p-box [F', F'],

and this distribution is also in P, thus set L” is reachable) O

Proof of Proposition 3.9 Proof of proposition 3.9 follows the same line of
thought as the proof of Proposition 3.8.

Let us consider an original generalized p-box [F, F| with bounds «;, 3; on sets
A;. The set L' of probability intervals corresponding to this generalized p-box
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is given by equations

where P, P are the lower and upper probabilities of P[E,f}' From the set L/,

we can get the lower bound F” of [F”, F'] by using equations

P'(4;) = o = max( Z I1— Z w;)

xiEAi wi¢A¢

with P’ the lower probability of P;,. In terms of the original p-box bounds
ay, (3;, this gives us

o = max Za] Zﬁj,l—l—zoéj Zn: B5)

j=1 Jj=i+1
n—1
Oé;, — max Z@j Zﬁj,ale Z a; — Z ﬁ])
=1 j=i+1 J=it+l

Given that Vj;a; < (; by definition of a generalized p-box, we have of < a;
and Equation (16) follows. The same procedure can again be done for the

upper bound to check that 5/ > ;, and we get P[Ef} C P[F,, yaar O

Proof of Proposition 3.11 To prove this proposition, we must first recall
a result given by De Campos et al. [2]: given two sets of probability intervals
L and L' defined on a space X and the induced credal sets Pr and Py, the
conjunction Prnr = Pr, N P of these two sets can be modeled by the set
(L N L") of probability intervals that is such that for every element = of X

lizary(r) = max(lp(z), I (x)) and upnpy(z) = min(ug (), up (x))

and these formulas extend directly to the conjunction of any number of set of
probability intervals on X.

To prove Proposition 3.11, we will show, by using the above conjunction,
that Pr, = N,ex, Prz. Since, by Proposition 3.8 and for any o € X,, P;, C
77[ ¥, © Pry, showing this equality is sufficient to prove the whole proposi-
tion.

Let us note that the above inclusion relationships alone ensure us that
Pr € Noes, P ' F, C Noes, Prz. So, all we have to show is that the inclusion
relationship is in fact an equality.
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Since we know that both P and N,ex, Prs can be modeled by set of prob-
ability intervals, we will show that the lower bounds [ on every element z in
these two sets coincide (and the proof for upper bounds is similar).

For all » in X, Iy (z) = maxges, {lry(2)}, with Ly the set of probability
intervals corresponding to ,ex, Pry and L] the set of probability intervals
corresponding to a particular permutation 0. We must now show that, for all
zin X, Iy (z) = lL().

From Proposition 3.11, we already know that, for any permutation ¢ and
for all + in X, we have lp/(z) < Ip(x). So we must now show that, for a
given x in X, there is one permutation ¢ such that Iy, (x) = Iy (x). Let us
consider the permutation placing the given element at the front. If x is the
first element x,(1), then Equation (15) has value 0 for this element, and we
thus have Iz, (x) = [(x). Since if we consider every possible ranking, every
element x of X will be first in at least one of these rankings, this completes
the proof. O
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