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Abstract

Reasoning about knowledge described in classical propositional
logic is usually handled either in the meta-language as in belief re-
vision, considering the dynamics of belief bases, or at the object level
by means of modal logic. In the latter case, modalities express knowl-
edge, belief, or absence thereof, about the truth of formulae. But
the semantics is described in terms of accessibility relations, whose
expressive power seems to be too powerful to account for mere epis-
temic states of an agent. This paper proposes a simpler logic whose
atoms express beliefs about formulae expressed in another basic propo-
sitional language, and that allows for conjunctions, disjunctions and
negations of beliefs. The idea is to model an agent reasoning about
some beliefs of another agent as revealed by the latter. This logic,
called Meta-Epistemic Logic (MEL), borrows its syntax and axioms
from the modal logic KD. It can be be viewed as a fragment of KD, but
it is an encapsulation of propositional logic rather than an extension
thereof. Its semantics is given in terms of epistemic states understood
as subsets of propositional interpretations. We prove soundness and
completeness of this logic, and that any family of non-empty subsets
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of propositional interpretations can be expressed as a single formula
in MEL. Inference rules and normal forms in MEL are discussed. We
show that this logic is very similar to the consensus logic of Pauly.
It is also simpler than many previous formalisms for reasoning about
knowledge, and it avoids paradoxes of truth-functional accounts of in-
complete information handling like partial logic. Our approach is in
fact much closer to the logical rendering of uncertainty theories like
possibilistic logic. MEL has indeed potential to be extended to deal
with graded beliefs. For instance, we show that MEL can express a
symbolic counterpart of the Möbius transform in the theory of belief
functions.

1 Motivation

Reasoning about knowledge and beliefs requires more than the language of
classical propositional logic. In classical propositional logic, it is only possible
to express that certain propositions are believed. A set of logical formulae is
then called a belief base [32], or a belief set (when it is deductively closed).
This representation is used in belief revision for representing the dynamics
of knowledge upon receiving new information [20]. It can be refined by
introducing grades of beliefs as in possibilistic logic [12], or using kappa-
rankings [39], let alone probabilities. However, stating that some propositions
are acknowledged as being unknown to an agent requires the use of a more
expressive language, since the language of classical propositional logic cannot
really express the difference between statements like “not knowing α” and
“knowing not α” (in fact it can only express the latter as ¬α). In modal
logic, the first case writes ¬�α, and the second one is �¬α. This kind of
syntax is used in epistemic logic [26, 25], but the usual semantics in terms
of accessibility relations does not fit easily with uncertainty formalisms like
probability or possibility theories, that rely on weights assigned to possible
worlds. Kripke semantics are actually tailored for the multiple-agent setting.

Formal models of interaction between agents are the subject of current
significant research effort. One important issue is to represent how an agent
can reason about what is known about another agent’s knowledge and beliefs.
In this paper, we consider a much simpler problem: Consider two agents E
(for emitter) and R (for receiver). Agent E supplies pieces of information
to agent R, explaining what (s)he believes and what (s)he thinks is only
plausible or conceivable. For instance, E is a witness and R collects his or
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her testimony. How can agent R reason about what E accepts to tell the
former, that is, E ’s revealed beliefs? On this basis, how can R decide that E
believes or not a prescribed statement? It is supposed that E provides some
pieces of information of the form I believe α, I am not sure about β, to R.
The question is: how can R reconstruct the epistemic state of E from this
information?

The problem has two sides: a model-theoretic one and a syntactic one.
Namely, what is a natural representation ofR’s epistemic state describing E ’s
epistemic state? What is the proper language for representing information
provided by E , and reasoning about it? In the following, we do not care
about whether E ’s beliefs are true or not. Also we do not assume E is lying.
So we do not distinguish between knowledge and belief.

The aim of this paper is to define a minimal logic encoding the information
provided by agent E and sufficient to let agent R reason about it. In this
language, atomic propositions are expressed as �α, where α is any formula
from a propositional language used by E and � is borrowed from modal
logics. A set of formulae in this language is called a meta-belief base, because
it represents what R knows about E ’s beliefs. In the sequel, if �α appears
in R’s meta-belief base, it means either that agent E has declared to believe
that α is true to agent R, or R can infer that agent E believes α, from
what the latter previously said. The language is then completed by means of
negation and conjunction, allowing for ¬�α, �α ∧�β and all combinations
thereof. As a consequence, the formalism enables E to declare that (s)he does
not know the truth status of a formula. However, the nesting of modalities
is not allowed because we are not concerned with introspective reasoning of
R about his or her own beliefs (e.g. whether R is aware of his or her beliefs
about what E believes).

Some minimal axioms are proposed in such a way that the fragment of this
logic restricted to propositions of the form �α is isomorphic to propositional
logic, if the � operator is dropped. This is because R assumes that E is
a propositional logic reasoner. In particular, R assumes that E believes
tautologies of the propositional calculus, and can reason using modus ponens.
Moreover, R considers it equivalent for E to assert �α and �β or to assert
�(α ∧ β). In some sense, E is viewed by R as a source of information, or a
witness, that communicates information on his or her epistemic state. We
call the resulting logic a Meta-Epistemic Logic (MEL) so as to emphasize the
fact that we deal with how an agent reasons about what (s)he knows about
the beliefs of another agent.
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At the semantic level, we search for the simplest basic representation of
knowledge common to all uncertainty theories. Incomplete knowledge about
the real world possessed by agent E has will be represented just by a subset
E of interpretations of E ’s language, one and only one of which is true. All
agent R knows about E ’s epistemic state stems from what E told him or
her. So R has incomplete knowledge about E ’s epistemic state E. The
epistemic state of an agent regarding another agent’s beliefs is what we call
a meta-epistemic state. Let V be the set of interpretations of a standard
propositional language, and [α] the set of models of α. If E says �α then,
only a subset E of [α] can stand for the epistemic state of E since the latter
could not assert α otherwise. Similarly, if E says ¬�α then, no subset E of [α]
can stand for the epistemic state of E while any other set of interpretations
not contained in [α] can be a candidate representation of E ’s epistemic state.
In other words, the meta-epistemic state of R (about E ’s beliefs) built from
E ’s statements can be represented by a family F of non-empty subsets of V ,
one and only one of which is the actual epistemic state of E . Moreover, any
such family F can stand for a meta-epistemic state. In order not to confuse
models of propositional formulae with models of MEL formulae, we call the
latter meta-models since they are subsets of interpretations. In the following,
it is assumed that F does not contain the empty set, that is, agent E does
not entertain contradictory beliefs 1.

In this paper, we describe such a minimal logic, the semantics of which
exactly corresponds to meta-epistemic states modelled by families of non-
empty subsets of propositional valuations (interpretations). In particular, we
do not need Kripke-style semantics since we do not nest modalities. In this
sense the proposed logic, even if formally a fragment of a known modal logic,
is not really in the spirit of the modal logic trend for representing knowledge.
In particular, the syntax of the logic is not tailored for reasoning about meta-
epistemic states (i.e. about what R believes about what (s)he believes about
E), but only about the epistemic state of another agent. We view our logic
as being of higher order because it encapsulates propositional logic inside,
and there are thus two levels of syntax (as well as two levels of semantics),
one on top of the other (respectively the one of standard propositional logic
and the one of MEL). The language of MEL is not a flat extension of the one

1If we do not have this assumption then, whatever E declares, it is always possible to
assume that this statement is due to the fact that E has a contradictory belief set which
entails anything.
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of propositional logic.
This kind of representation of higher order incomplete knowledge already

exists in uncertainty theories. In Shafer’s theory of evidence [34], an epistemic
state is represented by a probability distribution m on 2V \ {∅}, the weight
m(E) being the probability that the actual epistemic state (resulting from
collecting evidence) is E. The obtained formalism is also not new and it is a
fragment of well-known modal systems. The originality of the paper lies in
its specific perspective on the problem of reasoning about agent’s revealed
beliefs, the non-Kripke semantics of the system MEL, and the bridge between
logic and uncertainty theories it suggests.

The paper 2 is organized as follows. In the next section, the syntax and
the intended semantics of the logic are provided with stress on the kind of
statements the emitter agent is allowed to use. An axiomatization of the logic
is then supplied in Section 3. Soundness and completeness with respect to
the intended semantics is established in Section 4. Section 5 focuses on how
to encode any meta-epistemic state as a MEL formula. Similarly we exhibit
the set of meta-models of any set of MEL formulae. We show that the set of
all belief bases in MEL, quotiented by the semantic equivalence is isomorphic
to the power set of the power set of the set of valuations (excluding the empty
set from the latter). So, MEL can account for any meta-epistemic state of
an agent about another agent. A bridge to Shafer’s theory of evidence is also
pointed out in Section 6. It is shown that there is a MEL-formula encod-
ing a single epistemic state E that is the logical counterpart to the Möbius
transform of a belief function. The latter is a probabilistic rendering of a
meta-epistemic state. In the last sections, some related works are discussed
further and perspectives are outlined. In particular, a comparative discussion
of MEL with the consensus logic of Pauly [33] is included due to the identity
of the syntax of both formalisms.

2 The logic MEL

Let us consider classical propositional logic PL, with (say) k propositional
variables, p1, . . . , pk, and propositional constant >. A propositional valua-

2A short version [2] of this paper was presented at the 10th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Verona, July 2009,
and at the Dagstuhl Seminar on “Information processing, rational belief change and social
interaction”, August 2009.
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tion, as usual, is a map w : PV → {0, 1}, where PV := {p1, . . . , pk}. The
set of all propositional valuations (interpretations) is denoted V . For a PL-
formula α, w |= α indicates that w satisfies α or w is a model of α, i.e.
w(α) = 1 (true). If w |= α for every α in a set B of PL-formulae, we write
w |= B. [α] := {w : w |= α}, is the set of models of α.

Let E denote the epistemic state of an agent E . We assume that an epis-
temic state is represented by a subset of propositional valuations, understood
as a disjunction thereof. Each valuation represents a ‘possible world’ consis-
tent with the epistemic state of E . So, E ⊆ V , and it is further assumed that
E is non-empty. Note that, for any E, |E| ≤ 2k.

2.1 The language for MEL

As suggested earlier, our idea is to encapsulate PL inside a belief modality
denoted �. The base is PL, and α, β... denote PL-formulae. We add the
unary connective � to the PL-alphabet. Atomic formulae of MEL are of the
form �α, α ∈ PL. �α is intended to be true for an agent E , if α holds in
every possible world compatible with E ’s epistemic state denoted by E.
The set of MEL-formulae, denoted φ, ψ..., is then generated from the set At
of atomic formulae, with the help of the Boolean connectives ¬,∧:

MEL := �α | ¬φ | φ ∧ ψ.

One defines the connective ∨ and the modality ♦ in MEL in the usual way.
Namely φ ∨ ψ := ¬(¬φ ∧ ¬ψ) and ♦α := ¬�¬α, where α ∈ PL. Like �,
modality ♦ applies only to PL-formulae. In the following, we denote by Γ a
set of MEL-formulae, while B is used for sets of PL-formulae.

Remark 1

1. PL-formulae are not MEL-formulae, as they can only appear inside
them.

2. Iteration of the modal operators �,♦ is not allowed in MEL (as ex-
plained in Section 1).

The language is modal-like but the spirit of the approach is different: we
aim at nesting a logic inside another one, so as to avoid mixing sentences
referring to the real world with sentences referring to what an agent knows
about it.
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An agent E provides some information about his or her beliefs about the
outside world to another agent R by means of the above language. Any set
Γ of formulae in this language is interpreted as what an agent E declares to
another agent R. It forms the meta-belief base possessed by R; on this basis,
agent R tries to reconstruct the epistemic state of the other agent. Some of
the basic statements that agent E can express in this language are as follows.

• For any propositional formula α, if �α ∈ Γ, it means agent E declares
that (s)he believes α is true.

• If ♦α ∈ Γ, it means agent E declares that, to him or her, α is possibly
true, that is (s)he has no argument as to the falsity of α. Note that
this is equivalent to ¬�¬α ∈ Γ, that is, all that R can conclude is that
either E believes α is true, or ignores whether α is true or not.

• If ♦α∧♦¬α ∈ Γ, it means agent E declares to ignore whether α is true
or not.

• If �α∨�¬α ∈ Γ, it means agent E says (s)he knows whether α is true
or not, but prefers not to reveal it.

Of course, the language enables agent E to declare more sophisticated
(maybe unlikely) assertions like (♦α ∧ ♦β) ∨ �γ, which means that either
(s)he has no reason to disbelieve α nor to disbelieve β, or believes γ, or
both. It reduces to the two assertions ♦α ∨ �γ and ♦β ∨ �γ. Note that
the language allows to express that agent R believes that agent E ignores
whether a proposition α is true or not, but it cannot express that R ignores
if agent E believes α. To do it, we should expand the language of MEL to
include additional modalities pertaining to agent R. Indeed, in the language
of MEL, the modalities refer solely to agent E ’s beliefs.

2.2 The semantics

For a given agent E , we define satisfaction of MEL-formulae recursively, as
follows. �α ∈ At, φ, ψ are MEL-formulae, and E is the epistemic state of
an agent E . Note that ∅ 6= E ⊆ V, the set of all propositional valuations.

• E |= �α, if and only if E ⊆ [α].

• E |= ¬φ, if and only if E 6|= φ.
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• E |= φ ∧ ψ, if and only if E |= φ and E |= ψ.

E |= �α means that in the epistemic state E, agent E believes α. Viewed
from agent R, if agent E declares (s)he believes α (i.e. �α ∈ Γ), any E such
that E |= �α, is a possible epistemic state of E .

It is then clear that

• E |= ♦α, if and only if E ∩ [α] 6= ∅,

i.e. there is at least one possible world for agent E , where α holds. If ♦α ∈ Γ,
it means that agent E declares that α is plausible (or conceivable) in the sense
that there is no reason to disbelieve α. As a consequence, the epistemic state
of E is known by agent R to be consistent with [α]. Note that ♦α can be
interpreted as an expression of partial ignorance. Especially, ♦α ∧ ♦¬α ∈ Γ
corresponds to agent E explicitly declaring full ignorance about α so that
its meta-models form the set {E,E ∩ [α] 6= ∅, E ∩ [α]c 6= ∅}, i.e. it brings
non-trivial information about E ’s epistemic state, even if it does not bring
any information about the real world. Likewise, �α ∨ �¬α ∈ Γ is not
tautological. More generally, in the case of a disjunction �α ∨�β, the only
corresponding possible epistemic states form the set {E ⊆ [α]} ∪ {E ⊆ [β]}.
It is clearly more informative than �(α∨β), since the latter allows epistemic
states where none of α or β can be asserted. Restricting the meta-models
to singletons, so as to mimic the classical semantics, would make these two
formulae equivalent.

Encoding a belief α by �α in MEL stands in contrast to, e.g. belief
revision literature [20], where beliefs are represented by propositions of PL,
keeping the modality implicit. But α and �α have models of a different
nature, as shown above, and avoids confusion between ¬�α(≡ ♦¬α) and
�¬α. In MEL their sets of meta-models are again different.

As usual, we have the notion of semantic equivalence of formulae:

Definition 1 φ is semantically equivalent to ψ, written φ ≡ ψ, if for any
epistemic state E, E |= φ, if and only if E |= ψ.

If Γ is a set of MEL-formulae, E |= Γ means E |= φ, for each φ ∈ Γ. So the
set of meta-models of Γ, which may be denoted FΓ, is precisely {E : E |= Γ}.
Now R can reason about what is known from agent E ’s assertions:
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Definition 2 For any set Γ∪ {φ} of MEL-formulae, φ is a semantic conse-
quence of Γ, written Γ |=MEL φ, provided for every epistemic state E, E |= Γ
implies E |= φ.

For any family F of sets of propositional valuations, F |= φ means that
for each E ∈ F , E |= φ. A natural extension gives the notation F |= Γ, for
any set Γ of MEL-formulae. So, for instance, FΓ |= Γ.

3 Axiomatization

Observing valid formulae and rules in MEL, suggests immediately that the
modal system KD may provide an axiomatization for it. We establish for-
mally that this is indeed the case.

Let us denote as α, β wffs in PL, and φ, ψ, µ wffs in MEL. For any set
B∪{α} of PL-formulae, B ` α denotes that α is a syntactic PL-consequence
of B. In particular, ` α indicates that α is a PL-theorem.

3.1 The MEL axioms

We consider the following axioms and rule of inference:

Axioms:

(PL) : (i) φ→ (ψ → φ); (ii) (φ→ (ψ → µ)) → ((φ→ ψ) → (φ→ µ));
(iii) (¬φ→ ¬ψ) → (ψ → φ).

(RM) : �α→ �β, whenever ` α→ β.

(M) : �(α ∧ β) → (�α ∧�β).

(C) : (�α ∧�β) → �(α ∧ β).

(N) : �>.

(D) : �α→ ♦α.

Rule:

(MP ) : If φ, φ→ ψ then ψ.

The nomenclature of the axioms follows Chellas [9]. Axioms (M) and (C)
(taken together) were justified in Section 1, and so was (N). They account
for the logical sophistication of agent E , in the classical sense. Namely if E
claims to believe α and to believe β, this is equivalent to E believing their
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conjunction. As a consequence, E also follows (RM): if it is true that α→ β
and E believes α, (s)he must believe β. This is the symbolic counterpart of
the monotonicity of numerical belief measures for events, in the sense of set-
inclusion. Namely, if ` α→ β, the following inequality between probabilities
hold: P (α) ≤ P (β), and (RM) corresponds to when �α is understood as
P (α) = 1. Axiom (D) comes down to considering that asserting the certainty
of α is stronger than asserting its plausibility. It is also a counterpart of
numerical inequality between belief and plausibility functions [34], necessity
and possibility measures [12] etc. in uncertainty theories. Finally, (PL) and
(MP ) enable agent R to infer from agent E ’s publicly declared beliefs, so as
to reconstruct a picture of the latter agent’s epistemic state.

Syntactically, MEL’s axioms can be viewed as a Boolean version of those
of the fuzzy logic of necessities briefly suggested by Hájek [22].
Taking any set Γ of MEL-formulae, one defines a compact syntactic conse-
quence in MEL (written `MEL), in the standard way.

Definition 3 Γ `MEL φ, if and only if there is a finite sequence of MEL-
formulae φ1, . . . , φn with φn := φ, and each φi is either a MEL-axiom, or a
member of Γ, or is derived from previous members of the sequence by the rule
(MP ).

We have some immediate observations.

Observation 1

1. Deduction theorem and its converse hold in MEL.

2. The axiom (RM) is equivalent to the rule:
If �α then �β, whenever ` α→ β.

3. Due to axioms (M) and (C), (RM) is also equivalent to
(E) : �α↔ �β, whenever ` α↔ β.

4. MEL is the same as the normal modal system KD (=EMCND [9])
with a restricted language. In other words, Γ `MEL φ, if and only if
Γ `KD φ, for any set Γ ∪ {φ} of MEL-formulae.

Soundness of MEL with respect to the semantics described in Section 2.2,
is directly obtained.

Theorem 1 (Soundness) If Γ `MEL φ then Γ |=MEL φ.

In Section 4, we establish completeness of MEL.
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3.2 The encapsulation of PL

Using soundness we get the following result, which demonstrates that deriv-
ing a �-formula, say �α, in MEL from other �-formulae is equivalent to
deriving α in PL. It may be noted that the result was proved in [11] for
the modal system K having the standard Kripke semantics. As we shall see
below, the proof immediately carries over to MEL. Axiom (D) is not used.

For any set B of PL-formulae, let �B := {�β : β ∈ B}, ♦B := {♦β : β ∈ B}.

Theorem 2 �B `MEL �α, if and only if B ` α.
Proof: Let �B `MEL �α. Consider an agent with E := {w}, where

w is any propositional valuation such that w |= B. So E ⊆ [β] for every
β ∈ B, and by definition of satisfaction, E |=MEL �B. Theorem 1 ensures
that �B |=MEL �α, giving E |=MEL �α. In other words, w |= α. Thus by
completeness of PL, B ` α.

For the other direction, using compactness of the PL-consequence and the
deduction theorem for PL, we get a finite subset of B, say B′ := {α1, . . . , αn},
such that ` α1 → (α2 → . . . (αn → α) . . .). By (RM) and axiom (K),
`MEL �α1 → (�α2 → . . . (�αn → �α) . . .). Thus by converse of deduction
theorem and definition of `MEL, �B `MEL �α. �

From the point of view of reasoning agents, this result means that agent
R can reason about E ’s beliefs (leaving statements of ignorance aside) as if
they were R’s own beliefs. In case �B `MEL �α, if agent R were asked
whether E believes α from what E previously declared to believe (�B), the
former’s answer would be yes because E would reason likewise about α.

Thus, staying within the MEL-fragment of the language of system K, we
obtain the above result. In fact,

Note 1 Theorem 2 holds for the fragment of MEL given by the formula
scheme �α | φ∧ ψ, and the axioms (a) PL (i), (ii) and (b) �α, whenever
` α. The inference rules are: (a) (MP ) and (b) if �α and �(α→ β) then
�β.

Remark 2 Theorem 2 confirms that propositional logic is encapsulated in
MEL; MEL is not a usual modal extension of propositional logic: it is a two-
tiered logic. In some sense, MEL is an encapsulation of PL within a special
fragment of PL with atoms all of the form �α, the modal axioms referring
to the articulation between the languages of the bottom and the top levels.
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In fact, we could totally do away with the connection to modal logic, by
changing the syntax and proving MEL axioms from assuming two proposi-
tional languages, one of which is embedded in the other one. Namely, we
can use the first propositional language L1 with k propositional variables,
p1, . . . , pk, propositional constant >, and formulae denoted by α, β, . . .. A
second propositional language L2 is then built, whose atoms are formulae
in L1. In the paper, we use a modal syntax to that effect, but an atomic
formula in L2 is intended to mean that the corresponding formula in L1 is
known to be true, which could be expressed by a pair of the form (α,T)
instead of �α, in the spirit of Labelled Deductive Systems (Gabbay [19]).
Likewise, we could express in L2 that a formula of L1 is known to be false,
or to be unknown, respectively as follows:

• Define (α,F) as meaning (¬α,T) (instead of �¬α)

• Define (α,U) as short for ¬(α,T) ∧ ¬(α,F) (i.e. ¬�α ∧ ¬�¬α).

Then MEL axioms could be retrieved easily in that setting, given that both
languages L1 and L2 obey the rules of propositional logic. The following just
rewrites MEL axioms in the new formalism:

(RM) : `L2 (α,T) → (β,T), whenever `L1 α→ β.

(M) : `L2 (α ∧ β,T) → (α,T) ∧ (β,T).

(C) : `L2 (α,T) ∧ (β,T) → (α ∧ β,T).

(N) : `L2 (>,T).

(D) : `L2 (α,T) → ¬(α,F).

We keep the same semantics as MEL (that is, the set of models of (α,T)
is {E ⊆ V : ∅ 6= E ⊆ [α]}. It is clear that ♦α in MEL equivalently writes
¬(α,F) or (α,T)∨ (α,U) in L2. In fact, the law of excluded fourth holds in
L2, that is

`L2 (α,T) ∨ (α,U) ∨ (α,F),

each of the three formulae being mutually exclusive with the other. This
formalism may solve some paradoxes of three-valued Kleene logic when, as
often, it is viewed as a logic of incomplete information [10]. This is a topic
for further research.

12



3.3 More inference rules in MEL

In the following we provide additional inference rules, valid in MEL, that
emphasize the bridge between propositional logic and the higher order lan-
guage.

Corollary 1 The ‘converse’ of (RM) holds: ` α→ β, if `MEL �α→ �β.
In other words, we have the equivalence:

`MEL �α→ �β, if and only if ` α→ β.
In fact, this also yields the equivalence:

`MEL �α→ �β if and only if `MEL �(α→ β).

Theorem 2 holds for ♦-formulae, provided ♦B is a singleton (i.e. contains
a single ♦-formula):

Observation 2 ♦α `MEL ♦β, if and only if α ` β.
Hence the equivalence : `MEL ♦α→ ♦β, if and only if ` α→ β.

Proof: Note that ♦α `MEL ♦β is equivalent to �¬β `MEL �¬α, which,
by Theorem 2, is clearly equivalent to α ` β. �

Observation 3 �B `MEL ♦α, if and only if B ` α.
Therefore, in particular,

`MEL �α→ ♦β, if and only if ` α→ β.

The ‘if’ part is a consequence of Theorem 2 and axiom (D). The proof of
the converse part again follows the same lines as that of the ‘only if’ part of
Theorem 2.

With the help of all the above, it is easy to derive some inference rules in
MEL. The first collection exploits valid formulae in MEL.

Proposition 1

1. If `MEL �α→ �β then ♦α `MEL ♦β.

2. If `MEL ♦α→ ♦β then �α `MEL �β.

3. If `MEL �(α→ β) then ♦α `MEL ♦β.

4. If `MEL ♦(α→ β) then �α `MEL �β.

5. If `MEL ♦(¬α ∨ β) then �(α ∨ γ) `MEL �(β ∨ γ).
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Proof: (1)-(3)follow from Corollary 1 and Observation 2.
Rule (4): Using `MEL ♦(α → β) ↔ (�α → ♦β), one has �α `MEL ♦β.
By Observation 3, therefore, α ` β. Then Corollary 1 gives the rule.
Rule (5): As for rule (4), `MEL ♦(¬α ∨ β) results in α ` β. Hence
α ∨ γ ` β ∨ γ. Finally, we use Corollary 1. �

The second collection consists of truth-preserving inference steps that
apply to the encapsulated PL-formulae.

Proposition 2

1. {�α,♦(α→ β)} `MEL ♦β.

2. {�(¬α ∨ β), �(α ∨ γ)} `MEL �(β ∨ γ).

3. {�(¬α ∨ β),♦(α ∨ γ)} `MEL ♦(β ∨ γ).

Proof: These inference rules can be proved with theorems of the MEL-
fragment of K, Theorem 2 and Observation 2. �

Rules (1) and (3) in Proposition 1 ensure that if E says possibly α and belief in
α always entails belief in β, then β is also possibly true for E . Inference rules
in Proposition 1 heavily rely on the equivalence between `MEL �α→ �β,
`MEL �(α → β) and α ` β. Inference rules in Proposition 2 are of a

different nature. Rules (1)-(3) are “encapsulated” resolution rules, that is,
inference rules pertaining to formulae of the inner PL language, operated in
the outer language. Rule (1) is a weakened form of PL modus ponens, which
from the point of view of encapsulated PL-formulae, preserves consistency,
not certainty (hence not truth) of inner formulae. Rule (2) is related to the
resolution rule in possibilistic logic [12] which preserves the weakest degree
of certainty of premises. Rule (3) is the resolution counterpart of Rule (1)
and was first proposed and semantically validated in the multivalued setting
of possibility theory in [13].

Consistency-preserving inference rules (i.e. with premises and conclusion
involving ♦-prefixed formulae) indicate that reasoning about the emitter’s
explicit partial ignorance is not completely trivial: via reasoning steps, R
can better figure out what E is supposed to ignore.
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4 Completeness

We prove two key propositions, that help establish completeness of MEL with
respect to the semantics given in Section 2.2. The basic idea for getting com-
pleteness is to build a passage to and from the MEL and Kripke semantics.
In Observation 1(4), it was pointed out that the MEL-language is a proper
sub-language of the modal logic KD. We recall that a Kripke model [27] for
the system KD, is a triple M := (U,R, V ), where the domain U is a non-
empty set and R is a binary relation on U that is serial/right unbounded: for
each u ∈ U , there is u′ ∈ U with uRu′. V : PV ×U → {0, 1} is the meaning
function that may be extended to the set of all KD-formulae in a routine
manner. M,u |= φ denotes that the KD-formula φ is satisfied at u(∈ U) by
V , i.e. V (φ, u) = 1. M,u |= Γ for a set Γ of KD-formulae, indicates that
M,u |= φ for each φ ∈ Γ. A formula φ is a local semantic consequence of
a set Γ in KD, written Γ |= φ, if and only if for every KD-Kripke model
M := (U,R, V ) and u ∈ U , if M,u |= Γ then M,u |= φ.

Proposition 3 For every epistemic state E of an agent E, there is a KD-
Kripke model ME with domain E such that for any MEL-formula φ,

E |=MEL φ, if and only if for every w ∈ E, ME, w |= φ.

Proof: We consider ME := (E,E×E, VE), where the meaning function
VE is defined for any p ∈ PV, w ∈ E as: VE(p, w) := w(p). It is clear that
ME is a KD-Kripke model. It can be checked by induction on the complexity
of any PL-formula α, that VE(α,w) = w(α). Proof of the proposition is by
induction on the complexity of the MEL-formula φ.

We only consider the base case φ := �α, α ∈ PL. Let w ∈ E. VE(�α,w) =
1, if and only if VE(α,w′) = 1, for any w′ with w (E×E) w′. Therefore, for all
w′ ∈ E, VE(α,w′) = 1 = w′(α), which happens if and only if E |=MEL �α. �

In fact, what it means is that any meta-model E of MEL can be encoded
as a relation E × E on V , in the sense that VE(�α,w) = 1, which, in KD
means w′ |= α, ∀w′ ∈ V such that (w,w′) ∈ E × E, is equivalent to E ⊆ [α],
the satisfiability relation in MEL.

Proposition 4 For any KD-Kripke model M := (U,R, V ) and u ∈ U , there
is an epistemic state Eu such that for any MEL-formula φ,

M,u |= φ, if and only if Eu |=MEL φ.
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Proof: We consider the ‘R-neighbourhood’ of u, viz. the set [u]R :=
{u′ ∈ U : uRu′}. For each u′ ∈ [u]R and p ∈ PV , a propositional valuation
wu′ is defined as: wu′(p) := V (p, u′).

Then wu′(α) = V (α, u′), for any α ∈ PL. This is proved by induction on
the complexity of α.

The required epistemic state is the set Eu := {wu′ : u′ ∈ [u]R}. First note
that Eu 6= ∅, as R is serial. The idea is to collect all the propositional
valuations determined by V , in the R-neighbourhood of u. The proposition
is now proved by induction on the complexity of φ. As before, we demonstrate
the base case φ := �α, α ∈ PL.
Eu |=MEL �α, if and only if wu′(α) = 1, for all u′ with uRu′. The latter
holds if and only if V (α, u′) = 1, which happens if and only if V (�α, u) = 1,
i.e. M,u |= �α3. �

The possibility of considering simplified versions of modal systems like
S5 and KD45, omitting the Kripke relation in Kripke structures (assuming
all possible worlds are related), thus reducing such structures to just the
set of possible worlds, is pointed out in [25] p. 62. Here, we do not need
axioms 4, 5 of positive and negative introspection, respectively, as we do
not nest modalities. As a consequence, our non-Kripke semantics is valid for
this specific fragment of KD and corresponds to our idea of reasoning about
beliefs. Namely we do not refer to the “real state of the world” In fact, we
need Kripke relations of the form E ×E, for any non-empty set E ⊆ V, not
just V × V . As a by-product of Propositions 3 and 4, we obtain a result
analogous to that for the systems S5 and KD45.

Proposition 5 Let M := (U,R, V ) be a KD-Kripke model and u ∈ U .
Then there is a structure M0 := (U0, R0, V0) and a state u0 ∈ U0 such that,
for any MEL-formula φ,

M,u |= φ, if and only if M0, u0 |= φ.

Proof: Consider any MEL-formula φ. By Proposition 4, M,u |= φ,
if and only if Eu |=MEL φ. Using Proposition 3, we get the Kripke model
MEu := (Eu, Eu × Eu, VEu) such that Eu |=MEL φ, if and only if for every

3Observe that, if the Kripke model M in the proposition above is, in particular, ME

of Proposition 3 for some epistemic state E, then Eu = E, for any u ∈ E.
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w ∈ Eu, MEu , w |= φ. Combining, M,u |= φ, if and only if for every w ∈ Eu,
MEu , w |= φ.

As R is serial, Eu 6= ∅. Let u0 ∈ Eu. So, if M,u |= φ, MEu , u0 |= φ.
Conversely, as we are considering the universal relation on Eu, it is not hard
to show that if for one u0 ∈ Eu, MEu , u0 |= φ, then for every w ∈ Eu,
MEu , w |= φ. Hence M,u |= φ. �

So we may omit the Kripke relation R0 and obtain a simpler structure (U0, V0)
that suffices for consideration of satisfiability of MEL-formulae in terms of
Kripke models.

We now return to the completeness problem.

Theorem 3 For any set Γ ∪ {φ} of MEL-formulae, Γ |= φ, if and only if
Γ |=MEL φ.

Proof: Let Γ |= φ, and E be such that E |=MEL Γ. By Proposition
3, the KD-Kripke model ME satisfies ME, w |= Γ, for every w ∈ E. So
ME, w |= φ. By the same proposition, E |=MEL φ.

Conversely, let Γ |=MEL φ. Consider any KD-Kripke model M :=
(U,R, V ) and u ∈ U with M,u |= Γ. Proposition 4 gives the set Eu such that
Eu |=MEL Γ. Hence Eu |=MEL φ. Again, by the same proposition, M,u |= φ.
�

Corollary 2 (Completeness) If Γ |=MEL φ then Γ `MEL φ.

Proof: KD is strongly complete with respect to the class of serial frames.
So by Observation 1(4) and Theorem 3, we get the result. �

Therefore, in particular, we have the following soundness and complete-
ness.

Theorem 4 `MEL φ, if and only if |=MEL φ, i.e., E |=MEL φ, for all
epistemic states of agent E.

5 The logical characterization of meta-epistemic

states

Let F be any non-empty collection of non-empty sets of propositional valu-
ations, representing the meta-epistemic state of an agent regarding another
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agent’s beliefs. It is shown here that a MEL-formula δF may be defined such
that

• F satisfies δF ;

• furthermore, if F satisfies any set Γ′ of MEL-formulae, the syntactic
consequences of Γ′ must already be consequences of δF .

So the MEL-formula δF completely characterizes the meta-epistemic state F .
To reach our goal, we follow the line of characterization of Kripke frames by
Jankov-Fine formulae (cf. [4]). Here, a Jankov-Fine kind of formula for any
non-empty epistemic state is considered, keeping in mind the correspondence
with the simpler Kripke frame (with universal accessibility relation), used in
the previous section. The formula is then extended naturally to a non-empty
collection F of non-empty epistemic states.

5.1 Syntactic representation of meta-epistemic states

Let E ⊆ V , E 6= ∅. Further, let αE :=
∨
w∈E αw, where αw is the PL-formula

characterizing w, i.e. αw :=
∧
w(p)=1 p ∧

∧
w(p)=0 ¬p, where p ranges over

PV . Observe that E |= ♦αw if and only if w ∈ E, since [αw] = {w}. On the
other hand, E |= �αw, if and only if E = {w}, since E 6= ∅.

Consider now a meta-epistemic state, say the non-empty collection F :=
{E1, . . . , En}, where the Ei’s are non-empty sets of propositional valuations.
Note that |F| ≤ 22k − 1. We take

⋃
F := E1 ∪ . . . ∪ En, and let αF :=∨

w∈
S
F αw.

The following is then easy to observe.

Proposition 6 Let Ei ∈ F .

1. (i) For every B ⊆ Ei, B |=MEL �αEi
. In fact, B |=MEL �αF .

(ii) If E 6⊆
⋃
F , then E 6|=MEL �αF .

(iii) Suppose E ⊆
⋃
F , but there is i (∈ {1, . . . , n}) such that

E \ Ei 6= ∅ (e.g. when E ) Ei). In this case, E 6|=MEL �αEi
.

2. (i) Ei |=MEL

∧
w∈Ei

♦αw, since w ∈ Ei ⇐⇒ Ei |=MEL ♦αw.

(ii) For all E such that there is w ∈ Ei \ E, E 6|=MEL

∧
w∈Ei

♦αw.
So, in particular, no proper subset of Ei can satisfy this formula.
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In order to exactly describe the collection F , we need a MEL-formula such
that it is satisfied by all members of F only. In particular, it must not be
satisfied by
(a) sets having elements from outside

⋃
F ,

(b) sets of valuations lying within
⋃
F , but not equal to any of the Ei’s,

(c) especially, subsets of members of F .

Such a (non-unique) MEL-formula is denoted δF .

If F := {E}, where E := {w1, . . . , wm}, then δF is denoted δE and can
clearly be chosen as the conjunction of

1. �(αw1 ∨ . . . ∨ αwm)

2. ♦αwi
, i = 1, . . . ,m,

i.e., �αE ∧
∧
w∈E ♦αw. Because of Proposition 6 (1)(i) and (2)(i), we have

E |=MEL δE, and it is simple to check that for any epistemic state E ′,

Observation 4 E ′ |=MEL δE, if and only if E ′ = E.

In the general case, F := {E1, . . . , En}, and the following definition can
be adopted:

Definition 4 δF :=
∨

1≤i≤n δEi
=

∨
1≤i≤n(�αEi

∧
∧
w∈Ei

♦αw).

Note that, strictly speaking, the Jankov-Fine kind of formula for E would
be the conjunct of �αE and �(αwi

→ ♦αwj
), i 6= j. But here, the latter

components would not make sense, and we use the formulae ♦αwj
.

The following result shows that the set of meta-models of δF is precisely
F , and any consequence of sets of formulae satisfied by all epistemic states
of F , is also a consequence of δF .

Theorem 5

1. F |=MEL δF , i.e. for each Ei ∈ F , Ei |=MEL δF .

2. If F ′ is any other meta-epistemic state such that F ′ |=MEL δF , F ′ ⊆ F .

3. If Γ′ is a set of MEL-formulae such that F |=MEL Γ′, Γ′ `MEL φ would
imply {δF} `MEL φ, for any MEL-formula φ.
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Proof:

1. Observed earlier: follows from Proposition 6(1)(i), (2)(i).

2. Let E ∈ F ′. Suppose E 6∈ F .
If E 6⊆

⋃
F , using Proposition 6(1)(ii), we get E 6|=MEL δF , a contra-

diction to the assumption.
So let E ⊆

⋃
F , and for each i = 1, . . . , n, E 6= Ei.

In case there is w ∈ Ei \ E, E 6|=MEL

∧
w∈Ei

♦αw, by Proposition
6(2)(ii).
On the other hand, if there is w ∈ E \ Ei, E 6|=MEL �αEi

, by Proposi-
tion 6(1)(iii).
Thus in either case, E 6|=MEL δF , a contradiction.

3. Suppose Γ′ `MEL φ, and let E |=MEL δF . By part (2) of this the-
orem, E ∈ F . Then E |=MEL Γ′, by assumption. By soundness of
MEL, Γ′ |=MEL φ, and so E |=MEL φ. Thus {δF} |=MEL φ, and by
completeness of MEL, we get the result. �

To sum up, any meta-epistemic state, that is any non-empty family of
non-empty subset of V can be expressed by a formula in MEL.

5.2 The meta-models of meta-belief bases

Conversely, let Γ be any consistent set of MEL-formulae representing a meta-
belief base. We consider the family FΓ of all meta-models (sets of proposi-
tional valuations) of Γ (cf. Section 2.2), viz.

Definition 5 FΓ := {E ⊆ V : ∅ 6= E |= Γ}.

When Γ := {φ}, we write Fφ. So FΓ =
⋂
φ∈ΓFφ.

As a simple consequence of the proposed semantics for MEL, we have

Observation 5
(a) For �α ∈ At, F�α = {E ⊆ V : E ⊆ [α]}.
(b) F¬ψ = (2V \ {∅}) \ Fψ; Fψ∧ψ′ = Fψ ∩ Fψ′.
(c) For α ∈ PL, F♦α = {E ⊆ V : E ∩ [α] 6= ∅}.
(d) For any MEL-formulae φ, ψ, φ ≡ ψ (cf. Definition 1), if and only
if Fφ = Fψ.
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It is clear that in the logic MEL, the meta-models, given by sets of valua-
tions, play the same role as propositional valuations in classical logic. More-
over, it has been pointed out that the fragment of MEL restricted to classical
formulae prefixed by a modality is isomorphic to propositional logic. So the
encapsulation of PL in MEL at the syntactic level corresponds at the seman-
tic level to the shift from the set of interpretations V to its power set (but
for ∅).

The following theorem extends the classical properties of semantic entail-
ment over meta-models. It is the companion of Theorem 5. We see that FΓ is
the maximal set of meta-models of Γ that satisfies precisely the consequences
of Γ.

Theorem 6

1. If Γ′ is any set of MEL-formulae such that FΓ |=MEL Γ′, Γ′ `MEL φ
would imply Γ `MEL φ, for any MEL-formula φ.

2. Let Con(Γ) := {φ : Γ `MEL φ} and Th(FΓ) := {φ : FΓ |= φ}. Then
Con(Γ) = Th(FΓ).

Proof:

1. Let E |=MEL Γ. By assumption, E |=MEL Γ′. Therefore E |=MEL φ,
using soundness of MEL, and so Γ |=MEL φ. Completeness of MEL
gives the result.

2. Follows from part (1) of this theorem and definition of FΓ. �

5.3 Main result

Definition 4 proposes an encoding of a meta-epistemic state into a MEL
formula. Definition 5 gives the set of meta-models of any consistent meta-
belief base. We can now establish the following connection between these
definitions by iterating the construction. It shows the bijection between
classes of semantically equivalent formulae in MEL and non-empty sets of
non-empty subsets of valuations.

Theorem 7
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1. If Γ∪ {φ} is any set of MEL-formulae with Γ consistent, Γ `MEL φ, if
and only if {δFΓ

} `MEL φ. In other words, the MEL-consequence sets
of Γ and δFΓ

are identical: Con(Γ) = Con(δFΓ
).

2. If F is any non-empty collection of non-empty sets of propositional
valuations, F = FδF .

Proof:

1. As FΓ |=MEL δFΓ
(Theorem 5(a)), by Theorem 6(1), {δFΓ

} `MEL φ
implies Γ `MEL φ.
Conversely, let Γ `MEL φ. By soundness, Γ |=MEL φ. By Theorem
5(c), as FΓ |=MEL Γ (Theorem 6(2)), we have {δFΓ

} `MEL φ.

2. Let E ∈ F . Then by Theorem 5(a), E |=MEL δF and so E ∈ FδF .
Conversely, let E ∈ FδF , i.e. E |=MEL δF . Using Theorem 5(b), we get
E ∈ F . �

This result shows that MEL can precisely account for non-empty families
of subsets of valuations. Moreover, the following bijections can be estab-
lished.

Corollary 3
(a) The Boolean algebra on the set of MEL-formulae quotiented by se-
mantical equivalence ≡, is isomorphic to the power set Boolean algebra
with domain 22V\{∅}. The correspondence, for any MEL-formula φ, is
given by: [φ]≡ 7→ Fφ.
(b) There is a bijection between the set of all meta-epistemic states
and the set of all (deductively closed) belief sets of MEL, i.e. Γ such
that Con(Γ) = Γ. For any family F , the correspondence is given by:
F 7→ Con(δF).

Proof:
(a) We use Observation 5, and part (2) of Theorem 7.

(b) For this, we note that F = FδF = FCon(δF ), by soundness of MEL and
part (2) of Theorem 7. That Con(Γ) = Con(δFΓ

) (part (1) of Theorem
7), suffices to show that the correspondence is surjective. �
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Item (b) of this corollary suggests that the situation of MEL is similar to
the one of propositional logic at the semantic level, namely the one-to-one
correspondence between sets of possible worlds and deductively closed sets of
formulae. This result could be used for a proper development of MEL-theory
revision in the style of Gärdenfors [20] (whereby one could revise what is
explicitly known and what is explicitly unknown) since his treatment relies
on deductively closed sets of formulae, in place of sets of possible worlds.

5.4 Normal forms in MEL

The next question would be the search for a normal form for well-formed
formulae of MEL. Namely, since any subset Γ of MEL-formulae represents
a family FΓ of subsets of valuations and any meta-epistemic state F :=
{E1, . . . , En} can be exactly encoded as a formula of the form δF :=

∨
1≤i≤n

(�αEi
∧

∧
w∈Ei

♦αw), it is interesting to see if the latter expression can lead
or not to a normal form for the logic.

Using just one modality, the previous expression can also be expressed as∨
1≤i≤n(�αEi

∧
∧
w∈Ei

¬�¬αw). In fact this is a disjunctive normal form
for MEL-formulae which suggests the generic form∨

1≤i≤n

(�αi ∧
∧

1≤j≤ni

¬�αij),

i.e. the propositional logic disjunctive normal form on atoms of the form �α
for any propositional formula α. The corresponding conjunctive form is thus∧

1≤i≤n

(¬�βi ∨
∨

1≤j≤ni

�βij).

This gives an idea of the kind of information a belief source can provide
in MEL, namely a disjunction of several beliefs4 and of one plausible, but
not ascertained, proposition. However, it is not clear that the canonical form
obtained for representing families of epistemic states by a single MEL-formula
is an attractive normal form for achieving efficient inference methods in this
logic. It seems that it is not so obvious to find a useful normal form here. For
instance, ♦α can be put in the form

∨
[α]∩E 6=∅(�αE ∧

∧
w∈E ¬�¬αw), but

this expression is not computationally appealing at all. The main problem is

4not to be confused with the belief in a disjunction of propositions
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that if there are n propositional letters, then there are 22n
meta-models of the

MEL language. So there is clearly an extra source of exponential complexity.
The normal forms suggested above seem to be special cases of more general
forms discussed by Moss [31]. That paper focuses on weak completeness and
decidability results for several modal logics, especially those derived from
K. At the proof-theoretic level, it is not clear at this stage how our logic
MEL could benefit from normal forms proposed in more general modal logic
systems, as this question seems to be open to a large extent to-date. (As
Moss says in [31], “The topic is missing from most recent textbooks, and
only a handful of papers discuss it.”).

At the syntactic level, it may be useful to introduce an extra symbol
similar to �, reversing the inclusion symbol at the semantic level. Namely
∆α, such that E |= ∆α if and only if [α] ⊆ E. This modality has been
introduced in epistemic modal logic and uncertainty theories [11] in order
to account for the idea of “guaranteed possibility” (as for instance explicit
permission in a deontic acception). The counterpart of ∆ in the setting of
formal concept analysis is called “sufficiency operator” by some authors (see
Düntsch and Or lowska [17]). It is clear that ∆α is semantically equivalent
to

∧
w∈[α] ♦αw, since obviously ∆(α ∨ β) is semantically equivalent to ∆α ∧

∆β and ♦αw to ∆αw. Then if E = [α], F�α∧∆α = {E}, and also δF ≡∨
1≤i≤n(�αEi

∧ ∆αEi
). This could be a line to follow in search of a proper

normal form.

6 From meta-epistemic states to belief func-

tions

A connection between MEL and belief functions was pointed out in Section
1. A belief function [34] Bel is a non-additive monotonic set-function (a
capacity) with domain 2V and range in the unit interval, that is super-additive
at any order (also called ∞-monotone), that is, it verifies a weak version
of the additivity axiom of probability measure. It generalizes probability
measures. The degree of belief Bel(A) in proposition A evaluates to what
extent this proposition is logically implied by the available evidence. The
plausibility function Pl(A) := 1 − Bel(Ac) evaluates to what extent events
are consistent with the available evidence. The pair (Bel, P l) can be viewed
as quantitative randomized versions of KD modalities (�,♦) [36], hence of
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MEL. Interestingly, elementary forms of belief functions arose first, in the
works of Bernoulli, for the modeling of unreliable testimonies [35], while
MEL encodes the testimony of agent E .

The function Bel can be mathematically defined from a (generally finite)
random set on V , that has a very specific interpretation. A so-called basic
assignment m(E) is assigned to each subset E of V , and is such that m(A) ≥
0, for all A ⊆ V; moreover: ∑

E⊆V

m(E) = 1.

The degree m(E) is understood as the weight given to the fact that all an
agent knows is that the value of the variable of interest lies somewhere in
set E, and nothing else. In other words, the probability allocation m(E)
could eventually be shared between elements of E, but remains suspended
for lack of knowledge. For instance, agent R receives a testimony in the form
of statements α such that E = [α]; m(E) reflects the probability that E
correctly represents the available knowledge. A set E such that m(E) > 0
is called a focal set. In the absence of conflicting information it is generally
assumed that m(∅) = 0. It is then clear that a collection of focal sets is a
meta-epistemic state in our terminology. Interestingly, a belief function Bel
can be expressed in terms of the basic assignment m [34]:

Bel(A) =
∑
E⊆A

m(E).

This formula is clearly related with the meta-model F�α = {E ⊆ V : ∅ 6=
E ⊆ [α]} (cf. Observation 5) of atomic belief �α. The converse problem,
namely, reconstructing the basic assignment from the belief function, has a
unique solution via the so-called Möbius transform

m(E) =
∑
A⊆E

(−1)|E\A|Bel(A).

It is clear that the assertion of a MEL formula �α is faithfully expressed
by Bel([α]) = 1. Especially, Bel([α]) can be interpreted as the probability
of �α [36]. Moreover, there is a similarity between the problem of recon-
structing a mass assignment from the knowledge of a belief function and the
problem of singling out an epistemic state in the language of MEL as in Sec-
tion 5.1. Namely, consider the MEL-formula �αE ∧ ¬

∨
w∈E �¬αw ≡ δE,
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whose set of meta-models is {E}. We shall show that this expression can be
written as an exact symbolic counterpart of the Möbius transform. To see
it, in fact, rewrite the Möbius transform as

m(E) =
∑

A⊆E:|E\A| even
Bel(A) −

∑
A⊆E:|E\A| odd

Bel(A).

Now translate
∑

into
∨

, Bel(A) into �α, “−” into ∧¬. We then can
prove that the formula δE is the Boolean counterpart of the Möbius trans-
form.

Proposition 7∨
α|=αE :|E\[α]| even �α ∧ ¬

∨
α|=αE :|E\[α]| odd �α ≡ �αE ∧ ¬

∨
w∈E �¬αw

Proof: Indeed, note first that if β |= α, �α ∨ �β ≡ �α in MEL, so,∨
α|=αE :|E\[α]| even �α ≡ �αE.

Now the set of meta-models of the formula �αE ∧
∨
w∈E �¬αw is

{A : A ⊆ E} ∩ ∪w∈E{A ⊆ V : w 6∈ A} = ∪w∈E{A ⊆ E : w 6∈ A}.

It is not difficult to see that the above is also the set of meta-models
of the formula

∨
w∈E �αE\{w}, and equivalently of the more redundant for-

mula
∨
α|=αE :|E\[α]| odd �α. So the Möbius-like MEL-formula is semantically

equivalent to �αE ∧ ¬(�αE ∧
∨
w∈E �¬αw) ≡ δE. �

So one may consider belief (resp: plausibility) functions as numerical
generalisations of MEL boxed (diamonded) formulae, and formulae describ-
ing single epistemic states (totally informed meta-epistemic states) can be
obtained via a symbolic counterpart to Möbius transform.

7 Related work

In this section, we review past works that either share similar technical tools
or are closely related to our proposal. In the first group of works are modal
logics having similar syntax such as consensus logics, or higher-order seman-
tics, viz. neighborhood semantics. In the second group, there is a huge
literature on reasoning about knowledge, that we can only briefly mention.
Also, logics of incomplete information like partial logic and possibilistic logic
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consider incomplete epistemic states as models, and this is also true for more
general uncertainty logics. Finally, we stress the similarity between the prob-
lem addressed by MEL of reconstructing an epistemic state from information
made explicit by an agent, and the construction of a belief function from sub-
jective probability assessments provided by an agent.

7.1 Consensus logic

Pauly [33] presents a logic for consensus voting that has a language and
axiomatization identical to those of MEL. However, the semantics is set in a
different context altogether. We take a brief look at it, in order to make a
comparison with MEL. Assume, as before, that |PV | = k, and V is the set
of all propositional valuations, so that |V| = 2k. At denotes the set of MEL
atoms.

Let N be a finite set of n elements (n a positive integer), interpreted as
voters. Let Wn be a collection of n propositional valuations wi, i = 1, . . . , n
expressing the votes for the various propositional formulae. A collective val-
uation expressing consensus over N is an assignment W n : At → {0, 1},
defined for any �α ∈ At by:

W n(�α) = 1, if and only if wi(α) = 1, i = 1, . . . , n.

W n is called an n-consensus model or a consensus model for n individuals,
and EWn denotes the corresponding set of PL-interpretations, that is EWn :=
{v ∈ V : v = wi,∃wi ∈ Wn}. Then define W n |=C �α by W n(�α) = 1.
W n : At → {0, 1} is extended to the set of all MEL-formulae in a routine
manner, to obtain W n |=C φ. Γ |=C φ, for a set Γ∪ {φ} of MEL-formulae, is
then defined as usual.

Remark 3 The n valuations wi for an n-consensus model need not be dis-
tinct. In other words, the collection Wn formed by wi, i = 1, . . . , n, is a
multiset on V . So, though the motivation is entirely different, we may con-
trast W n |=C φ with EWn |= φ in MEL-semantics: EWn is a set of valuations,
while W n is associated with a multiset Wn of valuations.

W n thus represents the result of a unanimous voting of a group N of
n individuals, where each individual is equipped with some propositional
valuation. “�α is true in consensus model W n” indicates that the group
unanimously accepts α, and it occurs provided (the valuations of) each indi-
vidual makes α true.
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Observation 6 For any n-consensus model W n, W n |=C MEL, i.e.
W n |=C φ, for all φ such that `MEL φ.

The following is proved in [33].

Proposition 8 Let n ≥ 2k. For any assignment W : At→ {0, 1},
W |=C MEL, if and only if W is an n-consensus model.

It is also observed that one can find an assignment W : At→ {0, 1} such
that W |=C MEL, but W is not an n-consensus model for any n < 2k. In-
deed, consider the MEL-formula φ0 :=

∨
w∈V �(

∨
w′∈V\{w} αw′)

5. Notice that

for every n-consensus model W n with n < 2k, we have W n |=C φ0. However,
take an m-consensus model Wm such that its associated collection Wm of
propositional valuations contains all the 2k valuations of V , i.e. EWm = V
so that m ≥ 2k. Then Wm 6|=C φ0. So the assignment Wm cannot be an
n-consensus model for any n < 2k (more precisely, there is no collection
Wn of n < 2k valuations such that W n = Wm). But Wm |=C MEL, by
Observation 6.

As indicated in Remark 3, an n-consensus model W n is equivalent to an
epistemic state EWn of an agent used in the MEL-semantics, if and only
if it is associated with a collection of distinct propositional valuations. So
‘W n |=C MEL’, per se, is not a meaningful statement in MEL, and we do
not have a version of Proposition 8 for MEL.

The set of meta-epistemic states {E ⊆ V : |E| = n}may thus be identified
with the collection Condn of n-consensus models that are associated with n
distinct propositional valuations. Let Conn denote the set of all n-consensus
models. We then have Condn ( Conn : for n > 2k, Condn = ∅. Let n ≤ 2k,
and W n ∈ Conn, a consensus model where not all propositional valuations
in the collection Wn are distinct. So |EWn| < n. Then one can show that
W n cannot become an n-consensus model in Condn. Indeed, consider the
MEL-formula φWn := �

∨
wi∈Wn αwi

. Clearly, W n |=C φWn . Moreover, for

any W n
0 ∈ Condn, |EWn

0
| = n, so that EWn

0
\ EWn 6= ∅. If w′

j ∈ EWn
0
\ EWn ,

w′
j 6|=

∨
wi∈Wn αwi

. Therefore W n
0 6|=C φWn .

Rephrasing Theorem 4, we may say that

5φ0 is logically equivalent to the formula ¬
∧

w∈V ♦αw. Interpreting ♦αw as “interpre-
tation w is possible”, φ0 means that at least one interpretation is impossible; namely for
any epistemic state E,E |= φ0 iff E is a proper subset of V.
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Proposition 9 `MEL φ, if and only if for each n ≤ 2k and W n ∈ Condn,
W n |=C φ.

However, the general completeness result obtained for MEL (cf. Corollary
2) will not find an analogue in the setting of consensus logic.

7.2 Neighborhood semantics

At first glance this view seems to bring us closer to neighborhood semantics
of modal logics proposed by D. Scott and R. Montague [9]. Indeed, in this
approach, Kripke structures are replaced by neighborhood frames, that equip
a set of possible worlds V with a neighborhood function N . The latter assigns
to each element v of V a set N(v) of subsets of V viewed as ‘necessary propo-
sitions’. This kind of semantics is more general than relational semantics,
hence can serve as semantics for modal logics weaker than the normal modal
logic K. But again, despite the similarity between a meta-epistemic state
and the set of ‘necessary propositions’, there does not appear to be a natural
correlation between MEL and neighborhood semantics. Indeed, in MEL, the
satisfiability condition is of the form E |= φ, i.e. a model is a nonempty
subset of V , while in such modal logics, a model involves the whole collection
of subsets of V , and the satisfiability at world v of φ := �α, means that the
set of models of α is part of N(v). So the apparent connection between MEL
and neighborhood semantics is fortuitous.

7.3 Modal logics of knowledge and belief

The modal logic approach to the representation of knowledge (and belief to
some extent) is due to Hintikka [26]. Knowledge is then viewed as true be-
lief. This approach, as well as subsequent work, relied on the KD45 modal
logic. At the semantic level it uses Kripke semantics based on an accessi-
bility relation R among possible worlds. A proposition α is necessarily true
(i.e. �α is true) at world w if and only if it is true at all worlds w′ such
that wRw′. Indeed, modal logic accounts for relations having various prop-
erties. The possibility of nested modalities accounts for the composition of
a relation with itself. As already said, our approach does not require axioms
4 and 5 (positive and negative introspection), since we are not concerned
with an agent reasoning about his or her own beliefs. In the scope of belief
representation, the meaning of the accessibility relation has been discussed
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in the literature. Basically, authors like Halpern and colleagues [25] consider
wRw′ to mean that w′ is possible for the agent in state w, or that w and w′

are not distinguishable [28].
In our approach, the fact that we rule out nested modalities and do not

consider introspection does not make this kind of semantics very natural. It
is not very clear what it means to say that an agent is in a possible world w.
It may mean something like “given that the real world is w”. This “actual”
world always appear in semantic accounts of such epistemic modal logics.
Recently, Aucher [1] indicates the possibility of different points of view on
reasoning about agents’ beliefs: the external point of view and the internal
point of view. In the first case, there is an agent who describes what (s)he
believes the real world is and also what are other agents’ beliefs, or even
mutual beliefs; this agent is not one of these agents and is not represented
in the language. The internal point of view is the one of an agent who is
one among other agents. In other words, the language describes what (s)he
believes the other agents believe and what the other agents believe (s)he
may believe. The point of view of usual epistemic logic discussed above is
the external point of view with perfect knowledge. Aucher [1] deals with
the internal point of view essentially. He also discusses the external point of
view under incomplete knowledge and possibly erroneous beliefs. Our logic
deals with a subcase of the latter point of view where an agent R models the
beliefs of another agent E , as expressed by the latter, but only E appears in
the language (the � symbol refers to E). All we assume here is that what
agent E believes about the world is summarized by a subset of valuations
called ‘epistemic state’; what agent R knows about the other agent’s beliefs
is thus a set of epistemic states, one of which is the correct one, hence it is
a family of subsets of valuations (a ‘meta-epistemic state’). The agent R is
not concerned with the real world.

Nevertheless, our setting is clearly similar to the one proposed by Halpern
and colleagues [25] reinterpreting knowledge bases as being fed by a “Teller”
that makes statements supposed to be true in the real world. The knowledge
base is what we call receiver and the teller what we call emitter. Important
differences are that we are mainly concerned with beliefs held by the Teller
(hence making no assumptions as to the truth of such beliefs), that these
beliefs are incomplete, and that the Teller is allowed to explicitly declare
partial ignorance about specific statements.

Finally, even if not concerned with nonmonotonic reasoning, MEL may
be felt as akin to early nonmonotonic modal logics such as Moore’s autoepis-
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temic logic (AEL) [30], insofar as they share the ambition of reasoning about
partial ignorance with the same interpretation for modal operators. Expan-
sions of an AEL theory can be viewed as meta-models expressing epistemic
states. However, there are several important differences. In autoepistemic
logic an agent is reasoning about his or her own beliefs, or lack thereof,
not about another agent’s beliefs. So AEL naturally allows for the nesting
of modalities, contrary to MEL. Moreover, sentences of the form �α ∨ ¬α
(meaning that if α is not believed, then it is false) involving boxed and non-
boxed formulae are allowed in AEL (and are the motivation for this logic),
thus mixing propositional and modal formulae, which precisely MEL forbids,
as the receiver agent is only allowed to store beliefs supplied by the emitter
agent. These features of AEL, that are absent in MEL, are actually shared
by many other nonmonotonic modal logics in the eighties, surveyed in [37]
Chap. IV.

7.4 Partial logic

Partial logic Par [5], like MEL, uses sets of valuations in place of valuations,
under the form of partial models. A partial model [σ] assigns truth-values to a
subset of propositional variables. The corresponding meta-model is formed of
all completions of σ. Unfortunately, Par adopts a truth-functional view, and
assumes the equivalence σ |= α∨β if and only if σ |= α or σ |= β. So it loses
classical tautologies, which sounds paradoxical when propositional variables
are Boolean [10]. Actually, the basic Par keeps the syntax of classical logic,
which forbids to make a difference between the fact of believing α ∨ β and
that of believing α or believing β.

7.5 Possibilistic logic and logics of uncertainty

Possibilistic logic has been essentially developed as a formalism for handling
qualitative uncertainty with an inference mechanism that remains close to
the one of classical logic [12, 14]. A standard possibilistic logic expression is
a pair (α, a), where α is a propositional formula and a ∈ (0, 1]. Any discrete
linearly ordered scale can be used in place of [0, 1]. The weight a is interpreted
as a (positive) lower bound of the degree of certainty of α, i.e. N(α) ≥ a,
where the function N is a necessity measure. N is a set-function that satisfies
N(>) = 1;N(⊥) = 0;N(α ∧ β) = min(N(α), N(β)). A possibilistic belief
base is a conjunction of such weighted formulae. Possibilistic knowledge bases
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have semantics in terms of a weak order over the set V of interpretations,
encoded by means of a single possibility distribution π : V → [0, 1]. π can
be viewed as a fuzzy set of models and derived as follows from a weighted
formula (α, a): π(α,a)(w) = 1 if w |= α, and 1− a otherwise. In other words,
an interpretation violating α is all the less tolerated as α is more certain.
It can be checked that N(α) = minw 6|=α 1 − π(α,a)(w) = a. The possibility
distribution induced by possibilistic belief base is obtained by the pointwise
minimum of the possibility distributions induced by each possibilistic formula
in it.

Disjunctions and negations of possibilistic formulae are not allowed in ba-
sic possibilistic logic, which is only a simple totally ordered extension of clas-
sical logic. One extended syntax of possibilistic logic also allows for propo-
sitions weighted by lower bounds of possibility degrees Π(α) = 1 − N(¬α),
and express weak constraints of the form Π(α) ≥ β [12].

Possibilistic logic is another so-called “encapsulated” two-tiered logic like
MEL. It is propositional logic embedded within a multivalent logic, as the
semantics of weighted formulae (α, a) is clearly many-valued. This multi-
valent logic is a fragment of Gödel logic (as coined by Hájek [22]), where
the only allowed connective is conjunction expressed by the minimum. The
characteristic axiom of necessity measures is a graded counterpart of axioms
(M) and (C) of MEL, taken together. More generally, the encapsulation
of classical propositions (then often called ‘events’) by means of degrees of
belief is typical of uncertainty theories. As a consequence, reasoning under
graded uncertainty in a logical format comes down to handling many-valued
higher order propositions. For instance, a degree of probability Prob(α)
can be modeled as the truth-value of the proposition “Probable(α)” (which
expresses the statement that α is probably true), where Probable is a many-
valued predicate [23].

Assuming only maximal weights a = 1, possibilistic logic actually coin-
cides with the fragment of MEL containing only conjunction of boxed formu-
lae that was proved equivalent to propositional logic itself. At the semantic
level, a possibility distribution is a graded extension of an epistemic state
used as a meta-model in MEL. A possibilistic formula (α, a) can be viewed
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as satisfied by any possibility distribution such that6:

π |= (α, a) ⇐⇒ N(α) = min
v 6|=α

1− π(v) ≥ α.

So the semantics of possibilistic logics can be described in terms of generalized
MEL meta-models. This kind of semantics was proposed by Boldrin and
Sossai [6] under the name forcing semantics. It is thus patent that MEL and
possibilistic logic are extensions of the same root logic in two complementary
directions: syntactic handling of incomplete information on the one hand,
and graded belief on the other hand, respectively. Moreover, formulae in
MEL of the form ♦α correspond to constraints of the form Π(α) = 1 in the
extended possibilistic logic language. The introduction of connectives other
than idempotent conjunctions between possibilistic formulae was studied by
Boldrin and Sossai [6] in the scope of data fusion, and more recently by
Dubois and Prade [15] in the scope of multiagent systems. In particular,
disjunctions and negations of possibilistic formulae were interpreted similarly
to disjunctions and negations of MEL-formulae, in terms of union and set-
complement of families of generalized meta-models of weighted formulae.

As pointed out in section 2.2, MEL derived inference rules (2) and (3) in
Proposition 2 are Boolean versions of the two resolution rules in possibilistic
logic:

• (¬α ∨ β, a), (α ∨ γ, b)} `POSLOG (β ∨ γ,min(a, b)), where a and b are
degrees of necessity [12]: Rule (2) in Proposition 2 is retrieved when
a = b = 1.

• {Π(¬α ∨ β) ≥ a,N(α ∨ γ) ≥ b} |=POSLOG Π(β ∨ γ) ≥ a 7, whenever
a+ b > 1 [13]. Rule (3) in Proposition 2 is retrieved when a = b = 1.

So a multivalued extension of MEL (involving multimodalities associated
to degrees of possibility and necessity) is likely to provide a natural framework
for generalizing possibilistic logic to a full-fledged uncertainty logic handling
certainty and partial ignorance at a syntactic level.

6The previous semantics in terms of a single possibility distribution considers the least
informative among them, which exists for basic possibilistic knowledge bases; however this
semantics cannot extend to accommodate a richer language at the higher level.

7written in the semantic style, for clarity.
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7.6 Interpreting revealed probabilistic beliefs

In this paper, agent E expresses beliefs and doubts in the langage MEL.
However in the subjective probabilistic tradition [29], degrees of beliefs are
elicited from an agent in the form of a betting odds yielding a unique prob-
ability distribution. While Bayesians take this probability distribution as
representing actual beliefs of the agent, one may consider that agents often
have incomplete knowledge and produce single subjective probability distri-
butions only because they are forced into it by the elicitation procedure. This
is one motivation for the development of imprecise probability theory [38].
Nevertheless, the obtained betting odds do inform about the agent beliefs.
A probabilistic counterpart of the two-agent epistemic state reconstruction
problem, here stated in the framework of MEL, is addressed by Dubois, Prade
and Smets [16], where a Bayesian agent E provides a subjective probability
distribution, and R reconstructs E ’s epistemic state as a least committed
assignment function m : 2V \ {∅} → [0, 1] defining a belief function. In this
problem, the assumption is that at the credal level E ’s beliefs take the form
of a Shafer belief function, while when engaged into a decision process E
uses a subjective probability distribution in order to compute expected util-
ities. The transformation of a belief function into a subjective probability is
called the pignistic transformation and comes down to uniformly distribut-
ing masses m(A) over elements of set E. It is equivalent to Shapley value
in game theory. The reconstruction method consists in choosing the least
informed belief function in the set of belief functions with known pignistic
probability. It turns out that the set of focal sets thus obtained is consonant,
i.e. corresponds to a meta-epistemic state modelled by a nested family of
subsets. Such kinds of meta-epistemic states express the idea that R has an
incomplete but coherent idea of E ’s beliefs.

8 Conclusion and Perspectives

This paper lays the foundations for a belief logic that is in close agreement
with more sophisticated uncertainty theories. It borrows from modal logic
because it uses the standard modal symbols � and ♦ for expressing ideas
of certainty understood as validity in an epistemic state and possibility un-
derstood as consistency with an epistemic state. It differs from usual modal
logics (even if borrowing much of their machinery) by a deliberate stand on
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not nesting modalities, and not mixing modal and non-modal formulae, thus
yielding a two-tiered logic.

At the semantic level we have proved that the MEL language is capable
of accounting for any meta-epistemic state, viewed as a family of non-empty
subsets of classical valuations, just as propositional logic language is capable
of accounting for any epistemic state, viewed as a family of classical valu-
ations. In this sense, MEL is a higher-order logic with respect to classical
logic.

In fact, MEL goes against the tradition of modern modal logics which,
at the philosophical level are de re logics because even when the modalities
have an epistemic flavor, they refer to the actual world via the Kripke rela-
tion. MEL is a de dicto logic, because formulae in MEL refer to an agent’s
epistemic state they try to account for, not to any objective reality. MEL
underlies the assumption that only beliefs and doubts about the world can
be expressed, forbidding direct access to the actual state of the world. In the
belief environment of MEL, an agent is not allowed to claim that a propo-
sition is true in the real world. We do not consider our modal formalism to
be an extension of the classical logic language, but an encapsulation thereof,
within an epistemic framework; hence combinations of objective and epis-
temic statements like α∧�β are considered meaningless in this perspective.
This higher-order flavor is typical of uncertainty theories.

This subjectivist stand in MEL does not lead us to object to the study
of languages where meta-statements relating belief and actual knowledge,
observations and objective truths could be expressed. We only warn that
epistemic statements expressing beliefs and doubts on the one hand and
other pieces of information trying to bridge the gap between the real world
and such beliefs (like deriving the latter from objective observations) should
be handled separately.

One of the merits of MEL is to potentially offer a logical grounding to
uncertainty theories of incomplete information. An obvious extension to
be studied is towards possibilistic logics, using (graded) multimodalities and
generalizing epistemic states to possibility distributions. In fact, modal logics
capturing possibility and necessity measures have been around since the early
nineties [18, 8, 24], but they were devised with a classical view of modal
logic, (not so much under our two tiered view) and Kripke semantics. It
would be of interest to see if MEL can help equip the extended possibilistic
logic language with rigorous semantics and proof theory. One important
contribution of the paper is to show that MEL is the Boolean version of
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Shafer’s theory of evidence, whereby a mass function is an extension of a
meta-epistemic state. Interestingly, this mass function should be viewed
as a de dicto probability assignment (to epistemic states), in opposition to
usual probability assignments to states of the world. It suggests that beyond
possibilistic logic, MEL could be extended to belief functions in a natural
way, and it would be useful to compare MEL with the logic of belief functions
devised by Godo and colleagues [21].

This study is a first step. Some technical aspects of MEL require more
scrutiny, like devising proof methods and assessing their computational com-
plexity. The framework of MEL also suggests other lines of further research.
An interesting issue is to reconsider basic notions of belief change, like re-
vision and contraction. In the classical propositional setting [20], a belief
set viewed as a closed set of sentences, does not distinguish between sen-
tences that are explicitly and implicitly ignored. This distinction is made
possible by the syntax of MEL. Namely, explicitly ignoring α means deriving
the formula ♦α ∧ ♦¬α, while implicitly ignoring means not being capable
of inferring any MEL-formula involving α and ¬α only. Booth and Nittka
[7] make inferences about what an agent previously believed based on an
observation of how the agent has responded to some sequence of previous
belief revision inputs over time. This work uses propositional logic to encode
epistemic states, and it would be interesting to figure out if their procedure
for reconstructing initial beliefs can be accounted for in MEL.

Another direction is to handle conflicting beliefs in MEL. It is clear that
an inconsistent propositional base B has no model. However, considering it
as a belief base, one may try to restore a semantic view of it, by consider-
ing subsets of interpretations as meta-models, looking for those E such that
∀α ∈ B, E |= ♦α in MEL. The framework adopted here involving an emit-
ter and a receiver is also somewhat reminding of Belnap’s set-up based on
information sources. His four-valued logic [3] extends partial logic to the han-
dling of contradictions. In Belnap’s logic, each source of information declares
atoms to be true, false or ignored, but sources can be conflicting. It suggests
the extension of MEL to the setting where several emitter agents provide
information. More generally, assessing the role of a logic such as MEL and
its possible extensions (to mutual or common beliefs) in the framework of
multiagent systems is a topic for further research.
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[22] P. Hájek. The Metamathematics of Fuzzy Logics. Kluwer Academic,
1998.
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