
Qualitative Heuristics for Balancing the Pros and Cons

Jean-François Bonnefon (bonnefon@univ-tlse2.fr)
LTC-CNRS, Toulouse

Didier Dubois and Hélène Fargier
IRIT-CNRS, Toulouse

Sylvie Leblois
LTC-CNRS, Toulouse

Abstract. Balancing the pros and cons of two options is undoubtedly a very
appealing decision procedure, but one that has received scarce scientific attention
so far, either formally or empirically. We describe a formal framework for pros
and cons decisions, where the arguments under consideration can be of varying
importance, but whose importance cannot be precisely quantified. We then define 8
heuristics for balancing these pros and cons, and compare the predictions of these
to the choices made by 62 human participants on a selection of 33 situations. The
Levelwise Tallying heuristic clearly emerges as a winner in this competition. Further
refinements of this heuristic are considered in the discussion, as well as its relation
to Take the Best and Cumulative Prospect Theory.

Keywords: decision heuristics; bipolar information; qualitative information; behav-
ioral data; Take the Best; Cumulative Prospect Theory

1. Introduction

Balancing the pros and the cons is certainly among the most intuitive
approaches one might take to decision making. It was already at the
core of Benjamin Franklin’s “moral algebra” (explained in his famous
1772 letter to Joseph Priestley), and it has certainly not fallen from
grace since then, witness the 93, 000, 000 web pages featuring both the
words “pro” and “con” as of November 2006. One likely feature of this
kind of decision is that the decision maker will be unable to precisely
quantify how important a given pro or con is, although she may be able
to give a qualitative assessment of this importance.

We can assume that many decision makers attempt to reach a de-
cision by balancing pros and cons, after roughly sorting them out in
different levels of importance. But however appealing this qualitative
balancing act might sound, it has inspired only few mathematical ex-
plorations to date, and even fewer psychological investigations. In sec-
tion ??, we introduce a formal framework for pros and cons decisions. In
section ??, we describe eight heuristics for balancing pros and cons. The
predictions of these heuristics are then compared to choices made by
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human participants in 33 situations, chosen to emphasize the differences
between the heuristics.

2. Pros & Cons Decisions

Tonight, Emma is going to the cinema, and considers watching one of
two movies. She has listed the pros and cons of each choice. Movie 1 is
one by her favorite director (a strong pro); it will be dubbed, which she
hates, and the movie has attracted terrible critics (two strong cons).
Movie 2 is only given in a remote theater, and she considers it a strong
con that she would need a taxi to get there. On the other hand, movie 2
is a comedy (a genre she likes), it features an actress she likes, and it
is inspired by a book she enjoyed reading. These are three pros, but
Emma does not see them as very decisive: they do matter, but not as
much as the other arguments she listed.

Note that Emma can only give a rough evaluation of how strong a
pro or a con is. She can only say that (a) her liking the director, her
hating dubbed movies, the terrible critics, and movie 2 being given in
a remote theater are four arguments of comparable importance; and
that (b) movie 2’s genre, leading actress, and source of inspiration are
three arguments of comparable importance, but not as important as
the previous ones.

Before we try to predict what Emma’s decision might be, let us for-
malize her problem. Each option (movie) is assessed by a finite subset of
arguments taken from X, the set of all possible arguments. Comparing
two options then amounts to comparing two subsets U , V of 2X . X can
be divided in three disjoint subsets: X+ the set of pros, X− the set of
cons, and X0 the set of irrelevant arguments (which do not count as a
pro or a con). Any U ⊆ X can likewise be partitioned: let U+ = U∩X+,
U− = U ∩ X−, U0 = U ∩ X0 be respectively the pros, the cons, and
the irrelevant arguments relatively to U .

As in our movie example, all arguments are not equally important,
although it is generally impossible to precisely quantify the importance
of a given argument. Thus, in a purely qualitative, ordinal approach,
the importance of arguments is described on a totally ordered scale of
magnitude L = [0L, 1L], by a function π : X 7→ L = [0L, 1L]. π(x) =
0L means that the decision maker is indifferent to argument x: this
argument will not affect the decision process. The order of magnitude
1L (the highest level of importance) is attached to the most compelling
arguments that the decision maker can consider. Intermediate values are
attached to arguments of intermediate importance. For any level α ∈ L,
let Uα = {x ∈ U, π(x) = αL}, U+

α = Uα ∩ X+, and U−α = Uα ∩ X−.
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Pros and cons heuristics 3

Finally, it will be useful to define the order of magnitude M(U) of a set
U as the highest of the order of magnitude of its elements:

∀U ⊆ X,M(U) = max
x∈U

π(x).

Note that M(U) is a possibility measure on X—for a recent review
on qualitative possibility theory, see ? (?). We can now reformulate the
Emma case as the comparison between two options U (movie 1) and V
(movie 2).1 Option U has one argument in U+

α and two arguments in
U−α ; and option V has one argument in V −α and three arguments in V −β ,
where α > β. As we will see in the next section, the different heuristics
that can be defined for balancing pros and cons have quite diverging
views on the Emma case. Some will prefer movie 1, some will prefer
movie 2, some will regard the two movies as equally attractive, and
some will find it impossible to compare the merits of the two movies.

3. Pros & Cons Heuristics

Qualitative heuristics for balancing the pros and the cons (or, tech-
nically, ordinal ranking procedures from bipolar information) have re-
ceived scarce attention so far. Most work on such procedures has come
from the field of Artificial Intelligence, following the renewed interest
in argumentative models of choice and inference (?; ?).

The heuristics we describe in this section have been formally exam-
ined and axiomatized (?; ?). Since the present article takes an empirical
rather than analytical approach to pros and cons heuristics, we will
not restate all the formal properties of the heuristics nor give their
axiomatization. We will nevertheless comment on important properties
such as completeness or transitivity.

3.1. Focus heuristics F1, F2, and F3

The heuristics in the “Focus” family concentrate on the most important
arguments available for the decision, and disregard arguments of lesser
importance.

1 In the rest of this article, we will denote an option by the subset of arguments
which is used to assess this option. E.g., movie 1 is assessed by the subset U of
arguments, and will thus be denoted “Option U .”
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3.1.1. The straw and the beam (�F1)
With this heuristic, U is at least as good as V if and only if, at level
M(U ∪ V ) (i.e., the highest level of importance in the current compar-
ison), the presence of arguments for V is cancelled by the existence of
arguments for U , and the existence of arguments against U is cancelled
by the existence of arguments against V . Formally, U �F1 V if and only
if:

M(U ∪ V ) = M(V +) ⇒ M(U ∪ V ) = M(U+)
and M(U ∪ V ) = M(U−) ⇒ M(U ∪ V ) = M(V −)

What will Emma do? It turns out thatM(U ∪V ) = M(U−); that is,
the strongest con is attached to U . However, it is also true that M(U ∪
V ) = M(V −). The second condition is thus satisfied: the existence of
a strong argument against V offsets the existence of a strong argument
against U . The first condition is satisfied because M(U ∪ V ) is not
M(V +). Consequently, it holds that U �F1 V . Now, it does not hold
that V �F1 U , because while M(U ∪ V ) = M(U+), it is not the case
that M(U ∪ V ) = M(V +). There is no strong argument for V to offset
the existence of a strong argument for U . Emma will go and see movie 1.

The relation �F1 is transitive but incomplete. As soon as an option
has both a pro and a con at the highest importance level, it becomes
incomparable to any other option whose description does not feature
pros or cons at this highest importance level.

3.1.2. My enemy’s enemies (�F2)
This heuristic treats all arguments against V as arguments for U , and
all arguments for V as arguments against U (and reciprocally). It then
selects the option that is supported by the arguments at the highest
level. Formally, U �F2 V if and only if:

max(M(U+),M(V −)) ≥ max(M(U+),M(V −)).

In the Emma case, max(M(U+),M(V −)) = max(M(U+),M(V −)) =
α. Emma is indifferent, she can toss a coin to decide on a movie. The
relation �F2 is simpler than the relation �F1, and has the advantage
of being complete, but it is only quasi-transitive: �F2 itself is tran-
sitive, but the corresponding indifference relation is not (e.g., when
M(V +) = M(V −), it is possible to have both U ∼F2 V and V ∼F2 W ,
while U ∼F2 W may not hold).

Furthermore, while �F2 is complete, it is not as decisive as �F1:
it yields indifference more often than �F1 does, as illustrated by the
Emma case. Indeed, �F1 is a refinement of �F2: U �F2 V ⇒ U �F1 V .
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3.1.3. Pareto dominance (�F3)
This heuristic looks for the option that wins on both the positive and
negative sides. This rule compares the two sets of arguments as a
problem of bi-criteria decision. The first criterion compares negative
arguments according to Wald’s rule (?): U is better than V on the
negative side if and only if M(U−) ≤ M(V −). The second criterion
compares positive arguments according to the optimistic counterpart of
Wald’s rule. Formally, U �F3 V if and only if:

M(U+) ≥ M(V +)
and M(U−) ≤ M(V −)

To Emma, there is a strong argument for U , but only weak argu-
ments for V : M(U+) = α > M(V +) = β. In parallel, there are strong
arguments both against U and against V : M(U−) = α = M(V −).
Emma will go and see movie 1.

The relation �F3 is transitive but not complete. For example, as
soon as an option has both pros and cons, whatever their importance,
it becomes incomparable to the null option (no pro, no con).

3.2. Inclusion heuristics I1 and I2

While the heuristics we have considered so far have some intuitive ap-
peal, they all suffer from a notable shortcoming— that is, they do not
satisfy the principle of preferential independence. This principle states
that if U is preferred to V , then this preference should not change
when the descriptions of U and V are enriched by the exact same
set of arguments. Formally: ∀U, V,W such that (U ∪ V ) ∩ W = ∅,
U � V ⇐⇒ U ∪W � V ∪W .

Consider for example the case of Emma’s cousin, Francine. Francine
must decide whether she will go and see movie 3, about which she knows
nothing, or movie 4, which features an actress she likes (a weak pro). All
three Focus heuristics would (reasonably) predict that Francine will go
and see movie 4. But let us now add the information that both movies
are by Francine’s favorite director (a strong pro in each case). Now, all
three Focus heuristics predict that Francine will be indifferent between
the two movies—a disputable prediction, and a violation of the principle
of preferential independence.

The heuristics in the “Inclusion” family are variants of the Focus
heuristics, which satisfy the principle of preferential independence. They
do so by first cancelling the arguments that appear in the descriptions
of both options, before applying one of the Focus heuristics. Formally:

U �I1 V ⇐⇒ U \ V �F1 V \ U
U �I2 V ⇐⇒ U \ V �F2 V \ U
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Obviously, each of the Inclusion heuristics refines its parent Focus
heuristics—i.e., it follows the strict preference of the parent heuristic (if
any) but may have a strict preference where the parent heuristic does
not:

U �F1 V ⇒ U �I1 V

U �F2 V ⇒ U �I2 V

Just as its parent �F1, the relation �I1 is complete but its indiffer-
ence part is not transitive. Likewise, just as its parent �F2, the relation
�I2 is transitive but partial.

In the Emma case, �I1 and �I2 make the same predictions as �F1

and �F2, respectively, because there is nothing to simplify there—
there is no argument that simultaneously appears in the descriptions of
movie 1 and movie 2. In the Francine case, though, the Inclusion heuris-
tics make a different prediction than the Focus heuristics. Remember
that Francine is hesitating between two movies by her favorite director
(strong pro in each case), one of which features an actress she likes
(weak pro). According to the Focus heuristics, she should be indifferent
between the two movies. What about the Inclusion heuristics?

Let us apply �I1 to the Francine situation. First, the two options
must be simplified by removing the arguments they have in common—
here, the director. Now �F1 must be applied to the simplified options.
Here the choice is now between a movie to which no pros or cons are
attached, and a movie with a weak pro (the actress). According to �F1,
Francine will prefer the latter movie. (The same applies to �F2, and
therefore to �I2.)

3.3. Cardinality heuristics C1, C2 and C3

The Inclusion heuristics only cancel arguments that appear in the exact
same form in the description of the two options. Further simplification
methods are possible, of which we will consider three.

3.3.1. Tallying (�C1)
This heuristic disregards the relative importance of arguments, and sim-
ply computes a score for each option by adding up the number of its pro
then subtracting the number of its cons. The option with the best net
score wins. Formally, U �C1 V if and only if |U+|−|U−| ≥ |V +|−|V −|.
The relation �C1 is complete and transitive.

In the Emma case, option U (movie 1) has one pro and two cons,
while option V (movie 2) has three pros and one con. Thus |U+|−|U−| =
−1 < |V +| − |V −| = +2. Emma will go and see movie 2.
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Pros and cons heuristics 7

Note that the Tallying heuristic is the only one in this article that
does not take into account the relative importance of arguments. Our
main reason for considering Tallying in the present article is its frequent
appearance in the literature on decision heuristics (?; ?; ?; ?).

3.3.2. Bivariate levelwise tallying (�C2)
Unlike the previous one, this heuristic takes into account that some
arguments are more important than others. This heuristic first consid-
ers arguments at the highest level of importance, and checks whether
some option achieves bipolar dominance by cardinality. That is, the
arguments in U and V are scanned top-down, until a level is reached
such that there is a difference either in the number of arguments for U
and V , or in the number of arguments against U and V . At this point,
the set that presents the lower number of cons and the greater number
of pros is preferred. Formally, let δ be the highest value of α such that
|U+
α | 6= |V +

α | or |U−α | 6= |V −α |. Then U �C1 V if and only if:

|U+
δ | ≥ |V

+
δ |

and |U−δ | ≤ |V
−
δ |

What will Emma do? She stops at the highest importance level
α, because it is already true that |U−α | > |V −α |: there are two strong
arguments against U , but only one against V . However, at this same
level α, there is one argument for U and no argument for V , and thus
|U+
α | > |V +

α |. Therefore, Emma is stuck and finds herself unable to
decide between the two movies. Note that this is not the same as being
indifferent: In the present situation, she would not agree to make the
decision by tossing a coin.

As shown by the Emma example, the relation �C2 is not complete (it
is transitive, though). For example, it may happen that, at the decisive
level, one option wins on the positive side but loses on the negative side.
A way around this obstacle is to allow within-option simplification of
the arguments before the comparison takes place. This is what is done
in our last heuristic.

3.3.3. (Univariate) Levelwise tallying (�C3)
The Levelwise Tallying heuristic, just as its bivariate cousin above, first
considers arguments at the highest level of importance. For each option,
it computes a score by adding up the number of its pros (at this level)
and then subtracting the number of its cons (still at this level). The
option with the highest net score wins; if there is a tie, the procedure is
repeated at the next level of argument importance. Formally, U �C3 V
if and only if |U+

β |−|U
−
β | > |V

+
β |−|V

−
β |, and for all α > β, |U+

α |−|U−α | =
|V +
α | − |V −α |. The relation �C3 is complete and transitive.

BDFL.tex; 7/01/2008; 10:32; p.7



8

Emma begins with arguments at the highest level of importance α.
It turns out that |U+

α | − |U−α | = −1 = |V +
α | − |V −α |. Emma goes down

one level of importance and considers arguments of importance β. She
finds out that |U+

β |− |U
−
β | = 0 < |V +

β |− |V
−
β | = +3. Thus, it holds that

V �C3 U . Emma will go and see movie 2.
Just as �C2 and �I2, the levelwise tallying heuristic obeys the princi-

ple of preferential independence. It is also a refinement of �F2: it follows
the strict preference of �F2 if there is one, but it is more decisive (yields
less ties) than �F2. In fact, the heuristics that derive from �F2 can be
ranked from the least to the most decisive, as follows:

A �F2 B ⇒ A �I2 B ⇒ A �C2 B ⇒ A �C3 B

4. Method

To assess the descriptive validity of these eight heuristics, we elaborated
33 situations of choice between two options, and compared in each case
the predictions of the heuristics to the choices made by a sample of 62
adult volunteers (31 men, 31 women, mean age = 24.0, SD = 8.9).

The decisions all involved the trading of “Poldevian” stamps (a fictive
nation). Stamp collection provided us with a clear-cut situation of qual-
itative comparison. Insofar as information about the monetary value of
the stamps was unavailable, they were sorted in two broad groups: the
rare, coveted stamps on the one hand; and the common, unremarkable
stamps on the other. This was explicitly explained to participants:

“Poldevian stamps come in two types, rare and common. Rare
stamps are difficult to find, and they are treasured by collectors.
Common stamps are much easier to find, and add much less value
to a collection. Among the many Poldevian stamps, we will only
be interested today in four rare and four common stamps. The rare
stamps are called arbon, banta, cassa, and didot. The common
stamps are called wiv, xyl, yer, and zam.”

In the 33 situations, the two options were described as a list of pros
and cons, couched in terms of stamps. Receiving a rare stamp was a
strong pro, receiving a common stamp was a weak pro; giving away a
rare stamp was a strong con, and giving away a common stamp was a
weak con. The Poldevian stamp equivalent to the Emma case is found
in situation 15: Option U is to receive arbon but give away didot and
cassa (all rare stamps); and option V is to receive wiv, xyl, yer, and
zam (all common stamps), but give away banta (a rare stamp).
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Table I. Predictions of the 8 heuristics in the 33 choice situations. An option described
as a++(xy)− has one very positive feature a and two mildly negative features x and
y. ∅ is the null option. U , V , =, and ⊥ resp. read ‘prefer U ’, ‘prefer V ’, ‘indifferent’,
‘options are incomparable’.

U V F1 F2 F3 I1 I2 C1 C2 C3

1 a++(wxyz)− ∅ U U ⊥ U U V U U

2 (wxyz)+b−− ∅ V V ⊥ V V U V V

3 c++d−− ∅ ⊥ = ⊥ ⊥ = = ⊥ =

4 a++z+b−− ∅ ⊥ = ⊥ ⊥ = U ⊥ U

5 a++b−−z− ∅ ⊥ = ⊥ ⊥ = V ⊥ V

6 b++a−− b++(wxyz)− V = V V V U V V

7 a++c−− d++(wxyz)− V = V V = U V V

8 a++d−− (wxyz)+d−− U = U U U V U U

9 d++c−− (wxyz)+a−− U = U U = V U U

10 d++b−− w+ ⊥ = ⊥ ⊥ = V ⊥ V

11 w− a++c−− ⊥ = ⊥ ⊥ = V ⊥ V

12 c++(wxyz)− (bc)++a−− U = U U = V ⊥ V

13 d++(wxyz)− (ab)++c−− U = U U = V ⊥ V

14 b++(ad)−− (wxyz)+d−− U = U U = V ⊥ V

15 a++(cd)−− (wxyz)+b−− U = U U = V ⊥ V

16 a++ (wxyz)+ U U U U U V U U

17 b++ b++z+ = = = V V V V V

18 c++ d++z+ = = = = = V V V

19 (bd)++ (ab)++w+ = = = = = V V V

20 (bc)++ d++(wxyz)+ = = = = = V U U

21 a−− (wxyz)− V V V V V U V V

22 b−− b−−x− = = = U U U U U

23 c−− d−−w− = = = = = U U U

24 (bd)−− (ab)−−w− = = = = = U U U

25 (bd)−− a−−(wxyz)− = = = = = U V V

26 (ab)++(wxyz)− a++ = = V U U U U U

27 (bd)++(wxyz)− c++ = = V = = U U U

28 a−− (wxyz)+(ac)−− = = V U U V U U

29 c−− (wxyz)+(bd)−− = = V = = V U U

30 d++w− d++ = = V V V V V V

31 b++w− a++ = = V = = V V V

32 c−−w+ c−− = = U U U U U U

33 d−−w+ a−− = = U = = U U U
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Figure 1. Average percentage of answers correctly predicted by each heuristic.

Participants could choose one of four responses: (a) choose option
U , (b) choose option V , (c) indifferent, one or the other, would agree
to choose randomly, and (d) unable to make a decision, would not
agree to choose randomly. While the third response suggests indifference
between the two options, the fourth response indicates incomparability.

Table ?? displays the entire set of situations, together with the
predictions of the eight heuristics in each situation. The 33 situations
were selected to emphasize the different behaviors of the 8 heuristics.
On average, the overlap in the predictions of any two heuristics was
41%. The overlap was slightly greater within each family of heuristics:
54% within the Focus family, 67% within the Inclusion family, and 58%
within the Cardinality family. The overlap in predictions between the
Focus and Inclusion families was also 58%, a high figure that makes
sense since the Inclusion heuristics are refined versions of the Focus
heuristics. On the contrary, there was little prediction overlap between
the Inclusion and Cardinality families (35%), and even less between the
Focus and Cardinality families (21%).

5. Results and Discussion

5.1. Overall Accuracy

Table ?? shows the repartition of participants’ answers in the 33 sit-
uations. As a general index of descriptive validity, we computed the
accuracy of each heuristic—that is, the average number of answers it
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Pros and cons heuristics 11

correctly predicts, across participants. Figure ?? displays the accuracy
of the 8 heuristics, in percentage form.

Figure ?? clearly shows the superiority of the Cardinality family of
heuristics over the Focus and Inclusion families. Furthermore, it sug-
gests that Levelwise Tallying (�C3) has by far the greatest descriptive
validity, with an overall accuracy of 77%. Indeed, Levelwise Tallying al-
ways provided the most accurate predictions of all participants’ choices,
at the individual level. The second best heuristic was always Bivariate
Levelwise Tallying �C2. On average, Levelwise Tallying predicted a
reliably larger number of answers than did Bivariate Levelwise Tallying,
t(61) = 11.1, p < .001, d = 1.0. Similar results held when comparing
Bivariate Levelwise Tallying to all other procedures, all ts > 4.7, all
ps < .001.

Let us insist on this general result before we proceed to more fine-
grained considerations about participants’ choices. It is not the case
that some participants leaned towards one heuristic while some leaned
towards another. The responses of any one of the 62 participants were
always closer to the predictions of Levelwise Tallying than to the pre-
dictions of the other heuristics.

5.2. Focus Vs. Inclusion Vs. Cardinality

A closer look at the results confirms the overall impression given by the
accuracy index. First, Focus heuristics are of limited validity because
they too easily predict indifference, based on arguments at the highest
level of importance—they suffer from what has been called a “drowning”
problem, see ? (?); ? (?). Situation 17 provides a striking example of
that shortcoming. In that situation, the choice is between getting the
rare stamp banta, or getting this same rare stamp plus the common
stamp zam. Unsurprisingly, participants unanimously preferred the sec-
ond option. Focus heuristics cannot account for this preference, as they
all disregard here the small bonus of getting a common stamp. Other
illustrations of this discrepancy between the predictions of the Focus
heuristics and the choices made by the participants can be found in
situations 26–33.

Inclusion heuristics solve that problem by dismissing arguments that
appear in both options. That way, the choice between banta plus zam
or banta alone comes down to the choice between zam or nothing at
all. This simplification does capture participants’ preferences in situ-
ation 17 (as well as in situations 26, 28, 30, and 32), but it fails to
handle situations such as 18. In that situation, the choice is in between
getting the rare stamp cassa or getting the rare stamp didot plus the
common stamp zam. Again, participants unanimously preferred the

BDFL.tex; 7/01/2008; 10:32; p.11



12

Table II. Choices made by participants (in % of answers) in the
33 experimental situations. An option described as a++(xy)− has
one very positive feature a and two mildly negative features x and
y. ∅ is the null option. U , V , =, and ⊥ resp. read ‘prefer U ’, ‘prefer
V ’, ‘indifferent’, ‘options are incomparable’.

Option U Option V U V = ⊥

1 a++(wxyz)− ∅ 79 21 — —
2 (wxyz)+b−− ∅ — 86 7 7
3 c++d−− ∅ 3 34 35 28
4 a++z+b−− ∅ 73 10 3 14
5 a++b−−z− ∅ 3 83 — 14
6 b++a−− b++(wxyz)− 7 83 3 7
7 a++c−− d++(wxyz)− 10 80 — 10
8 a++d−− (wxyz)+d−− 83 3 3 11
9 d++c−− (wxyz)+a−− 76 — 3 21
10 d++b−− w+ 14 76 7 3
11 w− a++c−− 45 38 3 14
12 c++(wxyz)− (bc)++a−− 14 86 — —
13 d++(wxyz)− (ab)++c−− 28 69 3 —
14 b++(ad)−− (wxyz)+d−− 10 45 3 42
15 a++(cd)−− (wxyz)+b−− 7 45 3 45
16 a++ (wxyz)+ 90 10 — —
17 b++ b++z+ — 100 — —
18 c++ d++z+ — 100 — —
19 (bd)++ (ab)++w+ — 97 3 —
20 (bc)++ d++(wxyz)+ 83 17 — —
21 a−− (wxyz)− 17 80 — 3
22 b−− b−−x− 73 10 7 10
23 c−− d−−w− 83 7 3 7
24 (bd)−− (ab)−−w− 73 10 3 14
25 (bd)−− a−−(wxyz)− 7 76 — 17
26 (ab)++(wxyz)− a++ 72 28 — —
27 (bd)++(wxyz)− c++ 72 28 — —
28 a−− (wxyz)+(ac)−− 90 3 — 7
29 c−− (wxyz)+(bd)−− 86 7 — 7
30 d++w− d++ — 97 3 —
31 b++w− a++ — 97 3 —
32 c−−w+ c−− 90 — 3 7
33 d−−w+ a−− 86 — 4 10
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second option, although the Inclusion heuristics predicted indifference:
Since the arguments at the highest importance level are not the same,
they cannot be simplified, and the heuristics cannot consider the weaker
argument in favor of the second option. Inclusion heuristics thus cannot
capture the choices made by participants in that situation, as it is also
the case in situations 27, 29, 31, and 33.

Cardinality heuristics do much better on these situations—bar the
notable failure of the Tallying heuristic to predict participants’ pref-
erence in situation 29. Since the Tallying heuristic does not make any
difference between a strong argument and a weak one, it prefers an
option with two strong cons and four weak pros (i.e., a net score of
+2) to an option with one strong con only (i.e., a net score of −1),
while 86% of participants show the opposite preference. This blindness
to the importance of arguments is responsible for the poor accuracy
of the Tallying heuristic in situations 1–2, 6–9, 16, 20, 21, 25, and 28,
and more generally for the disappointing performance of this heuristic
compared to the other Cardinality heuristics.

5.3. Bivariate Vs. Univariate Levelwise Tallying

Only two heuristics �C2 and �C3, with their levelwise and cardinality-
based approach, appear to predict participants’ choices reasonably well.
What is more, the Levelwise Tallying heuristic �C3 fares much better
than its bivariate version �C2. Not only �C3 has greater overall ac-
curacy than �C2, not only �C3 predicts each and every participant’s
choices better than �C2, but �C3 beats �C2 in all the situations that
were selected to compare them (3–5 and 10–15).

Situations 3–5 and 10–15 were designed so that Levelwise Tallying
�C3 predicted a strict preference, whilst Bivariate Levelwise Tallying
�C2 predicted incomparability between the two options. For example,
in situation 12, option U has one strong pro and four less important
cons, while option V has two strong pros and one strong con. Bivariate
Levelwise Tallying went no further than the highest level of argument
importance, because there was already a difference in cardinality be-
tween the two options, on the positive side as well as on the negative
side. The problem was that V won on the positive side (two strong
pros against one strong pro), whilst U won on the negative side (no
strong con against one strong con). Thus, no decision could be made. In
contrast, Levelwise Tallying considered that the options were matched
at the highest level of importance, as both had a net score of −1 at
this level. Thus, it stepped down one level of importance, and took
into account the fact that, at this less important level, U had four
cons whilst V had none. It thus predicted a preference for V , which
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was indeed manifested by 86% of the participants. Similar results were
observed for all other relevant situations (although they were not as
clear cut with respect to situations 14 and 15).

5.4. Unexpected Answers

Considerations of overall accuracy as well as detailed examination of
each situation suggest that Levelwise Tallying �C3 is the closest ap-
proximation of how participants balanced the pros and cons in our
experiment. The performance of Levelwise Tallying is not, however,
perfect. In two situations in particular, Levelwise Tallying predicted a
preference that was shared by less than 40% of participants. In situation
3, the choice was to get a rare stamp in exchange for another rare stamp,
or to get nothing and give away nothing. Levelwise Tallying predicts
indifference between the two options, but participants either found the
options incomparable or preferred the second option. In situation 11, the
choice was to give away one common stamp and get nothing in return,
or to get a rare stamp in exchange for another rare stamp. Levelwise
Tallying predicts a preference for the second option, but participants
typically preferred the first option.

There are several possible explanations for these discrepancies be-
tween the prediction of Levelwise Tallying and participants’ actual
choices, e.g. the possibility of an endowment effect or a negativity bias.
As these explanations point to possible modifications of the heuristic,
we discuss them in the Perspectives section below, where we also discuss
the relation of Take the Best and Cumulative Prospect Theory to the
Levelwise Tallying heuristic.

6. Perspectives

In this article, we have provided a formal framework for the study of
decisions based on balancing the pros and cons of two options. We
allowed the pros and cons to be of different importance, but we did not
require this importance to be precisely quantified. We presented eight
possible heuristics for making such decisions, and tested the predictions
of these heuristics against the choices made by human participants on
a selection of 33 situations. However intuitively appealing they might
have seemed, most of our heuristics did not fare well in this test. Only
Levelwise Tallying did show good accuracy in predicting participants’
preferences.

Moreover, close examination of the data showed no major shortcom-
ing of the Levelwise Tallying heuristic, bar one: participants disliked
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options featuring one strong pro and one strong con, to which they
preferred the null option (no pro, no con) or even an option with a
weak con an no pro. We consider two ways of accounting for these
preferences: a narrow account, based on the endowment effect; and a
broader account, based on the negativity bias.

6.1. Endowment effect or Negativity bias?

In our experiment, pros and cons were always related to the trading
of goods (namely, stamps). A pro always came down to getting some
good, and a con always came down to giving away some good. Now, it
is a well-known result (known as the endowment effect) that people see
more value in a good they own, than in a similar good when they are
looking to acquire it (?; ?)—and more generally, that the value function
for losses is steeper than the value function for gains (?).

Thus, it could be that participants were reluctant to trade one rare
stamp for another because they valued their own rare stamp more than
the one they would get, and that they were even ready to give away
one common stamp to avoid that exchange. Note, however, that this
explanation only points at some idiosyncracy of our material. Pros and
cons are not always about goods one will get or give away, as illustrated
in our Emma example: Movie 1 is by Emma’s favorite director, but it
has attracted terrible critics. Nothing in these two arguments relate to
material goods. Thus, if what we have observed was only a manifestation
of the endowment effect, we should not expect Emma to give precedence
to the con over the pro and to stay at home. We would rather expect
Emma to be indifferent between staying at home and watching the
movie.

However, we believe that there might be more than just an endow-
ment effect in the greater weight some participants placed on strong
cons, compared to strong pros. Cacioppo and colleagues (?; ?; ?) postu-
lated the existence of two motivational systems running in parallel, one
for the processing of negative affects, and another for the processing of
positive affects. Most importantly, they have suggested that the positive
motivational system is characterized by a positivity offset, whilst the
negative motivational system is characterized by a negativity bias.

The positivity offset represents the tendency of the positive motiva-
tional system to respond more than the negative motivational system
for low levels of evaluative input (say, for weak arguments). In contrast,
the negativity bias represents the tendency of the negative system to
respond more than the positive system for high levels of evaluative
input (say, for strong arguments). From that perspective, we should
expect strong cons to weight slightly heavier than strong pros, but
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also, and conversely, weak pros to weight slightly heavier than weak
cons. Our data are certainly consistent with the first prediction, but
are silent about the second one, as none of our situations pitted weak
pros against weak cons. However, data reported in ? (?) would appear
to be consistent with both predictions. Whether pros and cons decisions
are generally subject to both a positivity offset and a negativity bias is
an important question for future research—if they are, the question will
arise of how to formalize these two features, as it is not quite clear right
now how the Levelwise Tallying heuristic might accommodate them.

6.2. Levelwise Tallying, Take the Best, and Cumulative
Prospect Theory

In this final section, we briefly discuss how Cumulative Prospect Theory
(?) and the Take the Best heuristic (?) can accommodate pros and
cons decisions, and the relation of these two approaches to Levelwise
Tallying.

Cumulative Prospect Theory (CPT) assumes that potential gains
and losses are measured by means of two capacities σ+ and σ−, re-
spectively. The greater is σ+(U+), the more appealing is the positive
side of option U (the potential gains); and the greater is σ−(U−), the
more repulsive is the negative side of U (the potential losses). The net
predisposition for an option U can then be computed as the difference
σ+(U+) − σ−(U−). Note that this computation supposes a quantita-
tive assessment of how important the pros and cons of option U are.
However, it can be shown that Levelwise Tallying provides a qualitative
counterpart to CPT. Indeed, as argued in ? (?), for all U , V of 2X , there
are two capacities σ+ and σ− such that:

U �C3 V ⇐⇒ σ+(U+)− σ−(U−) ≥ σ+(V +)− σ−(V −).

This should not come as a surprise. Indeed, comparing the net pre-
dispositions for U and V is equivalent to comparing σ+(U+)+σ−(V −)
to σ+(V +) + σ−(U−). Changing + into max, we get the �F2 Focus
heuristic, of which Levelwise Tallying is a refinement. In other words,
Levelwise Tallying is a refinement of what was already a qualitative
counterpart to CPT.

In addition to providing a qualitative counterpart to CPT, Levelwise
Tallying is a generalization of the oft-studied (if controversial) Take
the Best heuristic (TTB). This heuristic was developed for situations
of paired comparisons, where two options are compared based on the
values they take on a series of binary cues c1, c2, . . . , cn. TTB requires
a strict ordering of the cues by validity. Then, applying TTB amounts
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to considering the cues in decreasing order of validity, and to stopping
as soon as one cue discriminates between the two options.

A large body of analytical and empirical research has investigated
the performance of this heuristic (?; ?; ?; ?), as well as its descriptive
validity (?; ?; ?; ?; ?). It has generally been shown that TTB fares quite
well compared to sophisticated regression models, and that its use by
decision makers is influenced (in particular) by the cost of obtaining
cues.

How would TTB apply to pros and cons decisions? Suppose that the
importance of each argument can be assessed with such precision that
no two arguments share the same level of importance. Of two pros, one
is always more compelling than the other; of two cons, one is always
more repulsive than the other; and, perhaps less plausibly, of one pro
and one con, one is always more attractive than the other is repulsive,
or vice-versa. Under this assumption, for all α in [0L, 1L], one and only
one of the following is true: (1) |Uα| = |Vα| = 0, (2) |Uα| = 0 and
|Vα| = 1, or (3) |Uα| = 1 and |Vα| = 0. Now we can frame options U
and V in such a way that TTB will be applicable, by giving them a
value on a series of strictly ordered “cues.” ∀α ∈ [0L, 1L],

cα(U) = 1 if |U+
α | = 1 or |V −α | = 1

0 otherwise

In such a situation, TTB makes exactly the same choices as Levelwise
Tallying.2 However, as soon as the granularity of argument impor-
tance gets coarser, chances are that several arguments will share the
same (highest) level of importance. When this happens, TTB cannot
make any decision anymore—but Levelwise Tallying still can, with com-
mendable descriptive validity. In that sense, Levelwise Tallying (and,
to some extent, the other heuristics we have considered) is a natural
generalization of TTB to cues of coarser granularity.

In conclusion, Levelwise Tallying is a generalization of both TTB and
CPT. It generalizes the former to cues of coarse granularity, and the
latter to qualitative pros and cons. At one end of the spectrum (when
arguments can be totally ordered by rank of qualitative importance),
Levelwise Tallying turns into TTB; at the other end (when the impor-
tance of arguments can be quantitatively assessed), Levelwise Tallying
turns into CPT; in between, Levelwise Tallying provides the missing
link between Take the Best and Cumulative Prospect Theory.

2 In fact, it makes the same predictions as all the heuristics in Section ??, bar
simple Tallying C1.
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