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1 INTRODUCTION: A HISTORICAL PERSPECTIVE

The representation of human-originated information and the formalization of com-
monsense reasoning has motivated different schools of research in Artificial or
Computational Intelligence in the second half of the 20th century. This new trend
has also put formal logic, originally developed in connection with the foundations
of mathematics, in a completely new perspective, as a tool for processing informa-
tion on computers. Logic has traditionally put emphasis on symbolic processing
at the syntactical level and binary truth-values at the semantical level. The idea
of fuzzy sets introduced in the early sixties [Zadeh, 1965] and the development of
fuzzy logic later on [Zadeh, 1975a] has brought forward a new formal framework
for capturing graded imprecision in information representation and reasoning de-
vices. Indeed, fuzzy sets membership grades can be interpreted in various ways
which play a role in human reasoning, such as levels of intensity, similarity degrees,
levels of uncertainty, and degrees of preference.

Of course, the development of fuzzy sets and fuzzy logic takes its roots in con-
cerns already encountered in non-classical logics in the first half of the century,
when the need for intermediary truth-values and modalities emerged. We start
by briefly surveying some of the main issues raised by this research line before
describing the historical development of fuzzy sets, fuzzy logic and related issues.

Jan Lukasiewicz (1878-1956) and his followers have developed three-valued log-
ics, and other many-valued systems, since 1920 [Lukasiewicz, 1920]. This research
was motivated by philosophical concerns as well as some technical problems in logic
but not so much by issues in knowledge representation, leaving the interpretation
of intermediate truth-values unclear. This issue can be related to a misunder-
standing regarding the law of excluded middle and the law of non-contradiction,
and the connections between many-valued logics and modal logics. The principle
of bivalence,

Every proposition is either true or false,
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formulated and strongly defended by Chrisippus and his school in antique Greece,
was for instance questioned by Epicureans, and even rejected by them in the case
of propositions referring to future contingencies.

Let us take an example considered already by Aristotle, namely the proposition:

“There will be a sea battle to-morrow (p) and
there will not be a sea battle to-morrow (—p)”

This proposition “p and —p” is ever false, because of the non-contradiction law and
the proposition “p or —p” is ever true, because tertium non datur. But we may
fail to know the truth of both propositions “there will be a sea battle to-morrow”
and “there will not be a sea battle to-morrow”. In this case, at least intuitively, it
seems reasonable to say that it is possible that there will be a sea battle to-morrow
but at the same time, it is possible that there will not be a sea battle to-morrow.
There has been a recurrent tendency, until the twentieth century many-valued
logic tradition, to claim the failure of the bivalence principle on such grounds,
and to consider the modality possible as a third truth value. This was apparently
(unfortunately) the starting motivation of Lukasiewicz for introducing his three-
valued logic. Indeed, the introduction of a third truth-value was interpreted by
Lukasiewicz as standing for possible. However the proposition “possible p” is not
the same as p, and “possible —p” is not the negation of “possible p”. Hence the
fact that the proposition

“possible p” A “possible —p”

may be true does not question the law of non-contradiction since “possible p”
and “possible —p” are not mutually exclusive. This situation leads to interpreta-
tion problems for a fully truth-functional calculus of possibility, since even if p is
“possible” and —p is “possible”, still p A —p is ever false.

On the contrary, vague or fuzzy propositions are ones such that, due to the
gradual boundary of their sets of models, proposition “p and —p” is not completely
false in some interpretations. This is why Moisil [1972] speaks of fuzzy logics as
Non-Chrisippean logics.

A similar confusion seems to have prevailed in the first half of the century be-
tween probability and partial truth. Trying to develop a quantitative concept of
truth, H. Reichenbach [1949] proposed his probability logic in which the alterna-
tive true-false is replaced by a continuous scale of truth values. In this logic he
introduces probability propositions to which probabilities are assigned, interpreted
as grades of truth. In a simple illustrative example, he considers the statement
“I shall hit the center”. As a measure of the degree of truth of this statement,
Reichenbach proposes to measure the distance r of the hit to the center and to
take the truth-value as equal to 1/(1 + ). But, of course, this can be done only
after the shot. However, quantifying the proposition after the hit is not a matter
of belief assessment when the distance to the center is known. It is easy to figure
out retrospectively that this method is actually evaluating the fuzzy proposition
“I hit close to the center”. Of course we cannot evaluate the truth of the above
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sentence before the shot, because now it is a matter of belief assessment, for which
probability can be suitable.

Very early, when many-valued logics came to light, some scholars in the founda-
tions of probability became aware that probabilities differ from what logicians call
truth-values. De Finetti [1936], witnessing the emergence of many-valued logics
(especially the works of Lukasiewicz, see [Lukasiewicz, 1970]), pointed out that
uncertainty, or partial belief, as captured by probability, is a meta-concept with
respect to truth degrees, and goes along with the idea that a proposition, in its
usual acceptance, is a binary notion. On the contrary, the notion of partial truth
(i.e. allowing for intermediary degrees of truth between true -1- and false -0-) as
put forward by Lukasiewicz [1930], leads to changing the very notion of proposi-
tion. Indeed, the definition of a proposition is a matter of convention. This remark
clearly points out the fact that many-valued logics deal with many-valuedness in
the logical status of propositions (as opposed to Boolean status), not with belief
or probability of propositions. On the contrary, uncertainty pertains to the beliefs
held by an agent, who is not totally sure whether a proposition of interest is true
or false, without questioning the fact that ultimately this proposition cannot be
but true or false.

Probabilistic logic, contrary to many-valued logics, is not a substitute of binary
logic. It is only superposed to it. However this point is not always clearly made by
the forefunners of many-valued logics. Carnap [1949] also points out the difference
in nature between truth-values and probability values (hence degrees thereof),
precisely because “true” (resp: false) is not synonymous to “known to be true”
(resp: known to be false), that is to say, verified (resp: falsified). He criticizes
Reichenbach on his claim that probability values should supersede the two usual
truth-values.

In the same vein, H. Weyl [1946] introduced a calculus of vague predicates
treated as functions defined on a fixed universe of discourse U, with values in the
unit interval. Operations on such predicates f : U — [0, 1] have been defined as
follows:

fNg=min(f,g) (conjunction);
fUg=max(f,g) (disjunction);
f¢=1— f (negation).

Clearly, this is one ancestor of the fuzzy set calculus. However, one of the ap-
proaches discussed by him for interpreting these connectives again considers truth
values as probabilities. As shown above, this interpretation is dubious, first be-
cause probability and truth address different issues, and especially because proba-
bilities are not compositional for all logical connectives (in fact, only for negation).

The history of fuzzy logic starts with the foundational 1965 paper by Lotfi Zadeh
entitled “Fuzzy Sets” [Zadeh, 1965]. In this paper, motivated by problems in pat-
tern classification and information processing, Zadeh proposes the idea of fuzzy
sets as generalized sets having elements with intermediary membership grades. In
this view, a fuzzy set is characterized by its membership function, allocating a
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membership grade to any element of the referential domain. The unit interval is
usually taken as the range of these membership grades, although any suitable par-
tially ordered set could also be used (typically: a complete lattice [Goguen, 1967].
Then, extended set theoretic operations on membership functions are defined by
means of many-valued connectives, such as minimum and maximum for the inter-
section and the union respectively. Later, due to other researchers, it has been
recognised that the appropriate connectives for defining generalized intersection
and union operations was a class of associative monotonic connectives known as
triangular norms (t-norms for short), together with their De Morgan dual triangu-
lar co-norms (t-conorms for short) (see Section 2.1). These operations are at the
basis of the semantics of a class of mathematical fuzzy logical systems that have
been thoroughly studied in the recent past, as it will be reported later in Section
3.

While the many-valued logic stream has mainly been developed in a mathemati-
cal logic style, the notion of fuzzy set-based approximate reasoning as imagined by
Zadeh in the seventies is much more related to information processing: he wrote in
1979 that “the theory of approximate reasoning is concerned with the deduction
of possibly imprecise conclusions from a set of imprecise premises” [Zadeh, 1979a).
Fuzzy logic in Zadeh’s sense, as it can be seen in the next section, is both a frame-
work allowing the representation of vague (or gradual) predicates and a framework
to reason under incomplete information. By his interest in modeling vagueness,
Zadeh strongly departs from the logical tradition that regards vague propositions
as poor statements to be avoided or to be reformulated more precisely [Russell,
1923]. Moreover, the view of local fuzzy truth-values emphasized by Bellman and
Zadeh [1977] really means that in fuzzy logic, what is called truth is evaluated
with respect to a description of a state of (vague, incomplete) knowledge, and not
necessarily with respect to an objective, completely and precisely known state of
the world.

Many-valued logics are a suitable formalism to deal with an aspect of vague-
ness, called fuzziness by Zadeh, pertaining to gradual properties. It should be
emphasized that the fuzziness of a property is not viewed as a defect in the lin-
guistic expression of knowledge (e.g., lack of precision, sloppiness, limitation of the
natural languages), but rather as a way of expressing gradedness. In that sense,
fuzzy sets do not have exactly the same concern as other approaches to vagueness.
For instance, K. Fine [1975] proposes that statements about a vague predicate be
taken to be true if and only if they hold for all possible ways of making the predi-
cate clear-cut. It enables classical logic properties to be preserved, like the mutual
exclusiveness between a vague predicate A and its negation not-A. In contrast, the
fuzzy set view maintains that in some situations there is no clear-cut predicate un-
derlying a fuzzy proposition due to the smooth transition from one class to another
induced by its gradual nature. In particular, A and not-A will have a limited over-
lap; see [Dubois et al., 2005] for a detailed discussion. The presence of this over-
lap leads to a logical view of interpolative reasoning [Klawonn and Novak, 1996;
Dubois et al., 1997].
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However, when only imprecise or incomplete information is available, truth-
values (classical or intermediate) become ill-known. Then belief states can be
modeled by sets of truth-values. Actually, what are called fuzzy truth-values by
Zadeh turn out to be ill-known truth-values in this sense. They are fuzzy sets of
truth-values and not so much an attempt to grasp the linguistic subtleties of the
word true in natural languages.

Strictly speaking, fuzzy set theory deals with classes with unsharp boundaries
and gradual properties, but it is not concerned with uncertainty or partial belief.
The latter is rather due to a lack of precise (or complete) information, then making
truth-values ill-known. This is the reason why Zadeh [1978a] introduced possibility
theory, which naturally complements fuzzy set theory for handling uncertainty
induced by fuzzy and incomplete pieces of information. Possibility theory turns out
to be a non-probabilistic view of uncertainty aiming at modeling states of partial
or complete ignorance rather than capturing randomness. Based on possibility
theory, a logical formalism has been developed in the last twenty years under the
name of possibilistic logic (see Section 4.1).

Therefore we can distinguish:

e states with Boolean information from states with gradual information (lead-
ing to intermediate uncertainty degrees) and,

e statements that can be only true or false from statements that may have an
intermediate truth-values because they refer to vague or gradual properties.

This analysis leads us to four noticeable classes of formalisms: (i) classical logic
where both truth and belief (understood as the status of what can be inferred from
available information) are Boolean, (ii) many-valued logics where truth is a matter
of degree but consequencehood is Boolean, (iii) possibilistic logic for graded belief
about Boolean statements, and (iv) the general case of non-Boolean statements
leading to graded truth and imprecise information leading to graded beliefs, which
motivated Zadeh’s proposal.

In the last twenty years, while researchers have been developing formal many-
valued logics and uncertainty logics based on fuzzy sets, Zadeh rather emphasized
computational and engineering issues by advocating the importance of soft comput-
ing (a range of numerically oriented techniques including fuzzy rules-based control
systems, neural nets, and genetic algorithms [Zadeh, 1994b]) and then introduced
new paradigms about computational intelligence like granular computing [Zadeh,
1997], computing with words [Zadeh, 1995] and perception-based reasoning [Zadeh,
1999], trying to enlarge his original motivation for a computational approach to
the way humans handle information.

Since fuzzy sets, fuzzy logic, possibility theory, and soft computing have the
same father, Zadeh, these notions are too often confused although they refer to
quite different tasks and have been developed in sometimes opposite directions. On
the one hand, the term fuzzy logic, understood in the narrow/technical sense refers
to many-valued logics that handle gradual properties (that are a matter of degree,
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e.g. “large”, “old”, “expensive”, ...). These logics are developed by logicians or
artificial intelligence theoreticians. Technicaly speaking, they are compositional
w.r.t. to all logical connectives, while uncertainty logics (like possibilistic logic)
cannot never be compositional w.r.t. to all logical connectives. On the other
hand, “fuzzy logics”, in the broad sense, is a generic expression that most of the
time refers to that part of soft computing where fuzzy sets and fuzzy rules are
used. Lastly, “soft computing” is a buzz-word sometimes referring to the same
research trend as “computational intelligence” (viewed as an alternative problem
solving paradigm to classical artificial intelligence methods that are found to be
too symbolically-oriented).

The remaining part of the chapter is structured as follows. Section 2 provides a
detailed account of the fuzzy set-based approach to approximate reasoning. It
starts with a review of fuzzy set connectives and the possibility theory-based
representation of information under the form of flexible constraints. Then the
approximate reasoning methodology based on the combination and projection of
such flexible constraints is described, before providing a detailed discussion on the
specially important notion of fuzzy truth value in this setting. The last part of
this section is devoted to the representation of different types of fuzzy if-then rules
and to the discussion of the generalized modus ponens and some related issues
such as basic inference patterns.

Section 3 contains a survey of the main many-valued logical systems more re-
cently developed in relation to the formalization of fuzzy logic in narrow sense.
The so-called t-norm based fuzzy logics are first introduced, providing Hilbert-style
axiomatizations of main systems, their algebraic semantics as well as analytical
proof calculi based on hypersequents for some of these logics. Extensions of these
logics with truth-constants and additional connectives are also reported. Then, an
overview of other systems of many-valued logic with deduction based on resolution-
style inference rules is presented. A more abstract point of view, the consequence
operators approach to fuzzy logic, is also surveyed. Finally, a many-valued logic
encoding of major approximate reasoning patterns is described.

Section 4 is devoted to fuzzy set-based logical formalisms handling uncertainty
and similarity, including possibilistic logic, its extension to deal with fuzzy con-
stants, similarity-based inference, modal fuzzy theories of uncertainty, and logics
handling fuzzy truth values in their syntax.

2 A GENERAL THEORY OF APPROXIMATE REASONING

Zadeh proposed and developed the theory of approximate reasoning in a long
series of papers in the 1970’s [1973; 1975a; 1975b; 1975¢; 1976; 1978b; 1979al,
at the same time when he introduced possibility theory [Zadeh, 1978a] as a new
approach to uncertainty modeling. His original approach is based on a fuzzy
set-based representation of the contents of factual statements (expressing elastic
restrictions on the possible values of some parameters) and of if-then rules relating
such fuzzy statements.
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The phrase fuzzy logic appears rather early [Zadeh, 1973]: “[...] the perva-
siveness of fuzziness in human thought processes suggests that much of the logic
behind human reasoning is not the tradidional two-valued or even multivalued
logic, but a logic with fuzzy truths, fuzzy connectives and fuzzy rules of inference.
In our view, it is this fuzzy, and as yet not well-understood, logic' that plays a
basic role in what may well be one of the most important facets of human thinking
[...]”. Clearly, after its founder, fuzzy logic strongly departs at first glance from
the standard view of logic where inference does not depend on the contents of
propositions. Indeed from p and p’ — ¢ one always infers ¢ whenever p + p’ for
any propositions p,p’ and ¢, while in Zadeh’s generalized modus ponens, which is
a typical pattern of approximate reasoning, from “X is A*” and “if X is A then Y
is B”, one deduces “Y is B*” where B* = f(A*, A, B) depends on the implication
chosen, and may differ from B while being non-trivial. Thus, in this approach,
the content of an inference result does depend on the semantic contents of the
premises.

Strictly speaking, the presentation in retrospect, below, of Zadeh’s theory of
approximate reasoning does not contain anything new. Still, we emphasize how
altogether its main features contribute to a coherent theory that turns to en-
compass several important particular cases of extensions of classical propositional
logic, at the semantic level. Moreover, we try to point out the importance of the
idea of fuzzy truth as compatibility, and of the converse notion of truth qualifi-
cation, two key issues in the theory of approximate reasoning which have been
often overlooked or misunderstood, as well as the role of the minimal specificity
principle in the representation of information in possibility theory. The section
below can be viewed as a revised and summarized version of [Bouchon-Meunier et
al., 1999], where more details can be also found about various approaches that are
more loosely inspired from Zadeh’s proposal.

2.1 Fuzzy sets

This section provides basic definitions of fuzzy set theory and its main connectives.
The emphasis is also put here on the various representations of a fuzzy set, that
are instrumental when extending formal notions from sets to fuzzy sets.

Membership Functions

L. A. Zadeh has given in his now famous paper [Zadeh, 1965] the following defi-
nition: A fuzzy set is a class with a continuum of membership grades. So, a fuzzy
set (class) F' in a referential U is characterized by a membership function which
associates with each element u € U a real number in the interval [0, 1]. The value
of the membership function at element u represents the “grade of membership” of
win F. A fuzzy set F' is thus defined as a mapping

F:U—[0,1],

talics are ours
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and it is a kind of generalization of the traditional characteristic function of a sub-
set A: U — {0, 1}.There is a tendency now to identify the theory of fuzzy sets with
a theory of generalized characteristic functions®. In particular, F(u) =1 reflects
full membership of w in F, while F'(u) = 0 expresses absolute non-membership in
F. Usual sets can be viewed as special cases of fuzzy sets where only full mem-
bership and absolute non-membership are allowed. They are called crisp sets, or
Boolean sets. When 0 < F(u) < 1, one speaks of partial membership. For in-
stance, the term young (for ages of humans) may apply to a 30-year old individual
only at degree 0.5.

A fuzzy set can be also denoted as a set of pairs made of an element of U and its
membership grade when positive: {(u, F'(u)),u € (0,1]}. The set of fuzzy subsets
of U is denoted F(U). The membership function attached to a given word (such
as young) depends on the contextual intended use of the word; a young retired
person is certainly older than a young student, and the idea of what a young
student is also depends on the user. However, in the different contexts, the term
young will be understood as a gradual property generally. Membership degrees are
fixed only by convention, and the unit interval as a range of membership grades,
is arbitrary. The unit interval is natural for modeling membership grades of fuzzy
sets of real numbers. The continuity of the membership scale reflects the continuity
of the referential. Then a membership degree F(u) can be viewed as a degree of
proximity between element u and the prototypes of F', that is, the elements v
such that F(v) = 1. The membership grade decreases as elements are located
farther from such prototypes. This representation points out that there is no
precise threshold between ages that qualify as young and ages that qualify as not
young. More precisely there is a gap between protopypes of young and proptypes
of not young. It is clear that fuzzy sets can offer a natural interface between
linguistic representations and numerical representations. Of course, membership
grades never appear as such in natural languages. In natural language, gradual
predicates are those to which linguistic hedges such as very can be applied. Such
linguistic hedges are the trace of gradual membership in natural language. Clearly
the numerical membership grade corresponding to very is itself ill-defined. It is a
fuzzy set of membership degrees as suggested by Zadeh [1972]. He suggested to
build the membership function of very young from the one of young and the one of
very, by letting very-young(-) = very(young(-)). So, fuzzy subsets of membership
grades (represented by a function from [0, 1] to itself) model linguistic hedges that
can modify membership functions of fuzzy predicates.

However if the referential set U is a finite set of objects then the use of the
unit interval as a set of membership grades is more difficult to justify. A finite
totally ordered set L will then do. It results from a partitioning of elements of U
with respect to a fuzzy set F, each class in the partition gathering elements with
equal membership, and the set of classes being ordered from full membership to
non-membership.

2This is why in the following we shall equivalently denote the membership grade of u to a
fuzzy set F' as F'(u) or the more usual pr(u), according to best convenience and clarity
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Parikh [1983] questions the possibility of precisely assessing degrees of truth
for a vague predicate. In practice, however membership degrees have mainly an
ordinal meaning. In other words it is the ordering induced by the membership
degrees between the elements that is meaningful, rather than the exact value of
the degrees. This is in agreement with the qualitative nature of the most usual
operations that are used on these degrees (min, max and the complementation to
1 as an order-reversing operation in [0, 1], as recalled below).

Obviously a fuzzy membership function will depend on the context in various
ways. First, the universe of discourse (i.e., the domain of the membership function)
has to be defined (e.g., young is not the same thing for a man or for a tree).
Second, it may depend on the other classes which are used to cover the domain.
For instance, with respect to a given domain, young does not mean exactly the
same thing if the remaining vocabulary includes only the word old, or is richer
and contains both mature and old. Lastly, a fuzzy membership function may vary
from one person to another. However, what is really important in practice is to
correctly represent the pieces of knowledge provided by an expert and capture the
meaning he intends to give to his own words. Whether there can be a universal
consensus on the meaning of a linguistic expression like young man is another
matter.

Level Cuts

Another possible and very convenient view of fuzzy set is that of a nested family of
classical subsets, via the notion of level-cut. The a-level cut Fy, of a fuzzy set F is
the set {u € U : F(u) > a}, for 1 > a > 0. The idea is to fix a positive threshold
«a and to consider as members of the set the elements with membership grades
above the threshold. Moving the threshold in the unit interval, the family of crisp
sets {F, : 1 > a > 0} is generated. This is the horizontal view of a fuzzy set. For
«a =1, the core of F is obtained. It gathers the prototypes of F. Letting o vanish,
the support s(F) of F is obtained. It contains elements with positive membership
grades, those which belong to some extent to F'. Note that the support is different
from Fy = U. Gentilhomme[1968]’s “ensembles flous” were fuzzy sets with only a
core and a support.
The set of level-cuts of F' is nested in the sense that :

(1) o< @ implies F3 C Fy,

Going from the level-cut representation to the membership function and back
is easy. The membership function can be recovered from the level-cut as follows:

(2) F(u)=sup{a:u€ F,}

Conversely, given an indexed nested family {A, : 1 > o > 0} such that Ag = U
and condition (1) (plus a continuity requirement in the infinite case) holds, then
there is a unique fuzzy set F' whose level-cuts are precisely F, = A, for each
a € [0,1]. This representation theorem was obtained by Negoita and Ralescu
[1975].
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Fuzzy Connectives: Negations, Conjunctions and Disjunctions

The usual set-theoretic operations of complementation, intersection and union
were extended by means of suitable operations on [0, 1] (or on some weaker ordered
structure), that mimic, to some extent, the properties of the Boolean connectives
on {0,1} used to compute the corresponding characteristic functions. Namely,
denoting (-)¢, N, U, the fuzzy set complementation, intersection and union, respec-
tively, these connectives are usually understood as follows:

3)  A%(w) = n(A(u))
(4) (AN B)(u,v) = T(A(u), B(v))
() (AU B)(u,v) = S(A(u), B(v))

where A is a fuzzy subset of a universe U, B a fuzzy subset of a universe V', and
where n is a so-called negation function, T is a so-called triangular norms and S
a triangular conorms, whose characteristic properties are stated below. Note that
strictly speaking, equations 4-5 define the intersection and union of fuzzy sets only
if U =V and u = v; otherwise they define the Cartesian product of A and B and
the dual co-product. All these connective operations are actually extensions of the
classical ones, i.e., for the values 0 and 1, they behave classically, and give rise to
different multiple-valued logical systems when they are taken as truth-functions
for connectives (see Section 3 of this chapter).

It is worth noticing that in his original paper, acknowledgedly inspired in part
by Kleene’s many-valued logics [Kleene, 1952], Zadeh proposed to interpret com-
plementation, intersection and union by means of 1 — (-), min and max operations
respectively. These operations are the only ones that are compatible with the
level cuts view of fuzzy sets. Zadeh also mentioned the possibility of using other
operations, namely the algebraic product for intersection-like, and its De Morgan
dual as well as algebraic sum (when not greater than 1) for union-like fuzzy set
theoretic operations. Axioms for fuzzy set operations were proposed as early as
1973, starting with [Bellman and Giertz, 1973] and later Fung and Fu [Fung and
Fu, 1975]. However the systematic study of fuzzy set connectives was only started
in the late seventies by several scholars, like Alsina, Trillas, Valverde [1980; 1983],
Hoehle [1979], Klement[1980], Dubois and Prade[1979a; 1980] (also [Dubois, 1980],
[Prade, 1980]) and many colleagues, and led to a general framework outlined below.

A negation n is a unary operation in [0, 1] [Trillas, 1979] satisfying the following
properties:

n(0) =1; (6)
n(1) = 0; (7)
n(a) > n(b), ifa<b; (8)
n(n(a)) = a (9)

Furthermore, if n(n(a)) = a, ie., if n is an involution, n is called a strong
negation. The most typical strong negation is n(a) = 1 — a, for all a € [0,1].
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Godel’s negation, defined as n(0) = 1 and n(a) = 0 for all a € (0, 1], is an example
of non-strong negation.

Triangular norms (t-norms for short) and triangular conorms (t-conorms for
short) were invented by Schweizer and Sklar [1963; 1983], in the framework of
probabilistic metric spaces, for the purpose of expressing the triangular inequality.
They also turn out to the most general binary operations on [0, 1] that meet natural
and intuitive requirements for conjunction and disjunction operations. Namely, a
t-norm T is a binary operation on [0,1], i.e., T : [0,1]x : [0,1] — [0,1], that
satisfies the following conditions:

e commutative : T'(a,b) = T'(b, a);

e associative: T'(a,T(b,c)) = T(T(a,b),c);

e non-decreasing in both arguments: T'(a,b) < T'(a/,V') if a < a’ and b < V;
e boundary conditions: T'(a,1) =T(1,a) = a.

It can be proved that T'(a,0) = T(0,a) = 0. The boundary conditions and the
latter conditions respectively express the set-theoretic properties ANU = A and
AN® = (. It is known that the minimum operation is the greatest t-norm, i.e., for
any t-norm T, T'(a,b) < min(a, b) holds for all a,b € [0,1]. Typical basic examples
of t-norms are

e the minimum : T'(a,b) = min(a, b),
e the product: T'(a,b) =a-b
e the linear t-norm: T'(a,b) = max(0,a +b—1)

The linear t-norm is often referred to as Lukasiewicz’s t-norm?® . Note the inequal-
ities,
max(0,a+b—1) < a-b <min(a,b).

The De Morgan-like dual notion of a t-norm (w.r.t. negation n(a) = 1 — a, or
a more general strong negation) is that of a t-conorm. A binary operation S on
[0, 1] is called a t-conorm if it satisfies the same properties as the ones of a t-
norm except for the boundary conditions, namely, here 0 is an identity and 1 is
absorbent. Namely the following conditions express that AU} = A:

boundary conditions: S(0,a) = S(a,0) = a.

Hence S(a,1) = S(1,a) = 1, expressing that AUU = U. Dually, the maximum
operation is the smallest t-conorm (S(a,b) > max(a,b)).

T-norms and t-conorms are dual with respect to strong negations in the follow-
ing sense: if T' is a (continuous) t-norm and n a strong negation then the function

3because it is closely related to the implication connective min(1, 1—a+bd) originally introduced
by Lukasiewicz
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S defined as S(a,b) = n(T'(n(a),n(b))) is a (continuous) t-conorm, and conversely,
if S is a t-conorm, then the function 7' defined as T'(a,b) = n(S(n(a),n(d))) is a
t-norm.

Typical basic examples of t-conorms are the duals of minimum, product and
Lukasiewicz’ t-norms, namely the maximum S(a,b) = max(a,b), the so-called
probabilistic sum S(a,b) = a+b— ab and the bounded sum S(a,b) = min(1,a+b).
Note now the inequalities

max(a,b) <a+b—a-b<min(l,a+b).

A t-norm (resp. a t-conorm) is said to be continuous if it is a continuous mapping
from [0, 1]? into [0, 1] in the usual sense. For continuous t-norms commutativity is
a consequence of the other properties (see Theorem 2.43 in [Klement et al., 2000]).
All the above examples are continuous. An important example of non-continuous
t-norm is the so-called nilpotent minimum [Fodor, 1995] defined as

_ [ min(a,b), fa+b>1
T(a,b) = { 0, otherwise.

See the monographs by Klement, Mesiar and Pap [2000] and by Alsina, Frank and
Schweizer [2006] for further details on triangular norms, conorms and negation
functions.

Fuzzy Implications

Most well-known fuzzy implication functions I : [0, 1] x [0, 1] — [0, 1], are general-
izations, to multiple-valued logical systems, of the classical implication function.
In classical logic the deduction theorem states the equivalence between the en-
tailments » Ap = ¢ and r = p — ¢, and this equivalence holds provided that
p — q = —-pVq. In terms of conjunction and implication functions, this can be
expressed as

c¢c<I(a,b) < T(a,c)<b

where a,b,c € {0,1}. In the Boolean setting it is easy to see that I(a,b) =
S(n(a),b), where S coincide with disjunction and n with classical negation.

However these two interpretations give rise to distinct families of fuzzy impli-
cations, extending the set {0,1} to the unit interval. The strong and residuated
implication functions (S-implications and R-implications for short) are respectively
defined as follows [Trillas and Valverde, 1981].

1. S-implications are of the form Is(a,b) = S(n(a),b), where S is a t-conorm
and n is a strong negation function, hence the name of strong implication,
also due to the fact that when S = max, or probabilistic sum, it refers to
a strong fuzzy set inclusion requiring that the support of one fuzzy set be
included into the core of the other one).
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2. R-implications are of the form Ig(a,b) = sup{z € [0,1] : T'(a, z) < b}, where
T is a t-norm. This mode of pseudo-inversion of the t-norm is a generalization
of the traditional residuation operation in lattices, e.g. [Galatos et al., 2007]
for a recent reference.

Residuated implications make sense if and only if the generating t-norm is left-
continuous. Both kinds of implication functions share the following reasonable
properties:

o Left-decreasingness: I(a,b) > I(a’,b) if a < d;
e Right-increasingness: I(a,b) < I(a,b’) if b < ¥';
e Neutrality: I(1,b) = b;
e Exchange: I(a, I(b,c)) = I(b,1(a,c)).
Notice that another usual property like

Identity: I(a,1) =1

easily comes from the neutrality and monotonicity properties. The main difference
between strong and residuated implications lies in the fact that the contraposition
property, i.e.

Contraposition: I(a,b) = I(n(b),n(a)),

symbol n being some negation function, holds for all strong implications but fails
for most residuated implications. In contrast, the following property

Ordering: I(a,b) =1 iffa < b,

which establishes the fact that implication defines an ordering, holds for all resid-
uated implications but fails for most strong ones. The failure of the contraposition
property for the residuated implications enables a third kind of implication func-
tions to be defined, the so-called reciprocal R-implications, in the following way:

IC(av b) = IR(n(b)v n(a))

for some residuated implication I and negation n. The above monotonicity and
exchange properties still hold for these reciprocal implications, but now the neu-
trality principle is no longer valid for them. However, the following properties do
hold for them:

o Negation: I¢(a,0) = n(a)

e Ordering: Ic(a,b) =1iff a <



14 Didier Dubois, Francesc Esteva, Lluis Godo, Henri Prade

generating S-implication R-implication Reciprocal
t-norm R-implication

nfa)=1-—a n(a)=1-—a

. 1,ifa<b 1, ifa<b
min(a, b) max(1 — a, b) { b, otherwise { 1 — a, otherwise

Kleene-Dienes Godel

1, ifa<b 1, ifa<bd

a-b l-ata-b { b/a, otherwise { 1=4 otherwise

Reichenbach
min(1,1 —a +b)

Goguen
min(1,1 —a +b)

max(0,a+b—1) min(1,1 —a + b)

Lukasiewicz Lukasiewicz Lukasiewicz

Table 1. Main multiple-valued implications

Notice that the first one also holds for strong implications while the second, as
already noticed, holds for the residuated implications as well. Table 1 shows the
corresponding strong, residuated and reciprocal implications definable from the
three main t-norms and taking the usual negation n(a) = 1 — a. Notice that
the well-known Lukasiewicz implication I(a,b) = min(1,1 — a + b) is both an S-
implication and an R-implication, and thus a reciprocal R-implication too. The
residuated implication induced by the nilpotent minimum is also an S-implication
defined by:

1, ifa <b

max(1l —a,b), otherwise.

Ir(a,b) = {

More generally all R-implications such that Ir(a,0) define an involutive negation
are also S-implications.

Considering only the core of R-implications gives birth to another multiple-
valued implication of interest, usually named Gaines-Rescher implication, namely

1, ifa<b
Ir(a,b) = { 0, otherwise.

Let us observe that this implication fails to satisfy the neutrality property, we only
have I(1,b) < b, since I(1,b) = 0 when b < 1. Moreover, by construction, this
connective is all-or-nothing although it has many-valued arguments.

For more details the reader is referred to studies of various families of fuzzy
implication functions satisfying some sets of required properties, for instance see
[Baldwin and Pilsworth, 1980; Domingo et al., 1981; Gaines, 1976; Smets and Ma-
grez, 1987; Trillas and Valverde, 1985a; Weber, 1983]. See also [Fodor and Yager,
2000] for a more extensive survey of fuzzy implications.
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Remark: Non-Commutative Conjunctions. Dubois and Prade[1984a] have
shown that S-implications and R-implications could be merged into a single family,
provided that the class of triangular norms is enlarged to non-commutative con-
junction operators. See [Fodor, 1989] for a systematic study of this phenomenon.
For instance, the Kleene-Dienes S-implication a — b = max(1l — a,b) can be ob-
tained by residuation from the non-commutative conjunction

" ] 0, ifa+rbd<1
T*(a,b) _{ b, otherwise

Note that the nilpotent minimum t-norm value for the pair (a,b) is the minimum
of T*(a,b) and T*(b, a).

2.2 The possibility-theoretic view of reasoning after Zadeh

The core of Zadeh’s approach to approximate reasoning [Zadeh, 1979a] can retro-
spectively be viewed as relying on two main ideas: i) the possibility distribution-
based representation of pieces of knowledge, and ii) a combination / projection
method that makes sense in the framework of possibility theory. This what is
restated in this section.

Possibility distributions and the minimal specificity principle

Zadeh’s knowledge representation framework is based on the idea of expressing
restrictions on the possible values of so-called variables. These variables are more
general than the notion of propositional variable in logic, and refer to parameters
or single-valued attributes used for describing a situation, such as for instance, the
pressure, the temperature of a room, the size, the age, or the sex for a person.
Like in the case of random variables and probability distributions, the ill-known
value of these variables can be associated with distributions mapping the domain
of the concerned parameter or attribute to the real unit real interval [0,1]. These
distributions are named possibility distributions. Thus, what is known about the
value of a variable xz, whose domain is a set U, is represented by a possibility
distribution 7. A value 7, (u) is to be understood as the degree of possibility that
x = u (variable x takes value u). When 7, (u) = 0, it means that the value v (in
U) is completely impossible for x, while 7, (u) is all the larger as u is considered
to be a more possible (or in fact, less impossible) value for x; 7, (u) = 1 expresses
that absolutely nothing forbids to consider u as a possible value for x, but there
may exist other values u’ such 7, (u) = 1. In that sense, 7, expresses potential
possibility.

Since knowledge is often expressed linguistically in practice, Zadeh uses fuzzy
sets as a basis for the possibilistic representation setting that he proposes. Then a
fuzzy set E is used to represent an incomplete piece of information about the value
of a single-valued variable x, the membership degree attached to a value expresses
the level of possibility that this value is indeed the value of the variable. This is
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what happens if the available information is couched in words, more precisely in
fuzzy statements S of the form “x is E”, like in, e.g.“Tom is young”. Here the
fuzzy set “young” represents the set of possible values of the variable z = age
of Tom. The fuzzy set E is then interpreted as a possibility distribution [Zadeh,
1978a], which expresses the levels of plausibility of the possible values of the ill-
known variable x. Namely if the only available knowledge about x is that “z lies in
E” where FE is a fuzzy subset of U, then the possibility distribution of x is defined
by the equation:

(10) 72(u) = pp(u),Vu € U,

where E (with membership function pg) is considered as the fuzzy set of (more
or less) possible values of « and where 7, ranges on [0, 1]. More generally, the range
of a possibility distribution can be any bounded linearly ordered scale (which may
be discrete, with a finite number of levels). Fuzzy sets, viewed as possibility distri-
butions, act as flexible constraints on the values of variables referred to in natural
language sentences. The above equation represents a statement of the form “x lies
in E” or more informally “z is E”. It does not mean that possibility distributions
are the same as membership functions, however. The equality 7, = pg is an
assignment statement since it means: given that the only available knowledge is
“r lies in E”, the degree of possibility that x = u is evaluated by the degree of
membership pp(u).

If two possibility distributions pertaining to the same variable z, 7, and =, are
such that 7w, < 7., m, is said to be more specific than 7/, in the sense that no value
u is considered as less possible for « according to #/, than to 7,. This concept of
specificity whose importance has been first stressed by Yager [1983a] underlies the
idea that any possibility distribution 7, is provisional in nature and likely to be
improved by further information, when the available one is not complete. When
Ty < ., the information 7/, is redundant and can be dropped.

When the available information stems from several reliable sources, the possi-
bility distribution that accounts for it is the least specific possibility distribution
that satisfies the set of constraints induced by the pieces of information given by
the different sources. This is the principle of minimal specificity. Particularly, it
means that given a statement “z is E”, then any possibility distribution 7 such
that 7(u) < pg(u), Vu € U, is in accordance with “z is E”. However, in or-
der to represent our knowledge about x, choosing a particular m such that Ju,
m(u) < pp(u) would be arbitrarily too precise. Hence the equality 7, = pg is nat-
urally adopted if “z is E” is the only available knowledge, and already embodies
the principle of minimal specificity.

Let z and y be two variables taking their values on domains U and V respec-
tively. Any relation R, fuzzy or not, between them can be represented by a joint
possibility distribution, 7, = pgr, which expresses a (fuzzy) restriction on the
Cartesian product U x V. Common examples of such fuzzy relations R between
two variables z and y are representations of “approximately equal” (when U = V),
“much greater than” (when U = V is linearly ordered), or function-like relations
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such that the one expressed by the fuzzy rule “if x is small then y is large” (when
U and V are numerical domains). Joint possibility distributions can be easily
extended to more than two variables. Generally speaking, we can thus represent
fuzzy statements S of the form “(x1,...,z,) are in relation R” (where R may be
itself defined from more elementary fuzzy sets, as seen later in the case of fuzzy
rules).

Possibility and necessity measures

The extent to which the information “x is E”, represented by the possibility dis-
tribution 7, = pg, is consistent with a statement like “the value of z is in subset
A” is estimated by means of the possibility measure II, defined by Zadeh[1978a):

(11) TI(A) = ilelg 7 ().

where A is a classical subset of U. The value of TI(A) corresponds to the element(s)
of A having the greatest possibility degree according to m,; in the finite case, “sup”
can be changed into “max” in the above definition of II(A) in eq. (11). TI(4) =0
means z € A is impossible knowing that “z is E” . II(A) estimates the consistency
of the statement “z € A” with what we know about the possible values of x. It
corresponds to a logical view of possibility. Indeed, if 7, models a non-fuzzy piece
of incomplete information represented by an ordinary subset E, the definition of
a possibility measure reduces to

(12) Og(A) = L if ANE#0 (x € Aand x € E are consistent)
F | 0, otherwise (A and E are mutually exclusive).

Any possibility measure II satisfies the following max-decomposability charac-
teristic property

(13) TI(AU B) = max(IL(A), [I(B)).

Among the features of possibility measures that contrast with probability mea-
sures, let us point out the weak relationship between the possibility of an event A
and that of its complement A€ ('not A’). Either A or A° must be possible, that is
max(II(A),II(A°)) = 1 due to AUA® = U and II(U) = 1 (normalization of IT). The
normalization of II requires that sup,cy mx(u) = 1 ; if U is finite, it amounts to
requiring the existence of some uy € U such that 7, (ug) = 1. This normalization
expresses consistency of the information captured by . (it will be even clearer
when discussing possibilistic logic). II(U) estimates the consistency of the state-
ment “z € U” (it is a tautology if U is an exhaustive set of possible values), with
what we know about the possible values of z. Indeed, it expresses that not all the
values u are somewhat impossible for = (to a degree 1 —m,(u) > 0) and that at least
one value ug will be fully possible. In case of total ignorance, Yu € U, 7(u) = 1.
Then, all contingent events are fully possible: TI(A) = 1 = II(A¢),VA # 0,U. Note
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that this leads to a representation of ignorance (F = U and VA # 0, 1Ig(A4) = 1)
which presupposes nothing about the number of elements in the reference set U
(elementary events), while the latter aspect plays a crucial role in probabilistic
modeling. The case when IT(A) = 1,II(A°) > 0 corresponds to partial ignorance
about A. Besides, only II(A N B) < min(II(A4),II(B)) holds. It agrees with the
fact that in case of total ignorance about A, II(A) = II(A¢) = 1, while for B = A°,
II(A N B) = 0 since II(0) = 0.

The index 1 — II(A€) evaluates to the impossibility of 'not A’, hence about the
certainty (or necessity) of occurrence of A since when 'not A’ is impossible then A

is certain. It is thus natural to use this duality and define the degree of necessity
of A [Dubois and Prade, 1980; Zadeh, 1979b] as

(14) N(4) =1~ TI(A%) = inf 1 —m,(u).

Clearly, a necessity measure N satisfies N(AN B) = min(N(A), N(B)). In case
of a discrete linearly ordered scale, the mapping s — 1 — s would be replaced by
the order-reversing map of the scale. The above duality relation is clearly remi-
niscent of modal logics that handle pairs of modalities related by a relation of the
form Op = —-<O—p. But here possibility and necessity are graded. Note that the
definitions of possibility and necessity measures are qualitative in nature, since
they only require a bounded linearly ordered scale. Modal accounts of possibil-
ity theory involving conditional statements have been proposed in [Lewis, 1973b]
(this is called the VN conditional logic), [Farifias and Herzig, 1991; Boutilier, 1994;
Farifias et al., 1994; Héjek et al., 1994; Hijek, 1994]. Before Zadeh, a graded no-
tion of possibility was introduced as a full-fledged approach to uncertainty and
decision in the 1940-1970’s by the English economist G. L. S. Shackle [1961], who
called degree of potential surprise of an event its degree of impossibility, that is,
the degree of necessity of the opposite event. It makes the point that possibility,
in possibility theory, is understood as being potential, not actual. Shackle’s notion
of possibility is basically epistemic, it is a “character of the chooser’s particular
state of knowledge in his present.” Impossibility is then understood as disbelief.
Potential surprise is valued on a disbelief scale, namely a positive interval of the
form [0,y*], where y* denotes the absolute rejection of the event to which it is
assigned. The Shackle scale is thus reversed with respect to the possibility scale.
In case everything is possible, all mutually exclusive hypotheses have zero surprise
(corresponding to the ignorant possibility distribution where 7(u) = 1,Vu). At
least one elementary hypothesis must carry zero potential surprise (the normal-
ization condition 7(u) = 1, for some u). The degree of surprise of an event, a
set of elementary hypotheses, is the degree of surprise of its least surprising real-
ization (the basic “maxitivity” axiom of possibility theory). The disbelief notion
introduced later by Spohn [1990] employs the same type of convention as potential
surprise, but using the set of natural integers as a disbelief scale.
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Inference in approzrimate reasoning

Inference in the framework of possibility theory as described by Zadeh [1979a] is a
four-stepped procedure that can be respectively termed i) representation; ii) com-
bination; iii) projection; iv) interpretation. Namely, given a set of n statements

S, ..

., Sy, expressing fuzzy restrictions that form a knowledge base, inference pro-

ceeds in the following way:

i)

ii)

Representation. Translate St, ..., S, into possibility distributions «!, ..., 7"

restricting the values of involved variables. In particular, facts of the form
Sy = “z is F” translate into 7}, = pp. Statements of rules of the form S; =
“if z is F then y is G” translate into possibility distributions ch,y = uR
with pur = f(ur,ue) where f depends on the intended semantics of the

rule, as explained below in section 2.4. Let T = (z1,...,Zk,...,Tm) be a
vector made of all the variables involved in statements Si,...,S,. Assume
S; only involves variables z1, ..., zg, then its possibility distribution can be

cylindrically extended to = as
t t
T (Ul e ey Uy U1y e v ey W) = T (UL, e ooy Upe )y VUEATy « -+ U

which means that the possibility that z; = uy,...,xx = ug according to
S; does not depend on the values ug41,...,u, taken by the other variables
Lht1ly-++sLm-

Combination. Combine the possibility distributions i, ..., 72 obtained at
step (i) in a conjunctive way in order to build a joint possibility distribution
7 expressing the contents of the whole knowledge base, namely,

7z = min(wL, ..., 2.

Indeed each granule of knowledge “Z is F;”, for i = 1,...,n, as already said,
translates into the inequality constraint

(15) Vu, mx(u) < g, (w).

Thus given several pieces of knowledge of the form “x is F;”, fori =1,...,n,
we have

(16) Vi, 7z < ug,,or equivalently 7z < r{ﬂn WE, -
i=1,...,n

Taking into account all the available pieces of knowledge S1 = “T is E;”,. ..,
S, = “T is F,”, the minimal specificity principle is applied. It is a principle
of minimal commitment that stipulates that anything that is not explicitly
declared impossible should remain possible (in other words, one has not to
be more restrictive about the possible situations than what is enforced by
the available pieces of knowledge). Thus, the available information should
be represented by the possibility distribution:
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iii)

iv)
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(17) 7z(u) = min pg,.

i=1,...,n
Projection. Then mz is projected on the domain(s) corresponding to the
variable(s) of interest, i.e., the variable(s) for which one wants to know the
restriction that can be deduced from the available information. Given a
joint possibility distribution 7, involving two variables defined on U x V

(the extension to n variables is straightforward), its projection m, on V is
obtained [Zadeh, 1975b]:

(18) my(v) = sup g,y (u, v).
uelU

Clearly, what is computed is the possibility measure for having y = v given
Tgy. Generally, 7, , < min(m,,m,) where m,(u) = II({u} x V). When
equality holds, m; , is then said to be min-separable, and the variables x and
y are said to be non-interactive [Zadeh, 1975b]. It is in accordance with the
principle of minimal specificity, since m,(v) is calculated from the highest
possibility value of pairs (x,y) where y = v. When modeling incomplete
information, non-interactivity expresses a lack of knowledge about potential
links between =z and y. Namely, if we start with two pieces of knowledge
represented by 7, and 7y, and if we do not know if z and y are interactive
or not, i.e., Ty, is not known, we use the upper bound min(7,, m,) instead,
which is less informative (but which agrees with the available knowledge).
The combination and projection steps are also in agreement with Zadeh’s
entailment principle, which states that if “z is E” then “x is F”, as soon
as the fuzzy set inclusion £ C F holds, i.e.,.Vu, pg(u) < pr(u), where z
denotes a variable or a tuple of variables, and u any instantiation of them.
Indeed, if F' is entailed by the knowledge base, i.e., min;—1 ., pe, < pr,
F can be added to the knowledge base without changing anything, since
Ty = min(ming_y, ., g, pr) = min_ _ , (g,.

Interpretation. This last step, which is not always used, aims at providing
conclusions that are linguistically interpretable [Zadeh, 1978b]. Indeed, at
step (i) one starts with linguistic-like statements of the form “z; is F;”, and
at step (iii) what is obtained is a possibility distribution m, (or 7y in case
of a subset of variables), and not something of the form “y is F”. F as
the best linguistic approximation of the result of step (iii) should obey three
conditions:

(a) F belongs to some subsets of fuzzy sets (defined on the domain V of y)
that represent linguistic labels or some combinations of them that are au-
thorized (e.g. “not very young and not very old”, built from the elementary
linguistic labels “young” and “old”);

(b) F should agree with the entailment principle, i.e. obey the constraint
Ty < [UF;
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(¢) F should be mazimally specific, i.e. as small as possible (in the sense
of fuzzy set inclusion); in order to have a conclusion that is meaningful for
the end-user (condition a), valid (condition b), and as precise as permitted
(condition c), see, e.g. [Baldwin, 1979] for a solution to this optimization
problem.

Observe that if the pieces of knowledge are not fuzzy but clear-cut, this four
steps procedure reduces to classical deduction, since a classical logic knowledge
base is generally viewed as equivalent to the logical conjunction of the logical
formulas p; that belong to the base. Moreover, in the case of propositional logic,
asserting p;, where p; is a proposition, amounts to saying that any interpretation
(situation) that falsifes p; is impossible, because it would not be compatible with
the state of knowledge. So, at the semantic level, p; can be represented by the
possibility distribution 7% = ip,], Where [p;] is the set of models of p;, and puf,,
its characteristic function.

It also encompasses possibilistic logic (see section 4.1) as a particular case
[Dubois and Prade, 1991a), where pieces of knowledge are semantically equiva-
lent to prioritized crisp constraints of the form N(E;) > «; and N is a necessity
measure. Such an inequality has a unique minimally specific solution, namely the
possibility distribution m,, = max(ug,, 1 — ;). Propositional logic corresponds to
the case where Vi, o; = 1 (and E; = [p;]).

The combination and projection steps applied to a fact S; = “x is F'”, and a
rule S = “if x is F then y is G”, yields

() = sup min(ur:(u), ua(us )
ue
where g represents the rule Ss. Then, the fact “y is G'” is inferred such that
per(v) = my(v). This is called the generalized modus ponens, first proposed by
Zadeh[1973]. However, ug: = ug follows from pr = pp only for a particular
choice of f in ur = f(ur, pa), as discussed below in Section 2.5.

2.8  Fuzzy truth-values - Degree of truth vs. degree of uncertainty

Zadeh [1978b; 1979a] also emphasizes that his theory of approximate reasoning can
be interpreted in terms of what he calls “fuzzy truth-values” (see also [Bellman and
Zadeh, 1977]). This terminology has led to many misunderstandings (e.g., [Haack,
1979]), that brings us back to the often made confusion (already mentioned in the
introduction) between intermediate truth and uncertainty, hence between degree
of truth and degree of belief. This is the topic of this section.

Fuzzy truth-values as compatibility profiles

It was emphasized earlier that Zadeh’s approach to approximate reasoning is based
on a representation of the contents of the pieces of information. This led Bellman
and Zadeh [1977] to claim that the notion of truth is local rather than absolute:
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a statement can be true only with respect to another statement held for sure. In
other words, truth is viewed as the compatibility between a statement and “what
is known about reality”, understood as the description of some actual state of facts
as stored in a database. Namely, computing the degree of truth of a statement S
comes down to estimating its conformity with the description D of what is known
about the actual state of facts. This point of view is in accordance with the test-
score semantics for natural languages of Zadeh [1981]. It does not lead to scalar
degrees of truth, but to fuzzy sets of truth-values in general.

Bellman and Zadeh [1977] define the fuzzy truth-value of a fuzzy statement
S = “ris A” given that another one, D = “x is B”, is taken for granted. When
B = {up}, i.e. D = “xis (equal to) ug”, the degree of truth of S is simply pa(ug),
the degree of membership of ug to the fuzzy set A. More generally, the information
on the degree of truth of S given D will be described by a fuzzy set 7(S; D) (or
simply 7 for short) of the unit interval [0, 1], understood as the compatibility
COM(A; B) of the fuzzy set A with respect to the fuzzy set B, with membership
function:

(19) 7(a) = pcom(a;p) (@) { Bl’lp{B(U) A= ek i)ftli;vlv(igg 7Y

for all @ € [0,1]. As can be checked, 7(S; D) is a fuzzy subset of truth-values and
7(a) is the degree of possibility, according to the available information D, that
there exists an interpretation that makes S true at degree a. In fact, 7(S; D) is
an epistemic state. As a consequence, truth evaluation comes down to a semantic
pattern matching procedure. Six noticeable situations can be encountered [Dubois
and Prade, 1988b], [Dubois et al., 1991c]. In each situation, a particular case of
7(S; D) is obtained.

a) Boolean statement evaluated under complete information: S is a
classical statement and D is a precise (i.e., complete) description of the actual
state of facts. Namely A is not fuzzy and B = {ug}. Either D is compatible with
S and S is true (this is when ug € A) and 7(S; D) = {1}; or D is not compatible
with S and S is false (this is when uy ¢ A) and 7(S; D) = {0}. This situation
prevails for any Boolean statement S. When B is the set of models of a classical
knowledge base K, then this situation is when K is logically complete.

b) Fuzzy statement evaluated under complete information: In that case
D is still of the form & = ug but the conformity of S with respect to D becomes a
matter of degree, because A is a fuzzy set. The actual state of facts B = {ug} can
be borderline for A. For instance, the statement S to evaluate is “John is tall” and
it is known that D = “John’s height is 1.75 m”. Then 7(S; D) = {A(uo)}, a precise
value in [0,1]. Then what can be called a degree of truth can be attached to the
statement S (in our example 7(S; D) = tall(1.75)); by convention 7(S5; D) = {1}
implies that S is true, and 7(S;D) = {0} implies that S is false. But S can
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be half-false as well. In any case, the truth-value of S is precisely known. This
situation is captured by truth-functional many-valued logics.

¢) Fuzzy statement; incomplete non-fuzzy information: In this case, the
information D does not contain fuzzy information but is just incomplete, and A
is a fuzzy set. Then, it can be checked that 7(S5; D) is a crisp set of truth values
{A(u) : w € B}. This set is lower bounded by inf,cp A(u) and upper bounded by
sup,cp A(u) and represents the potential truth-values of S.

d) Boolean statement evaluated under incomplete non-fuzzy informa-
tion: In that case, S and D are representable in classical logic, neither A nor
B are fuzzy, and the conformity of S with respect to D is still an all-or-nothing
matter but may be ill-known due to the fact that D does not precisely describe the
actual state of facts, i.e., there may be two distinct states of facts u and u’ that
are both compatible with D such that u is compatible with S but u’ is compatible
with “not S”. Hence the truth-value of S, which is either true or false (since A is
not fuzzy), may be unknown. Namely, either D classically entails S, so S is cer-
tainly true (this is when B C A), and 7(S; D) = {1}; or D is not compatible with
S, so S is certainly false (this is when BN A = ) and 7(5; D) = {0}. But there
is a third case, namely when D neither classically entails S nor does it entail its
negation (this is when BN A # () and BN A€ # (). Then the (binary) truth-value
of S is unknown. This corresponds to the fuzzy truth-value 7(S; D) = {0,1}. This
situation is fully described in classical logic. The logical view of possibility is to
let IIg(A) =1 when BN A # 0, IIg(A) = 0 otherwise. It can be checked that,
generally:

(S;D)(0) = peoma;py(0) = I1p(A°)
(8;D)(1) = peoma;py(1) = 1Ip(A).

Equivalently, Ng(A) = 1 — II5(A°) = 1 is interpreted as the assertion of the
certainty of S. Hence the fuzzy truth-value provides a complete description of the

partial belief of S. So, fuzzy truth-values describe uncertainty as much as truth
(see also Yager[1983b]).

T
(S:

)

e) Boolean statement evaluated under fuzzy information: In that case,
S is a classical logic statement (A is an ordinary set) but D contains fuzzy infor-
mation. The conformity of S with respect to the actual state of facts is still an
all-or-nothing matter but remains ill-known as in the previous case. The presence
of fuzzy information in D leads to qualify the uncertainty about the truth-value
of S in a more refined way. A grade of possibility II(A), intermediary between 0
and 1, can be attached to S. This grade is interpreted as the level of consistency
between S and D. The dual level Ng(A) =1 —IIp(A€) =1 is interpreted as the
degree the certainty of S and expresses the extent to which S is a consequence
of D. These are standard possibility and necessity measures as recalled above.
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Clearly these numbers are not degrees of truth, but only reflect a state of be-
lief about the truth or the falsity of statement S. In such a situation, the fuzzy
truth-value 7(S; D) reduces to a fuzzy set 7 of {0,1}, such that 7(0) = IIg(A°)
and 7(1) = IIg(A). Moreover, if the fuzzy sets A and B are normalized, we have
max(7(0),7(1)) = 1, i. e., 7 is a normalized fuzzy set of {0,1}.

f) Fuzzy statement evaluated under fuzzy incomplete information:
When both S and D can be expressed as fuzzy sets, the fuzzy truth-value 7(S; D)
is a genuine fuzzy subset of [0,1]. It restricts the more or less possible values of
the degree of truth. Indeed, in this case, truth may altogether be a matter of
degree and may be ill-known. In other words, to each truth-value a = 7(S;u)
representing the degree of conformity of the fuzzy statement S with some precise
state of facts u compatible with D, a degree of possibility 7(«) that S has truth-
value « is assigned. It reflects the uncertainty that uw be the true state of facts.
This is the most complex situation.

In the particular case where S = “x is A” and D = “x is A” (i.e., B = A), the
compatibility COM (A; A) reduces to

if A71
(20) 7(e) = poom(a;a)(@) { g: Ltherw(ge) 70

When A7 (a) # 0 for all o, 7(a) = a,Va € [0,1]. This particular fuzzy
truth value corresponds to the idea of “certainly true” (“u-true” in Zadeh’s orig-
inal terminology) . In case A=!'(a) = (),Ya except 0 and 1, i.e., A is non-
fuzzy, “certainly true” enforces standard Boolean truth (our case (a) above), since
then COM (A; A) = {1}, whose membership function is pconr(a;a)(1) = 1 and
HCOM(A;A) (0) = 0 on the truth set {0, 1}.

The fuzzy truth-value COM (A; B) thus precisely describes the relative position
of fuzzy set A (involved in statement S) with respect to fuzzy set B (involved in
statement D). It can be summarized, by means of two indices, the possibility and
necessity of fuzzy events, respectively expressing degree of consistency of S with
respect to D, and the degree of entailment of S from D, namely:

a(4) = supmin(A(u), B(w))
Np(4) = uirelfUmaX(A(u),l—B(u)).

Indeed, MIp(A) and Ng(A) can be directly computed from the fuzzy truth-value
COM (A; B). Namely, as pointed out in [Baldwin and Pilsworth, 1979; Prade,
1982; Yager, 1983b; Dubois and Prade, 1985a] :

p(4) = Sl[lop ] min(a, pconr(a;)(a)) (21)
ac|0,1
Np(A) = inf max(a,1 - pcoma;n)(a)) (22)

a€l0,1]
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Truth qualification

This view of local truth leads Zadeh [1979a] to reconstruct a statement “z is B”
from a fuzzy truth-qualified statement of the form “(x is A) is 7-true”, where 7
is a fuzzy subset of [0,1] (that may mean for instance “almost true”, “not very
true”...), according to the following equivalence:

(risA)isT& xis B

So, given that “(x is A) is 7-true”, the fuzzy set B such that “(z is A) is 7-true
given that x is B” is any solution of the following functional equation:

Va € [0,1], 7(a) = peom(a;p) (@)

where 7 and A are known. The principle of minimal specificity leads us to consider
the greatest solution B to this equation, defined as, after [Bellman and Zadeh,
1977; Sanchez, 1978]:

(23) B(u) = 1(A(u)), Vu.

This is also supported by an equivalent definition of COM(A; B)[Godo, 1990]
which is
tcom(ap) =mnf{f | f:[0,1] —[0,1], f o A > B}

where inf and > refer respectively to the point-wise infimum and inequality, that is,
COM(A; B) represents the minimal functional modification required for the fuzzy
subset A in order to include the fuzzy subset B, in agreement with the entailment
principle. The similarity of B(u) = 7(A(w)) with the modeling of linguistic mod-
ifiers [Zadeh, 1972], such as “very” (verya(u) = (A(u))?) has been pointed out.
Indeed, linguistic hedges can can be viewed as a kind of truth-qualifiers. This is
not surprising since in natural language, truth-qualified sentences like “It is almost
true that John is tall” stand for “John is almost tall”.

Using this representation, fuzzy sets of [0, 1] can be interpreted in terms of fuzzy
truth-values [Bellman and Zadeh, 1977; Baldwin, 1979; Yager, 1985b]. Especially

e “It is true that x is A” must be equivalent to “x is A” so that the fuzzy
set of [0, 1] with membership function 7(a)) = o has been named true in the
literature (while it really means “certainly true”).

o “It is false that x is A” is often equivalent to the negative statement “z is
not-A”, that is, “x is A®” with A°(-) =1 — A(-), hence the fuzzy set of [0, 1]
with membership function 7(«) = 1 — « has been named false (while it really
means “certainly false”).

e “It is unknown if x is A” must be equivalent to “x is U” where U is the whole
domain of z. Hence, the set [0, 1] ifself corresponds to the case of a totally
unknown truth-value. This is a clear indication that what Zadeh calls a fuzzy
truth value is not a genuine truth-value: unknown is not a truth-value, it
expresses a state of (lack of) knowledge.
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It clearly appears now that what is called a fuzzy truth-value above is not a
genuine truth-value. In the Boolean setting, what this discussion comes down to
is to distinguish between an element of {0,1}, where 0 means false and 1 means
true, from a singleton in 2{%!} where the set {0} means certainly false and {1}
means certainly true. So, fuzzy truth-values true and false are misnomers here.
The natural language expression “it is true that x is A” really means “it is certainly
true that = is A”, and “it is false that x is A” really means “it is certainly false
that  is A”. One thus may argue that the fuzzy set with membership function
7(a) = « could be better named certainly true, and is a modality, the fuzzy set
with membership function 7(a) = 1 — « could be named certainly false; this is in
better agreement with the representation of “unknown” by the set [0, 1] itself, not
by a specific element of the truth set.

In a nutshell, Zadeh’s fuzzy truth-values are epistemic states modeled by (fuzzy)
subsets of the truth-sets.

The term fuzzy truth-value could wrongly suggest a particular view of Fuzzy
Logic as a fuzzy truth-valued logic, i.e., a logic where truth-values are fuzzy sets
(represeting linguistic labels). Viewed as such, fuzzy logic would be just another
multiple-valued logic whose truth set is a family of fuzzy sets. This view is not
sanctioned by the above analysis of fuzzy truth-values. Zadeh’s fuzzy logic is a
logic where truth-qualified statements can be expressed using (linguistic) values
represented by fuzzy sets of the unit interval. That is, the truth set is just the
unit interval, and fuzzy truth-values described here express uncertainty about
precise truth-values. The situation where a fuzzy set of the unit interval could
be viewed as a genuine truth-value would be in the case of a fuzzy statement S
represented by a type 2 fuzzy set (a fuzzy set with fuzzy set-valued membership
grades, [Mizumoto and Tanaka, 1976; Dubois and Prade, 1979b] and a reference
statement D expressing complete information x = ug. Then A(ug) is a fuzzy set
of the unit interval which could be interpreted as a genuine (fuzzy) truth-value.
Type 2 fuzzy logic, and especially the particular case of interval-valued fuzzy logic,
have been developed at a practical level in the last ten years for trying to cope
with engineering needs [Mendel, 2000].

As seen above, COM (A; B) has its support in {0, 1} if A is not fuzzy. It makes
no sense, as a consequence, to assert “it is 7-true that z is A” using a fuzzy
(linguistic) truth-value 7, namely a fuzzy set 7 whose support extends outside
{0,1}. This is because one is not entitled, strictly speaking, to attach intermediary
grades of truth to Boolean statements, e.g., formulas in classical logic. However
it is possible to give a meaning to sentences such as “it is almost true that x =
57. It clearly intends to mean that “z is almost equal to 5”. This can be done by
equipping the set of interpretations of the language with fuzzy proximity relations
R such that saying “r is A” means in fact “z is Ro A” (see [Prade, 1985, p. 269),
where the composition Ro A (defined by (R o A)(u) = sup,c4 R(u,v) is a fuzzy
subset which is larger than A, while A may be Boolean. Then Ro A corresponds to
an upper approximation of A which gathers the elements in A and those which are
close to them. This indicates a dispositional use of Boolean statements that need
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to be fuzzified before their meaning can be laid bare. This view has been specially
advocated by Ruspini [1991]. This latter dispositional use of Boolean statements
contrasts with the one related to usuality described by Zadeh [1987], for whom
“snow is white” is short for “usually, snow is white””, which is in the spirit of
default rules having potential exceptions, as studied in nonmonotonic reasoning
(see also section 4.1).

This fuzzification of Boolean concepts is related to Weston [1987)’s idea of ap-
proximate truth as reflecting a distance between a statement and the ideal truth,
since fuzzy proximity relations are closely related to distances. Niskanen [1988]
also advocates in favor of a distance view of approximate truth where the degree of
truth of a statement S with respect to the available information D is computed as
a relative distance between the (fuzzy) subsets representing S and D (by extending
to fuzzy sets a relative distance which is supposed to exist on the referential). This
distance-based approach corresponds to an “horizontal view” directly related to
the distance existing between elements of the referential corresponding to D and
S, and completely contrasts with the “vertical view” of the information system
approach presented here where membership functions of the representations of S
and D are compared, in terms of degrees of inclusion and non-empty intersection.

Truth qualification and R.C.T. Lee’s fuzzy logic

An interesting particular case of truth qualification is the one of statements of the
form “(x is A) is at least y-true”, where v € [0, 1]. This means that “(z is A) is 77-
true”, with 77(a) = 0 if & < v and 77(«) = 1 if @ > . This is a truth-qualified
fuzzy proposition “p is at least v-true” with p = “x is A”. Applying Zadeh’s
view, it precisely means that the truth-qualified statement is equivalent to “x is
A,”, where A, is the y-level cut of the fuzzy set A, a classical subset defined by
A, ={u| pa(u) > ~}. This enables us to retrieve a noticeable particular case of
multiple-valued logics of Lee [1972] and Yager [1985], see [Dubois et al., 1991c] for
a survey.

Assume we have the two statements “(z is A or B) is at least 7;-true” and
“(z is not A or C) is at least yo-true”. First, note that in Zadeh’s approach, the
disjunction “(x is A) or (x is B)” is represented by the disjunction of constraints
“(mp < pa) or (mp < up)”, which entails 7, < max(pa, pup). This leads to take
m, = max(ua, pup) as a representation of the disjunction “(z is A) or (x is B)”,
in agreement with the spirit of the minimal specificity principle (since there is no
p such that “(m, < pa) or (m, < pp)” entails m, < p, with g < max(pa, up)).
Then, taking pa.-p = max(pa, up), which is the most commonly used definition
of the union of fuzzy sets, “x is A or B” is equivalent to“(z is A) or (x is B)”,
while observe that “[(x is A) is at least y-true | or [(x is B) is at least y-true]” only
entails “(z is A or B) is at least y-true” (since pa(u) > 7 or pp(u) > ~ implies
max(pa(u), up(u)) > 7). Moreover, “x is not A” is assumed to be represented
by the constraint 7, < pinota = 1 — pa. Thus, the two statements “(x is A or
B) is at least y1-true” and “(z is not A or C) is at least yo-true” are respectively
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represented by the constraints

1 < max(pa, 1ip)
Y2 < max(l — pa, puc),

and thus

min(y1,72) < min(max(pa, pp), max(l — pa, pc))

which implies min(y1,7y2) < max(min(up, pc), min(pa, 1 — p4)) and also min(~;,
v2) < max(min(ug, pc),0.5), since min(ua,1 — pa)) < 0.5. Thus, assuming
min(vy1,y2) > 0.5, we get min(y1,72) < max(up, pco).

Hence the following inference pattern (where p, ¢, and r are fuzzy propositions)
is again in agreement with Zadeh’s theory of approximate reasoning:

v(pVq) >, v(=pVr) >
v(g V r) > min(y1,72)

, if 0.5 < min(y1,72)
with v(p V ¢) = max(v(p),v(q)) and v(—p) = 1 — v(p), as in [Lee, 1972].

Truth qualification and possibilistic logic

This corresponds to situation (e) above of a Boolean statement in the face of fuzzy
information. But now, the fuzzy information “x is B” should be retrieved from the
equations 7(0) = IIg(A°) = 1— Np(A) and 7(1) = IIg(A) with max(7(0),7(1)) =
1, where A is an ordinary subset and thus p = “x is A” is a classical proposition.
Assume 7(1) = 1. It means that p = “(z is A) is certain to degree 1—7(0)” (or if we
prefer that “it is certain to degree 1—7(0) that p is true”), since Ng(A4) = 1—7(0)
(with B unknown), which is then equivalent to the fuzzy statement “z is B”
represented by
Yu, 7 (u) = B(u) = max(A(u), 7(0)),

by application of the minimal specificity principle. If 7(0) = 1, it means that

p = “(z is not A) is certain at degree 1 — 7(1)”, then one obtains Vu,m,(u) =
B(u) = max(A°(u),7(1)). As can be seen, if 7(1) = 1 = 7(0), then we are in
the situation of complete ignorance, i.e. Vu,B(u) = 1 (neither A nor not A’

are somewhat certain). The latter particular case of certainty qualification of
Boolean statements corresponds to the semantical side of possibilistic logic, as
explained in section 4.1. The distinction between thresholding degrees of truth
and thresholding degrees of certainty is first emphasized in [Dubois et al., 1997],
further elaborated in [Lehmke, 2001b], where a more general logical framework is
proposed that attaches fuzzy truth-values 7 to fuzzy propositions.

Certainty qualification of fuzzy propositions

Informally, asserting “It is true that x is A” is viewed as equivalent to “z is
A”. Then what is considered as true, stricto sensu, is that m, = A(:) is certain.
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Interpreting true in a very strong way as the certainty that the truth value is
maximal, i.e., 7'(a) =0 if @ < 1 and 7/(1) = 1, would come down to postulating
that “It is true that x is A” is equivalent to “z is in core(A)”, where core(A) =
{u| A(u) = 1}, or in other words, “A(z) = 1”. So, as already said, the fuzzy set of
[0, 1] with membership function 7(a) = @ modeling ’true’ here means more than
pointing to a single truth value, it is the invariant operator in the set of (linguistic)
modifiers of membership functions, such that true(A(u)) = A(u). Similarly, “it is
false that x is A” is understood as “x is A¢” (equivalent to “‘it is true that x is
A”). Tt follows the linguistic exchange rule between linguistic modifiers and fuzzy
truth-values, with false(a) =1 — «, and false(A(u)) =1 — A(u) = A%(u). Tt is
not the same as asserting that “(z is in core(A)) is false”, nor that “A(z) = 07,
although all these views coincide in the non-fuzzy case. It also differs from the
(meta) negation, bearing on the equality, of the assertion 7, = A(-).

More generally, it is natural to represent the certainty-qualified statement “it is
certain at degree « that = is A”, when A is fuzzy, by 7, = max(1—«, A(+))[Dubois
and Prade, 1990]. Indeed, first consider the simpler case of “x is A is certain”,
where A is fuzzy. Clearly the formula gives back m, = A(-) for & = 1. Let us
observe that “x is A” is equivalent to say that “(z is Ay) is 1 — A certain”, for
A € [0,1), where A is the strict A-cut of A, ie, Ay = {u € U | A(u) > A},
since N(Ay) > 1 — X\ where N is the necessity measure defined from 7, = A(-).
In the general case of statements of the form “(z is A) is (at least) a-certain”, it
is natural to forbid the certainty of any level cut to overpass «. It amounts to
stating that VA, “(x is Ay) is (at least) min(a, 1 — A)-certain”. This is satisfied by
keeping 7, = max(1l — «, A(+)).

Observe, however, that 7, cannot be retrieved as the least specific solution of
equation N(A) > « using the definition of the necessity of a fuzzy event given
by N(A) = inf,cy max(A(u),1 — w(u)) = 1 —supu € Umin(l — A(u),7(u)) =
1 —TI(A€), since N(A) is then not equal to 1 for m, = A(-). Nevertheless, 7, =
max(1l — «, A(+)) is still the least specific solution of an equation of the form
C(A) > «, where C(A) is defined by

C(A) = igf e (u) — Alu)

where a — [ is the reciprocal of Godel’s implication, namely « — f=1if a < g
and @ — = 1—« otherwise. The equivalence C'(4) > a & 7, < max(l—a, A(+))
is easy to prove using the equivalence v < max(l — o, ) & v — 8 > a. C(A)
is a particular case of a degree of inclusion of B (with 7, = up(-)) into A. Then
C(A) = 1 yields 7, < A(-), while N(A) = 1 would yield m; < picore(a)(-) (since
N(A) = 1 if and only if {u € U | m(u) > 0} C core(A)). As expected, “it
is true that = is A”, represented by m, = A(-), indeed means “it is certain that
(x is A) is true”, since then C(A) = 1, and “it is false that = is A”, repre-
sented by 7, = 1 — A(-), indeed means “it is certain that (x is A) is false”
since then C(A°) = 1. While if ’true’ refers to the usual truth-value (repre-
sented here by 7!(a) = 0 if a < 1 and 71(1) = 1), “it is true that x is A” is
represented by 7, = Mucore(a)(-), and N(A) = 1. Moreover, note that both N
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and C still enjoy the characteristic properties N(A N B) = min(N(A4), N(B)) and
C(AN B) =min(C(A),C(B)), when the intersection of two fuzzy sets is defined
by combining pointwisely their membership functions by the operation min.

Graded truth versus degrees of uncertainty: the compositionality problem

The frequent confusion pervading the relationship between truth and (un)certainty
in the approximate reasoning literature is apparently due to the lack of a dedi-
cated paradigm for interpreting partial truth and degrees of uncertainty in a single
framework, although the distinction between the two concepts has been made a
long time ago e.g. [Carnap, 1949; de Finetti, 1936]. Such a paradigm has been pro-
vided above. An important consequence of our information-based interpretation
of truth is that degrees of uncertainty cannot be compositional for all connectives
[Dubois and Prade, 1994; Dubois and Prade, 2001]. Let g stand for a [0, 1]-valued
function that intends to estimate degrees of confidence in propositions. Let A
be the set of situations where proposition S is true. It corresponds to assuming
a fuzzy truth value in Zadeh’s sense, defined on {0,1}, letting 7(1) = g(A) and
7(0) = g(A°). Then, A¢, AyN Ay, AjU Ay, respectively denote the set of situations
where the propositions “not-S”, “S; and S5”, Sy or S3” hold, g(A) is the degree
of confidence in proposition S. It can be proved that there cannot exist opera-
tions ® and & on [0, 1], nor negation functions f such that the following identities
simultaneously hold for all propositions whose meaning is described by crisp sets
Al, AQ, A:

(i) g(A°) = f(g9(A));
(i) g(A1 N Az) = g(A1) ® g(Az);
(iii) g(A1 U Az) = g(A1) © g(As).

More precisely, (i)-(ii)-(iii) entail that for any A, g(A4) € {0, 1}, and either g(4) =0
or g(A) =1, i.e., this the case of complete information, where all statements are
either certainly true or certainly false and ¢ is isomorphic to a classical truth-
assignment function. This result is proved independently in [Weston, 1987, [Dubois
and Prade, 1988b].

However weak forms of compositionality are allowed; for instance II(4; U Ay) =
max(ITI(A;),II(As)) in possibility theory, but generally, II(A; N A2) < min(II(A;),
II(A2)); the equality TI(A; N A2) = min(II(A;), II(A3)) holds for propositions “x;
is Ay” and “zg is Ap” that refer to non-interactive variables z; and xo (see the
previous section 2.2). Similarly, with grades of probability P(A) = 1 — P(A€) but
P(A; N Ag) = P(A1) - P(A2) holds only in situations of stochastic independence
between A; and A,. The above impossibility result is another way of stating a
well-known fact, i.e., that the unit interval cannot be equipped with a Boolean
algebra structure.
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This result is based on the assumption that the propositions to evaluate are
not fuzzy and thus belong to a Boolean algebra. By contrast, confidence values
of fuzzy (or non-fuzzy) propositions may be assumed to be compositional when
these propositions are evaluated under complete information, since then, sets of
possible truth-values reduce to singletons. The possibility of having g(A) ¢ {0, 1}
is because sets of fuzzy propositions are no longer Boolean algebras. For instance,
using max, min, 1 — (+) for expressing disjunction, conjunction and negation of
fuzzy propositions, sets of such propositions are equipped with a distributive lat-
tice structure weaker than a Boolean algebra, which is compatible with the unit
interval. Sometimes, arguments against fuzzy set theory rely on compositionality
issues, (e.g.,[Weston, 1987], [Elkan, 1994]). These arguments are based either on
the wrong assumptions that the algebra of propositions to be evaluated is Boolean,
or that intermediate degrees of truth can model uncertainty.

As a consequence, fuzzy truth-values a la Zadeh are not truth-functional, gen-
erally, since they account for uncertainty. Namely COM (A; N Ag; B) is not a
function of COM (Ay; B) and COM (Az; B); COM(A; U Ag; B) is not a function
of COM(A;; B) and COM (Ay; B). This lack of compositionality is one more
proof that fuzzy truth-values are not intermediate truth-values in the sense of a
compositional many-valued logic. Neither is Zadeh’s fuzzy logic a type 2 fuzzy
logic in the sense of [Dubois and Prade, 1979b], who use 2[%1 as a truth set, and
define compositional connectives by extending those of multiple valued logic to
fuzzy set-valued arguments.

The presence or absence of compositional rules is a criterion to distinguish
between the problem of defining truth tables in logics with gradual propositions,
and the problem of reasoning under uncertainty (logics that infer from more or
less certainly true classical propositions under incomplete information). However
it does not mean that all logics of graded truth are compositional (for instance,
similarity logics using crisp propositions fuzzified by a fuzzy proximity relation
(as done in [Ruspini, 1991]), are not compositional [Dubois and Prade, 1998b].
The information system paradigm underlying Zadeh’s view of fuzzy truth values
nevertheless questions the comparison made in [Gaines, 1978] between probabilistic
logics which are not compositional, and a particular (max-min) many-valued logic
which is truth-functional. The setting in which this comparison takes place (i.e.,
abstract distributive lattices equipped with a valuation) does not allow for a proper
conceptual discrimination between graded truth and uncertainty. The meaning of
valuations attached to propositions is left open, so that grades of probability and
degrees of truth in fuzzy logic are misleadingly treated as special cases of such
abstract valuations. As a consequence Gaines’ comparison remains at an abstract
level and has limited practical significance. Moreover the chosen abstract setting
is not general enough to encompass all many-valued logics. For instance Gaines
“standard uncertainty logic” (SUL) assumes that conjunction and disjunction are
idempotent; this assumption rules out most of the compositional many-valued
calculi surveyed in Section 3 of this chapter, where operations other than min
and max are used to represent conjunctions and disjunctions of fuzzy predicates.
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Moreover, when the SUL is compositional, it suffers from the above trivialization.

Alternative views of fuzzy truth

The above approach to truth and uncertainty has been tailored for a special pur-
pose, i.e., that of dealing with knowledge-based reasoning systems. It suggests
fuzzy matching techniques between the meaning of a proposition and a state of
knowledge as natural procedures for effectively computing degrees of uncertainty,
modeled as fuzzy truth-values in the presence of fuzziness. Clearly other empirical
settings for defining truth-values exist. Gaines [1978] suggests a systematic way of
generating valuations in a SUL by resolving paradoxes (such as the Barber Para-
dox). This approach, also advocated by Smets and Magrez [1988], does not make
a clear distinction between graded truth and uncertainty; moreover its relevance
and practical usefulness for dealing with knowledge-based systems is questionable.

Another view of truth is the one proposed in [Giles, 1988a; Giles, 1988b].
Namely the truth of a vague statement S in a supposedly known state of fact
D = {u} reflects the “gain in prestige” an individual would get by asserting S in
front of a society of people. This gain is expressed as a pay-off function. When the
state of facts is ill-known, Giles assumes that it can be represented by a subjective
probability distribution and the degree of truth of S is viewed as the expected
pay-off for asserting S. Giles’ metaphor provides a nice device to elicit degrees
of membership in terms of utility values. His view is in accordance with our
data base metaphor where only probability distributions would be admitted to
represent uncertainty. However the distinction between truth-values and degrees
of belief (viewed by Giles as “the subjective form of degrees of truth”) is again
hard to make. Especially the expected pay-off of S is the probability P(.S) of the
fuzzy event S, i.e., a grade of uncertainty; but it is also an expected truth-value.
The use of expectations mixes truth-values and degrees of belief. Note that the
two equations (21) and (22) consider possibility and necessity as a kind of qual-
itative expected values of the compatibility. So, expectation-based evaluations,
summarizing distributions over truth values, are not compositional.

2.4 Puzzy if-then rules

Fuzzy if-then rules are conditional statements of the form “if z is A then y is B”,
or more generally “if z1 is A1 and ...and x,, is A,, then y is B”, where A, A;, B are
fuzzy sets. They appear originally in [Zadeh, 1973], that provides an outline of his
future theory of approximate reasoning. From this initial proposal, a huge amount
of literature was produced aiming at proposing different encoding of fuzzy rules
or some mechanisms for processing them, often motivated by some engineering
concerns such as fuzzy rules-based control, e.g., [Mamdani, 1977; Sugeno and
Takagi, 1983; Sugeno, 1985]. It is out of the scope of the present chapter to review
all the approximate reasoning literature in detail (see [Bouchon-Meunier et al.,
1999] for a detailed overview). In the following, we first provide the representation
of different kinds of fuzzy rules that make sense in the possibility theory-based
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setting presented above, and then discuss how drawing inferences in this setting.
Understanding the semantics of the different models of fuzzy rules is a key issue
for figuring out their range of applicability and their proper processing. For the
sake of clarity we start the presentation with non-fuzzy rules and we then extend
the discussion to the general case of fuzzy rules.

Two understandings of if-then rules

Consider the rule “if x € A then y € B” where = and y are variables ranging on
domains U and V, and A and B are ordinary (i.e., non fuzzy) subsets of U and V
respectively. The partial description of a relationship R between x and y that the
rule provides can be equivalently formulated in terms of (Boolean) membership
functions as the condition:

if A(u) =1 then B(v) = 1.

If we think of this relationship as a binary relation R on U x V, then clearly pairs
(u,v) of values of the variables (x,y) such that A(u) = B(v) = 1 must belong to
the relation R, while pairs such that A(u) = 1 and B(v) = 0 cannot belong to
R. However, this condition says nothing about pairs (u,v) for which A(u) = 0.
That is, these pairs may or may not belong to the relation R. Therefore, the only
constraints enforced by the rule on relation R are the following ones:

min(A(u), B(v)) < R(u,v) < max(1 — A(u), B(v)).

In other words, R contains at least all the pairs (u,v) such that A(u) = B(v) =1
and at most those pairs (u, v) such that either A(u) = 0 or B(v) = 1. Thus, the
above inequalities express that any representation of the rule “if z € A then
y € B” is lower bounded by the representation of the conjunction “r € A and
y € B” and upper bounded by the representation of the material implication
“x € A implies y € B”, ie.,“x € A or y € B”. In set notation, it reads
AxXxBCRC(A°xV)U(U x B).

Thus, in terms of the constraints induced on the joint possibility distribution
T,y Testricting the possible values of the two-dimensional variable (z,y), the above
inequalities lead to the two following types of constraints:

e the inequality
Ty (u,v) < max(1l — A(u), B(v))

expresses that values outside B are impossible values for y when x takes
value in A (i.e., 7y y(u,v) =0 if A(u) =1 and B(v) = 0), while the possible
values for y are unrestricted (7 ,(u,v) < 1) when x does not take value in
A. Thus, the meaning of this inequality can be read: if x € A, it is certain
that the value of y is in B.

e the inequality
Ty (U, v) > min(A(u), B(v))
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means that all values v € B are possible when z takes value in A (that is,
Tz y(u,v) = 1if A(u) = B(v) = 1), while no constraint is provided for the
values of y when z does not take value in A. Thus, the semantics of the
latter inequality reads: if x € A, all the values in B are possible (admissible,
feasible) for y.

We immediately recognize in the right-hand side of the two above inequalities
a (binary) implication and a (binary) conjunction respectively. They respectively
define the conjunction-based and the implication-based models of rules. But even
if they are of different nature, both models stem from considering a rule as a
(partial) specification of a binary relation R on the product space U x V. Note
that R C (A°x V)U (U x B) is equivalent to Ao R C B in the Boolean case, Ao R
being the usual image of A via R (AoR ={v € V | Ju € U, A(u) = 1, R(u,v) = 1}).

Implication-based models of rules correspond to a type of constraints that
we have already encountered when introducing the possibility theory setting.
Conjunction-based models of rules cannot be processed using the minimal speci-
ficity principle. As we shall see they correspond to another type of information
than the one usually considered in classical logical reasoning and involve a notion
of possibility different from the one estimated by II.

The existence and the proper use of implication-based and conjunction-based
representations of fuzzy rules has been often misunderstood in various fields of
applications. As pointed out in a series of papers by Dubois and Prade [1989;
1991a; 1992a; 1992b; 1996a], there are several types of fuzzy rules with different
semantics, corresponding to several types of implications or conjunctions. As seen
above, the meaning of a rule of the form “if z is A then y is B” is significantly
different when modeled using a genuine implication A — B or using a Cartesian
product A x B.

Implication-based fuzzy rules

Let us consider the rule “if z is A then y is B” where A and B are now fuzzy
subsets of U and V respectively. In this case, the intuitive idea underlying such
a rule is to say that if the value of z is no longer in the core of A, but still close
to it, the possible values of y lie in some fuzzy subset not too much different
from B. The ways B can be modified in order to accommodate the possible val-
ues of y depend on the intended meaning of the fuzzy rule, as expressed by the
connective relating A and B. In this subsection a fuzzy rule is viewed as a con-
straint m, , (u,v) < I(A(u), B(v)) for some many-valued implicationI. However,
contrary to the Boolean case, R C (A° x V) U (U x B) is no longer equivalent to
AoR C B, due to the difference between two types of multiple-valued implications:
S-implications and R-implications. It gives birth to two types of fuzzy rules.

Certainty rules. A first way of relaxing the conclusion B is to attach some
level of certainty to it, independently of whether B is fuzzy or not, in such a way
that the possibility degrees of the values outside the support of B become strictly
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positive. This corresponds to rules of the type “the more x is A, the more certain y
is B” and they are known in the literature as certainty rules. A simple translation
of this type of constraint is the inequality

Vu, A(u) < C(B)

where C(B) stands for the certainty of B under the unknown possibility distribu-
tion 7, (as for certainty-qualified fuzzy statements), i. e.

C(B) = i%f I(my 4 (u,v), B(v)),

where the implication I is the reciprocal of an R-implication I (the previous
definition of the certainty of a fuzzy statement introduced in Section 2.3 is here
enlarged to any reciprocal of an R-implication). Then, in agreement with the min-
imal specificity principle, the greatest solution of this certainty-qualification prob-
lem provides the solution to the problem of representing certainty rules, namely

oy (u,v) < Is(A(u), B(v)) = S(n(A(u)), B(v))

where the right hand side of the inequality corresponds to the strong implication
defined from the negation function n and the t-conorm .S which is n-dual of the
t-norm T generator of Ig. In particular, if n(a) =1 — «, T(a, ) = min(a, §),
S(a, B) = max(«, §), we obtain

Ty (U, v) <max(1 — A(u), B(v))

where Kleene-Dienes implication o« — 5 = max(1 — «, 3) can be recognized.

Gradual Rules. The second way of relaxing the conclusion amounts to enlarging
the core of B, in such a way that if x takes value in the a-cut of A, then the values
in the a-cut of B become fully possible for y. This interpretation, which requires
B to be fuzzy, corresponds to the so-called gradual rules, i.e., rules of the type
“the more z is A, the more y is B”, as in the piece of knowledge “the bigger a
truck, the slower its speed”. (Statements involving “the less” are easily obtained
by duality, using the fuzzy set complementation). The name ‘gradual rule’ was
coined by Prade [1988]; see also [Dubois and Prade, 1992b]. The intended meaning
of a gradual rule, understood as “the greater the membership degree of the value
of x to the fuzzy set A, the greater the membership degree of the value of y to the
fuzzy set B should be” is captured by the following inequality:

min(A(u), 7z, (u,v)) < B(v)

or equivalently,
Ty (u,v) — A(u) — B(v),

where — denotes Godel’s implication. The above inequality can be relaxed by
introducing a triangular norm T, i.e.,

T(A(u), 7y (u,v)) < B(v).
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Then — will be replaced by the corresponding R-implication generated by T.
Clearly, in this type of rules the degree of truth of the antecedent constrains
the degree of truth of the consequent, since A(u) — B(v) = 1 if and only if
A(u) < B(v) for R-implications.

Impossibility rules. A third category of implication-based rule is obtained by
writing a constraint expressing that “the more x is A, the less possible the com-
plement of B is a range for y”. Such rules are interpreted as saying, “if x = u then
the complement of B is at most (1 — A(u))-possible”. This corresponds to the
following inequality as interpretation of the fuzzy rule (where the usual definition
of the possibility of a fuzzy event is extended using a triangular norm 7T instead
of the minimum operation only):

I(B¢) = Sng(l — B(v), mgy(u,v)) <1 — A(u),

this reads “the more x is A, the more impossible not-B”. It leads to the following
equivalent inequality

Ty (u,0) < (1= B(v)) < (1 - A(u))

where — is the R-implication associated with T. If 7' = min, then we get the
following constraint m, ,(u,v) < 1 — A(u) if A(u) > B(v). If T = product,
the upper bound of 7 ,(u,v) is the reciprocal of Goguen implication from A(u)
to B(v). In practice these rules are close to certainty rules since they coincide
when B is a non-fuzzy set (as expected from the semantics). However, when B is
fuzzy, impossibility rules combine the main effects of certainty and gradual rules:
apparition of a level of uncertainty and widening of the core of B: the more x is
A, the more certain y is in a smaller subset of values around the core of B. Thus,
they could also be named certainty-gradual rules so as to account for this double
effect.

Note that in the implication-based models, 7, , is always upper bounded; then
applying the minimal specificity principle leads to a possibility distribution which
is normalized (if B is normalized).

The three types of implication-based fuzzy rules correspond to the three basic
types of implication functions recalled above. In the fuzzy logic literature, other
models of implication functions have been considered. For instance, let us mention
QL-implications [Trillas and Valverde, 1981]. They are based on interpreting p — ¢
as =p V (p A q), which is used in quantum logic (in classical logic it obviously
reduces to material implication). This view leads to implication functions of the
form I(a, B) = S(n(a), T (e, 3)) where S is a t-conorm, n a strong negation and
T is the n-dual t-norm of S. The so-called Zadeh’s implication [Zadeh, 1973]
corresponds to taking S = max, i.e.,I(a, ) = max(l — o, min(, §)), and is the
basis for another type of fuzzy rules.
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Conjunction-based fuzzy rules

Conjunction-based fuzzy rules first appear as an ad hoc proposal in the first fuzzy
rule-based controllers [Mamdani, 1977]. Later, they were reinterpreted in the
setting of possibility theory, using a new type of possibility evaluation. Namely,
interpreting “z is A is (at least) B-possible” as “all elements in A are possible
values for z, at least with degree 57, i.e., A(A) = inf,c 4 7, (u) > 3, leads to state
the following constraint on 7,:

Y, 7y (w) > min(A(u), 8).

This approach is actually in the spirit of a proposal also briefly discussed in [Zadeh,
1978b] and more extensively in [Sanchez, 1978]. See [Dubois and Prade, 1992b)
for the introduction of the measure of guaranteed possibility /A, and [Dubois et al.,
2000], [Dubois et al., 2003] for the development of a bipolar view of possibility
theory allowing for the representation of positive and negative pieces of informa-
tion. Constraints enforcing lower bounds on a possibility distribution, as above,
are positive pieces of information, since it guarantees a minimum level of possibil-
ity for some values or interpretations. This contrasts with constraints enforcing
upper bounds on a possibility distribution, which are negative pieces of informa-
tion, since they state that some values are to some extent impossible (those values
whose degree of possibility is strictly less than 1 and may be close to 0). Note that
classical logic handles negative information in the above sense. Indeed, knowing
a collection of propositional statements of the form “z is A;” (where the A;’s are
classical subsets of a universe U) is equivalent to saying that values for = outside
N; A; are impossible.

Note that positive information should obey a maximal specificity principle that
states that only what is reported as being actually possible should be considered
as such (and to a degree that is not higher than what is stated). This means that
we only know that Yu, 7, (u) > min(A(u), 8), as far as positive information is con-
cerned, then the positive part of the information will be represented by the smallest
possibility distribution obeying the constraint, here, Vu, 7, (u) = min(A(u), 5). In
case of several pieces of positive information stating that “z is A;” is guaranteed to
be possible, then we can conclude from 7, (u) > A;(u), that 7, (u) > max; A;(u),
(“x is U;A;” in case of classical subsets), which corresponds to a disjunctive combi-
nation of information. Note that both the minimal specificity principle for negative
information and the maximal specificity principle for positive information are the
two sides of the same coin. They are in fact minimal commitment principles.
Together they state that potential values for  cannot be considered as more im-
possible (in the II-sense), nor as more possible (in the A-sense) than what follows
from the constraints representing the available negative or positive information.

In the case where A is a fuzzy set, the representation of statements of the form
“r is A is (at least) [-possible” by m,(u) > min(A(u),3), is still equivalent to
A(A) > 3, provided that A(A) is extended to fuzzy events by

A(A) = iI}Lf A(u) — 7y (u)
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where — is Godel ’s implication. This can be easily shown using the equivalence
a— 8 >v< [ >min(a,y). This is the basis for defining possibility rules.

Possibility rules. They correspond to rules of the form “the more z is A, the
more possible y is B”, understood as if x = u, any value compatible with “y
is B” is all the more guaranteed as being possible for y as A(u) is higher, in
agreement with the sense of the set function A. Thus, the representation of such
possibility-qualified statements obey the constraint:

A(u) < A(B).
Hence the constraint on the conditional possibility distribution 7, ,(u,-) for y is
min(A(u), B(v)) < mgy(u,v)

or, more generally T'(A(u), B(v)) < 7y 4(u,v) if we allow the use of any t-norm
T in place of min. As already mentioned, this type of rules (using 7" = min or
product) pervades the literature on fuzzy control, since it is in accordance with
viewing fuzzy rules as partial descriptions of a fuzzy graph R relating z and y, in
the sense that “if  is A then y is B” says nothing but the fuzzy set A x B belongs
to the graph of R, i.e., A x B C R. This interpretation helps us understand why
the fuzzy output of fuzzy rules-based controllers is generally subnormalized: the
obtained output is nothing but a lower bound on the actual possibility distribution.
When A and B become fuzzy, the equivalence between Ax B C R and Ao R¢ C B¢
no longer holds. This leads to a new conjunction-based kind of fuzzy rules, called
antigradual Tules, where the guaranteed possible range of values for y is reduced
when z moves away from the core of A.

Antigradual rules. They correspond to a rule of the type “the more x is A and
the less y is related to x, the less y is B”, and to the corresponding constraint

T(A(u),1 — g y(u,v)) <1—B(v)
where T is a triangular norm. This can be equivalently written
T (A(u), B(v)) =des 1 = (A(u) =r (1 = B(v))) < 74y (u,v)

where —p is the residuated implication based on 7. T* is a non-commutative
conjunction that is the right adjoint of a strong implication, i. e., the strong im-
plication a —g b = n(T(a,n(b)) can be obtained from T* by residuation, starting
with a continuous t-norm 7' [Dubois and Prade, 1984a]. It can be checked that
Tz y(u,v) > B(v) if and only if A(u) > 1 — B(v) for T = min. Thus, the values v
such that B(v) > 1— A(u) are guaranteed to be possible for y, and the larger A(u),
the larger the subset of values v for y guaranteed as possible (at degree B(v)). In
other words, the subset of values for y with some positive guaranteed possibility
becomes smaller as x moves away from the core of A.
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Note that the same non-commutative conjunction where A and B are permuted
corresponds to a third kind of rules expressed by the constraint “the more y is B
and the less y is related to x, the less z is A7, i.e.

T(B(v),1 —mgy(u,v)) <1— A(u).
For T' = min, it leads to the constraint
Tz y(u,v) > T*(B(v), A(u)).

Viewed as a rule from A to B, this is very similar to a possibility rule, since both
types of rules coincide when B is non-fuzzy. When B is fuzzy, the behaviour of
the above inequality is somewhat similar to the ones of both possibility and anti-
gradual rules: truncation of B and skrinking of its support. Namely, the more z
is A, the more possible a larger subset of values around the core of B. However
this is not really a different kind of rule: it is an antigradual rule of the form “if
y is B then z is A”.

Remark. The different fuzzy rules surveyed above can be understood in terms of
the modification applied to the conclusion part “y is B”, when a precise input
x = ug matches the condition “z is A” at the level A(up) = a. For min-based
models of fuzzy rules, B is modified into B’ such that B'(v) = 7(B(v)), Vv where
7 is a modifier (or equivalently a fuzzy truth value in Zadeh’sense) defined by
vt € [0, 1],

7(0)=1if 0 >« ; 7(9) =0 if § < « (gradual rule);

7(0)) = max(6,1 — ) (certainty rule);

7(6) = min(0, ) (possibility rule);

7(0)=0if 0 <1 —a; 7(f) =0 > 1 — « (antigradual rule).

It can be seen that some modifiers introduce a level of uncertainty, while oth-
ers rather provide a variation around the fuzzy set B by increasing high degrees
of membership or decreasing low degrees.

Meta-rules

Besides the relational view presented in the two above subsections, we can think of
arule “if z is A then y is B” as specifying some constraints between the marginal
possibility distributions 7, and m, describing the available knowledge about the
variables x and y. Indeed, the meanings of the individual components of the rule,
in terms of their induced constraints, are 7, < ps and 7, < pup. Therefore, a
possible understanding of the rule is just the following condition

if mp < pa then 7y, < pp

which, in turn, has the following easy possibilistic interpretation in case A and
B are not fuzzy: “if A is certain (N,(A) = 1) then B is certain (N, (B) = 1),
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where N, and N, denote the necessity and possibility measures generated by the
possibility distributions 7, and m, respectively.

Having in mind the logical equivalence in classical logic of the material impli-
cation p — ¢ with the disjunction —p V ¢, one could yet think of another interpre-
tation of the fuzzy rule “if « is A then y is B” as “(x is A°) or (y is B)”, that is
“my <1 —pa or my < up”, or, put it in another way,

if not(my <1 —pa) then m, < up

In possibilistic terms it also reads (since A is non-fuzzy) “if A is possible (II,(A) =
1) then B is certain (N, (B) = 1)”. The difference between the two readings can
be seen as relying on the two types of negation at work here, namely not(m, < pa)
and 7, <1 — pa respectively. With such meta-level models, we no longer need to
apply the combination/projection principle on their representations because m, is
directly assessed once the condition part of the rule is satisfied.

In the fuzzy case, the two above readings can be generalized, turning them
respectively into the inequalities

inf,, 75 (u) = pa(u) < inf, 7, (v) — pp(v),
sup, T (o (1), 4 () < inf my(0) — (o),

where T*(«, ) = 1 — (o — (1—(3)) is the non-commutative conjunction adjoint of
t-norm T'. Observe that C;(A) = inf, 7, (u) — pa(u) and Cy(B) = inf, 7, (v) —
pp(v) are certainty-like indices, while Pos,(A) = sup, T* (7 (u), pa(u)) = 1 —
C(A°) is a possibility-like index. Certainty rules described in the previous section
mean that “y is B” is certain as much as “z is A (ua(u) = 1), while the first meta
rule reading states here that “y is B” is certain as much as “x is A” is certain. Its
fuzzy extension above expresses that “the more certain x is A, the more certain y
is B”, while the second one means “the more possible x is A, the more certain y
is B”. Solving the above inequalities yields respectively

7,(v) < C,(A) — pp(v), and
7,(v) < Pos,(A) — up(v),

where — is a R-implication, which lays bare the behavior of such models. Namely,
they modify the output by widening the core of B on the basis of some amount of
uncertainty «, thus producing less restrictive outputs (since a« — pp(v) > up(v),
Va). Notice that as soon as the uncertainty degree is as low as pp(v), my(v) is
unrestricted. The two considered meta-level models of fuzzy rule coincide for a
precise input z = ug with gradual rules due to the use of R-implications in the
approach.

This meta-level view has been less investigated than the other ones (see [Es-
teva et al., 1997a)). However it underlies the so-called compatibility-modification
inference of Cross and Sudkamp [1994].



Fuzzy Logic 41

2.5 Inference with fuzzy if-then rules

This section does not aim at providing a survey of the different fuzzy logic mecha-
nisms that have been proposed in the literature in the eighties and in the nineties,
nor an overview of the problems raised by their practical use and implementa-
tion. See [Bouchon-Meunier et al., 1999] in that respect. We focus our interest
on a local pattern of inference of particular importance, usually called generalized
modus ponens, which sufficiently illustrates the main issues. As we shall see, the
properties of this pattern of inference heavily depend on the connective used for
modeling the if-then rule. Moreover, classical modus ponens can be retrieved as a
particular case for fuzzy premises only for appropriate choices of the implication in
the fuzzy rule and of the operation for combining the two premises in the pattern.
We shall discuss the meaning of this state of fact.

The generalized modus ponens

The generalized modus ponens can be viewed as a particular case of a more general
rule, the compositional rule of inference, introduced by Zadeh [1979a]:

From: S = “x,y)is F”
S'= “y,z)is G”
Infer: S’ = “(x,2)is FoG”.

where:
1. z, y and z are linguistic variables taking values in U, V and W respectively,
2. F is a fuzzy subset of U x V', and G a fuzzy subset of V' x W, and

3. F oG is the fuzzy subset of U x W defined by sup-min composition of F' and
G, ie., F o G(u,w) = sup,cy min(F(u,v), G(v, w)).

This is a direct consequence of the combination-projection method underlying the
possibility theory-based treatment of inference. Indeed S and S’ translate into the
constraints m, ,(u,v) < F(u,v) and 7, ,(u,v) < G(u,v). So, by combining them,
after a cylindrical extension, we get

Tay,= (U, v, w) < min(F(u,v), G(v,w)).
Finally, projecting this constraint on the joint variable (x, z) we get

Tz,»(u, w) < sup min(F(u,v), G(v, w)),
veV

which yields, after application of the minimal specificity principle, the representa-
tion of the statement S” in the above rule. This rule has found various applications.
For instance, assume F' = “approximately equal to”, G = “much greater than”,
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S = “r is approximately equal to 3", S’ = “y is somewhat greater than z”. Us-
ing parameterized representations of F' and G, one can compute the parameters
underlying F o G, and then interpret it [Dubois and Prade, 1988a).

The generalized modus ponens inference pattern proposed by Zadeh [1973] is of
the form:

From: S = “xis A*”
S' = “if x is A then y is B”

Infer: S = %y is B*".

It is a particular case of the compositional rule of inference where A and A* are
fuzzy subsets of U, B is a fuzzy subset of V', and where statement .S is represented
by 7x(u) < A*(u), and S’ is interpreted as a statement of the form “(z,y) is
R”, represented by m, ,(u,v) < R(u,v), where R is the fuzzy relation defined by
R(u,v) = I(A(u), B(v)), I being some suitable implication connective. Then

B* = A*o R.

Speaking in an informal way, the idea is that the closer A* is to A, the closer the
conclusion “y is B*”. is to the consequent “y is B” (however the underlying notion
of closeness varies according to the modeling of the rule). For instance, when I
is Kleene-Dienes implication, i.e., when we interpret the fuzzy rule as a certainty
rule (see section 3.1), we get

B*(v) = supmin(A*(u), max(1 — A(u), B(v))) = max(1 — N4« (A), B(v)),

u

where Ny-(A) = inf, max(A(u),1 — A*(u)) is the usual necessity measure of A,
computed with 7(u) = A*(u). B* means that “y is B” is certain to the degree
N4« (A). This agrees with the understanding of certainty rules as “the more certain
x is A, the more certain y is B” in the presence of a fuzzy input “x is A*”. It is
also very similar to what is obtained in the meta-rule view (where there is more
freedom left in the evaluation of certainty degrees when A is fuzzy).

Note that with Kleene-Dienes implication (i.e., with certainty rules), we have
Ao I(A,B) = B*, where B* = max(l — N4(A), B), and when A is fuzzy it
is only guaranteed that Na(A) > 1/2, so the output B* corresponds to “(y is
B) is N(A)-certain” and not to “y is B” (which is however obtained when A
is not fuzzy). This means that the coincidence with classical modus ponens is
lost. However, it holds that core(A) o I(A, B) = B, which is well in agreement
with the intended meaning of certainty rules. Indeed “y is B” is obtained only if
N4« (A) = 1, which requires that the support of A* contains only typical elements
of A (A* C core(A)). For instance, if A = “bird” (here a fuzzy set, the set of more
or less typical birds) and B = “able to fly” (B is non-fuzzy), then B follows for
sure only if x designates a typical bird.

This contrasts with the situation encountered with gradual rules and Godel
implication, for which it holds that Ao I(A, B) = B in any case. In fact, it has
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been noticed quite early that the use of the min operation in the combination
step of the inference process (as stipulated by the possibilistic framework) is not
compatible with the requirement that B* = B can be derived when A* = A,
except for Godel implication.

More generally, if we require that classical modus ponens continue to hold for
fuzzy premises, more solutions are found if a combination operation T" other than
min (thus departing from the possibility theory setting) is allowed. Namely, we
start with the functional equation expressing this requirement

sup T(A(u), I(A(u), B(v))) = B(v).

This problem has been addressed from two slightly different points of view in
[Trillas and Valverde, 1985a; Valverde and Trillas, 1985] and [Dubois and Prade,
1984b; Dubois and Prade, 1985b]. Solutions to the above equation are provided by
choosing T as a continuous t-norm and I as its associated residuated implication.
Apart from the perfect coincidence with classical modus ponens, other natural
or desirable requirements have been proposed for the generalized modus ponens by
different authors who have looked for the appropriate implications (and possibly
combination operations) that ensure these required properties (see e.g., [Bald-
win and Pilsworth, 1980; Fukami et al., 1980; Mizumoto and Zimmermann, 1982;
Whalen and Schott, 1983; Whalen and Schott, 1985; Whalen, 2003]). Some of
these requirements like monotonicity (A7 C A3 implies Bf C Bj, where fuzzy
set inclusion is pointwisely defined by an inequality between membership degrees)
are always satisfied, while some other “natural” ones, like B* O B (nothing more
precise than what the rule says can be inferred) may sometimes be debatable (e.g.,
if we are modeling interpolative reasoning), and are violated by some implications
such as Rescher-Gaines implication which is defined by I(a,8) =1 if o < 8 and
I(o, ) = 0 if a > B, and which corresponds to the core of Gddel implication.

Systems of parallel fuzzy if-then rules

Let us now briefly consider the case of a system of parallel implication-based fuzzy
if-then rules { “if x is A; then y is B;” }i=1,. Each rule ¢ is represented by the
inequality

Vi, gy (u,v) < I(A;(u), Bi(v)).

This leads to
(1, 0) < min I(As(u), Bi(0)).
By projection and applying the minimal specificity principle, the inference from

the set of parallel implication-based rules, and a fact “z is A*”, produces “y is
B*” defined by

B*(v) = supmin(A*(u), ml_in I(A;(u), B;(v))).

u
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Denoting the above inference B* = A* o [N;(A4; — B;)], the following inclusion can
be easily established

A" o [Mi=1,n(A; = B;)] € Niz=1,n[A" 0 (4; — B;)].

This expresses that the combination/projection principle should be performed
globally (which can be computationally heavy), if one wants to obtain an exact
result rather than a valid but imprecise result. In other words, it might be rather
uninformative to perform each inference B} = A*o(A; — B;) separately and then
combine the B}’s in a conjunctive manner. For instance if A* = A; U A; for some
i and j such that A;NA; =0 then A*o(A; — B;) =V (nothing is inferred) while
(A;UAj)o[(A; — B;)N(A; — Bj)] = B; U By, for Godel implication. This prop-
erty points out a major weakness in the traditional rule by rule strategy used in
many expert system inference engines (that prescribe to trigger rules separately),
in the presence of fuzziness, or even incomplete Boolean information. Techniques
for reasoning with parallel fuzzy implication-based rules in the presence of impre-
cise outputs have been little studied in the literature (see [Ughetto et al., 1997] for
gradual rules, and a more general theoretical study in [Morsi and Fahmy, 2002]).

Inference with fuzzy conjunctive rules

Let us examine the situation with a conjunction-based model for fuzzy rules (see
Section 2.4). For an input “z is A*” and a fuzzy rule “if z is A then y is B” assumed
to be represented by 7, ,(u,v) = min(A(u), B(v)), the combination/projection
method yields the output

B*(v) = 21615 min(A*(u), min(A(u), B(v)))

This expression, which corresponds to Mamdani[1977]’s model, can be simplified
into
B*(v) = min(Il4-(A), B(v))

where I14+(A) = sup,cy min(A*(u), A(u)) is the possibility of A computed with
m = A*(-). Let us denote this fuzzy inference A* o (A x B) = B*. Note that
Ao(Ax B) = B if Aisnormalized. However, we should go back to the understand-
ing of such rules as positive pieces of information (see section 3.1) for explaining
why parallel conjunction-based fuzzy rules should be combined disjunctively, as in
Mamdani’s model of fuzzy control inference.

Indeed from a bipolar possibility theory point of view, a system of conjunction-
based rules (where each rule is modeled by the Cartesian product A; x By, i. e.,
Vi, Ty (w, v) > min(A;(u), B;(v)) leads to the inequality

Ty (U, v) > max min(A;(u), B;(v)).

Then, given a set of fuzzy if-then rules {“if x is A; then y is B;” : i = 1,n} and
an input “z is A*”, Mamdani’s method consists in three steps:
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(i) The output B for each rule is computed as follows:

B} (v) = sup min(A*(u), min(A4;(u), B;(v))) = min(I1 g~ (4;), B;(v)).

u

(ii) The global output B* is then the disjunctive combination of the outputs of
each rule, which allows for a rule by rule computation. Indeed applying the
maximal specificity principle to the representation of the set of rules, and
then the combination/projection method, we get

B*(v) = sup min(A*(u), max min(4;(u), B;(v))) = max B; (v).

u (3

(iii) Finally, there is a defuzzification process in order to come up with a single
value vg € B* for y. This defuzzication step is out of the scope of logic and
then of this paper.

Still, problems remain with the inference with conjunction-based rules in case
of a fuzzy input. Indeed, the above approach is questionable because adding a
rule then may lead to a more imprecise conclusion (before defuzzification), and
AjoU;(A; x B;) # Bj except if the A;’s are disjoint as pointed out in [Di Nola et
al., 1989].

To overcome these difficulties, it is useful to consider the fuzzy relation obtained
from a set of conjunction-based rules for what it really is, namely, positive infor-
mation, as proposed in [Dubois et al., 2003]). A conjunctive rule base actually is a
memory of fuzzy cases. Then, what appeared to be anomalies under the negative
information view, becomes natural. It is clear that adding a new conjunctive rule
to a fuzzy case memory should expand the possibilities, not reduce them. The
fuzzy input still consists in a restriction on the values of the input variable and
thus is of a different nature. It is in some sense negative information. So, the
question is “how to exploit a set of fuzzy cases, which for each input value de-
scribes the fuzzy set of guaranteed possible output values, on the basis of negative
imprecise information on the input?” In fact, what has to be computed, via an
appropriate projection, are the output values that are guaranteed possible for y,
for all values of z compatible with the restriction A* on the input value. The ex-
pected conclusion, in terms of guaranteed possible values, is given for a nonfuzzy
input A* by

B,(v) = inf maxmin(A;(u), B;(v)).
u€EAx 1
What is computed is the intersection of the sets of images of precise inputs com-
patible with A*. Any value y = v in this intersection is guaranteed possible, by
any input value compatible with A*. The term B, is the lower image of A* via the
fuzzy relation aggregating the fuzzy cases conjunctively. In the case where none
of the sets are fuzzy,

B.,={veV|Vue A", Jist.ue A; andv € B;} = A" — U;(A; x B))
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In the case where A* is fuzzy, B* is defined by
B, (v) = inf{A*(u) — maxmin(A4;(u), B;(v))}
where — is Godel implication. Indeed, starting that, from the constraints

Tpy(u,v) > max min(4;(u), B;(v)),fori=1,...,n
i=1,n

ma(u) < A%(u)
representing respectively the positive information given by the set of conjunctive-
based fuzzy rules and the negative information corresponding to the input, one
can derive by simple computations the following further constraint

my(v) > iI&f{A*(u) — max min(4;(u), B;(v))},

i=1,n

provided that , is normalized (i.e. sup, 7,(u) = 1). For any fixed value v of y,
B, (v) is nothing but the guaranteed possibility measure A, (A*) of A* as being in
relation with v through the fuzzy relation aggregating the fuzzy cases (while B*(v)
was the possibility measure 1T, (A*) of the same event). It can be checked that for
usual fuzzy partitions (such that A;(u) =1 = A,(u) < 1 for j # 1), if A* = A;,
then B, = B;, a result that cannot be obtained using the sup-min composition.

Di Nola et al. [1985] have pointed out that, when the rule is modeled by means
of a t-norm T, R(u,v) = T(A(u), B(v)) is the least solution of the fuzzy relational
equation

iBf I(A(u), R(u,v)) = B(v),

where I is the residuated implication associated with 7. When T = min, I is
Godel implication. Note that this definition of R as a least solution is well in
accordance with the interpretation of the possibility rules, to which a principle of
maximal specificity must be applied.

Capturing interpolation in approximate reasoning

Many authors, including Zadeh [1992], have pointed out that approximate reason-
ing techniques in fuzzy control, such as Mamdani’s method, perform an interpo-
lation between the conclusions of the rules of the fuzzy controller, on the basis
of the degrees of matching of the (usually precise) input measurements (describ-
ing the current state of the system to be controlled), with the condition parts of
these rules. However the interpolative effect is achieved by defuzzification and is
not part of the logical inference step. Klawonn and Novak [1996] have contrasted
fuzzy interpolation on the basis of an imprecisely known function (described by
fuzzy points A; x B;) and logical inference in the presence of fuzzy information.
Besides, Sudkamp [1993] discusses the construction of fuzzy rules from sets of pairs
of precise values (a;, b;) and similarity relations on U and V.
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Sugeno and Takagi [1983]’s fuzzy modeling method (see also [Sugeno, 1985] for
control) can be viewed as a special case of Mamdani’s and a generalization thereof.
It starts from n rules with precise numerical conclusion parts, of the form “if x
is Agl) and ...and z, is A;,Z) then y is b (z)”, where x = (21,...,7,). Here the
conclusions in the rules depend on the input value, contrary to the fuzzy rules
in Mamdani’s approach. Let «;(u) = min(Agz)(ul), ce Az(f)(up)) be the level of
matching between the input and the conditions of rule i. Sugeno and Takagi define
the relation between = and y to be the following function:

_ Yia4(w) b ()

which indeed performs a weighted interpolation. This result can be retrieved using
Mamdani’s method, noticing that in this case B* = {b®(u)/a;(u) : i = 1,n},
where b/p indicates that element b has membership value p, and applying the
center of gravity method for selecting a value representing B*.

When the conclusions b (z) = b; do not depend on x, and assuming single
condition rules, this interpolation effect can be obtained within the inference step,
by applying Zadeh’s approximate reasoning combination and projection approach.
For this purpose, consider the rules as pure gradual rules (based on Rescher-
Gaines implication rather than on Gdédel’s), expressing that “the closer z is to
a;, the closer y is to b;”, where (a;,b;), i = 1,n are pairs of scalar values, where
we assume a1 < ... < @;—1 < a; < @j41 < ... < ap. The first problem is to
represent “close to a;”, by means of a fuzzy set A;. It seems natural to assume
that A;(a;—1) = Ai(a;+1) = 0 since there are special rules adapted to the cases
xr = aj—1, = a;41. Moreover if u # a;, A;j(u) < 1 for u € (a;—1,a;+1), since
information is only available for u = a;. Hence A; should be a fuzzy interval with
support (a;—1,a;+1) and core {a;}. Since the closer = is to a;_;, the farther it
is from a;, A;—1 should decrease when A; increases, and by symmetry, A;((a; +
ai+1)/2) = Ai—1((ai—1 +a;)/2) = 1/2. The simplest way of achieving this is to let
Yu € [a;—1,a;], A;i—1(u) + A;(u) = 1, an example of which are triangular-shaped
fuzzy sets. Clearly the conclusion parts of the rules should involve fuzzy sets B;
whose meaning is “close to b;”, with similar conventions.

In other words, each rule is understood as “the more x is A;, the more y is B;”.
Pure gradual rules are modeled by inequality constraints of the form A;(u) <
B;(v). Then the subset of V' obtained by combining the results of the rules for the
input © = ug is given by

in A;(uo) — Bi(v)
where the implication is the one of Rescher-Gaines, defined by a - b=1if a <b

and a — b= 0if a > b. In that case the output associated with the precise input
ug where a;_1 < ug < a;, is

B* = (aj—1 — Bi—1) N (a; = B;) = [Bi—1]a,_, N [Bila

i
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since o — B(+) corresponds to the level cut [Bla, a;—1 = Ai—1(up), oy = A;(ug),
and a;—1 + a; = 1. Due to the latter assumption it can be easily proved (with-
out the assumption of triangular shaped fuzzy sets), that there exists a unique
value y = b such that B*(b) = 1, which exactly corresponds to the result of the
linear interpolation, i.e., b = a;_1 - b;_1 + «; - b;. The conclusion thus obtained
is nothing but the singleton value computed by Sugeno and Takagi’s method. It
is a theoretical justification for this inference method in the one-dimensional case.
Hence reasoning with gradual rules does model interpolation, linear interpolation
being retrieved as a particular case. The more complicated case of gradual rules
with compound conditions, i.e., rules of the form “the more z; is A1, ..., and the
more x,, is Ap, the more y is B” is also studied in detail in [Dubois et al., 1994].
Then provided that the rules satisfy a coherence condition, the output of a system
of pure gradual rules, where conditions and conclusions are fuzzy intervals, is an
interval.

2.6 Concluding remarks on approzimate reasoning

The presentation has emphasized the basic ideas underlying Zadeh’s original pro-
posal, showing their consistency, their close relation to the representation setting
of possibility theory. Various inference machineries can be handled at the seman-
tic level. Still many issues of interest considered elsewhere in the literature (see
[Bouchon-Meunier et al., 1999]), like computational tractability, coherence of a set
of fuzzy rules, special applications to temporal or to order-of-magnitude reason-
ing, the handling of fuzzy quantifiers (viewed as imprecisely known conditional
probabilities) in reasoning patterns, fuzzy analogical reasoning, interpolative rea-
soning with sparse fuzzy rules, etc, have been left apart, let alone more practically
oriented research works. This framework can express pieces of information with
rich contents. The important but sometimes misleading, notion of fuzzy truth-
value, encompassing both notions of intermediate degrees of truth and (degrees
of ) uncertainty about truth has been discussed at length. It is crucial for a
proper appraisal of the line of thought followed by the founder of fuzzy logic, and
in order to situate the role of fuzzy logic in the narrow sense, mainly developed
in the nineties and summarized in the remainder of this paper, for the purpose
of knowledge representation. In the meantime, in the last twenty years, Zadeh
[1988; 1989; 1997; 1999; 2001; 2005] has continued to elaborate his semantic, non-
linear optimization approach to human fuzzy and uncertain reasoning, to precisiate
as well as to enlarge it, to propose new perspectives, emphasizing the importance
of key-notions like computing with words and perceptions as opposed to numbers
and measurements, and information granulation.
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3 MANY VALUED LOGICAL SYSTEMS BASED ON FUZZY SET
CONNECTIVES

In the preface of the book [Zadeh, 1994a], Zadeh made a very clear distinction
between the two main meanings of the term fuzzy logic. Indeed, he writes:

The term “fuzzy logic” has two different meanings: wide and narrow.
In a narrow sense it is a logical system which aims a formalization
of approximate reasoning. In this sense it is an extension of multi-
valued logic. However the agenda of fuzzy logic (FL) is quite different
from that of traditional many-valued logic. Such key concepts in FL
as the concept of linguistic variable, fuzzy if-then rule, fuzzy quantifi-
cation and defuzzification, truth qualification, the extension principle,
the compositional rule of inference and interpolative reasoning, among
others, are not addressed in traditional systems. In its wide sense, FL,
is fuzzily synonymous with the fuzzy set theory of classes of unsharp
boundaries.

Hijek, in the introduction of his monograph [Héajek, 1998a] makes the following
comment to Zadeh’s quotation:

Even if T agree with Zadeh’s distinction (...) I consider formal calculi
of many-valued logic to be the kernel of fuzzy logic in the narrow sense
and the task of explaining things Zadeh mentions by means of this
calculi to be a very promising task.

On the other hand, Novak et al., also in the introduction of their monograph
[Novék et al., 1999], write:

Fuzzy logic in narrow sense is a special many-valued logic which aims
at providing formal background for the graded approach to vagueness.

According to Héjek and Novédk et al.’s point of view, this section is devoted to
the formal background of fuzzy logic in narrow sense, that is, to formal systems of
many-valued logics having the real unit interval as set of truth values, and truth
functions defined by fuzzy connectives that behave classically on extremal truth
values (0 and 1) and satisfy some natural monotonicity conditions. Actually, these
connectives originate from the definition and algebraic study of set theoretical
operations over the real unit interval, essentially developed in the eighties, when
this field had a great development. It was in that period when the use of t-
norms and t-conorms as operations to model fuzzy set conjunction and disjunction
respectively was adopted, and related implication and negation functions were
studied, as reported in Section 2.1. Therefore, the syntactical issues of fuzzy logic
have followed the semantical ones.

The main many-valued systems described in this section are the so-called t¢-
norm based fuzzy logics. They correspond to [0, 1]-valued calculi defined by a
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conjunction and an implication interpreted respectively by a (left-continuous) t-
norm and its residuum, and have had a great development over the past ten years
and from many points of view (logical, algebraic, proof-theoretical, functional
representation, and complexity), as witnessed by a number of important mono-
graphs that have appeared in the literature, see [Hajek, 1998a; Gottwald, 2001;
Novék et al., 1999]. Actually, two prominent many-valued logics that fall in
this class, namely Lukasiewicz and Godel infinitely-valued logics [Lukasiewicz,
1930; Godel, 1932], were defined much before fuzzy logic was born. They indeed
correspond to the calculi defined by Lukasiewicz and min t-norms respectively.
Lukasiewicz logic L has received much attention from the fifties, when complete-
ness results were proved by Rose and Rosser [1958], and by algebraic means by
Chang [1958; 1959], who developed the theory of MV-algebras largely studied in
the literature. Moreover McNaughton theorem [McNaughton, 1951] provides a
functional description of its logical functions. Many results about Lukasiewicz
logic and MV-algebras can be found in the book [Cignoli et al., 1999]. On the
other hand, a completeness theorem for Godel logic was already given in the fifties
by Dummett [1959]. Note that the algebraic structures related to Godel logic are
linear Heyting algebras (known as Godel algebras in the context of fuzzy logics),
that have been studied in the setting of intermediate or superintuitionistic logics,
i.e. logics between intuitionistic and classical logic.

The key ideas of these logical systems are described in the first three subsec-
tions. Then, in the next two subsections, more complex systems resulting from the
addition of new connectives, as well as a number of further issues related to t-norm
based fuzzy logics, are briefly surveyed. The sixth subsection shows how to embed
the main patterns of approximate reasoning inside a residuated fuzzy logic. The
following subsection is devoted to variants of fuzzy logic systems, including clausal
and resolution-based fuzzy logics. The former are mainly systems related to the
logical calculi on the real unit interval defined by a De Morgan triple: a t-norm
for conjunction, a strong negation and the dual t-connorm for disjunction. The
section concludes with a subsection dealing with notions of graded consequence
and their relationship to closure operators, in a Tarski-style. This is a different
approach to formalize a form of fuzzy logic which, in particular, has been the topic
of Gerla’s monograph [2001] and partially also in [Bélohldvek, 2002b)].

Even if the set of topics addressed in this section is very wide, we acknowledge
the fact that we do not cover for sure all the approaches and aspects of formal
systems of fuzzy logic that have been proposed in the literature. This is the case
for instance of a whole research stream line on fuzzifying modal logics, started
indeed very early by Schotch [1975], and then enriched by a number of significant
contributions, like Gabbay’s general fibring method for building modal fuzzy logics
[Gabbay, 1996; Gabbay, 1997] or the introduction of various types of modalities in
the frame of the above mentioned t-norm based fuzzy logics [Héjek, 1998a, Chap.
8], to cite only a very few of them.
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3.1 BL and related logics

Probably the most studied and developed many-valued systems related to fuzzy
logic are those corresponding to logical calculi with the real interval [0, 1] as set of
truth-values and defined by a conjunction & and an implication — interpreted re-
spectively by a (left-continuous) t-norm * and its residuum =, and where negation
is defined as —p = ¢ — 0, with 0 being the truth-constant for falsity.

In the framework of these logics, called t-norm based fuzzy logics, each (left
continuous) t-norm * uniquely determines a semantical (propositional) calculus
PC(x) over formulas defined in the usual way from a countable set of proposi-
tional variables, connectives A, & and — and truth-constant 0 [H&jek, 1998al.
Further connectives are defined as follows:

VY I8 (g =¥) =) AW — ») = o),

—p is ¢ —0,

p=v¢ is (p— )& — ).
Evaluations of propositional variables are mappings e assigning each propositional
variable p a truth-value e(p) € [0, 1], which extend univocally to compound for-
mulas as follows:

Note that, from the above defintions, e(¢ V 1) = max(e(y), e(¢)), 7p = e(p) =0
and e(p =) = e(p — V) xe(p — ¢). A formula ¢ is a said to be a 1-tautology
of PC(x) if e(¢) = 1 for each evaluation e. The set of all 1-tautologies of PC/(x)
will be denoted as TAUT (x).

Three outstanding examples of (continuous) t-norm based fuzzy logic calculi
are:

Godel logic calculus: defined by the operations

Txqgy = min(z,y)
N _ 1, ifz<y
r=ey = y, otherwise.

Lukasiewicz logic calculus: defined by the operations

z+py = max(z+y—1,0)
1, ifx<y

T=LY = { 1—x+vy, otherwise.
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Product logic calculus: defined by the operations

x#ny = x-y (product of reals)
N _ 1, ifx<y
Te=ny = y/x, otherwise.

These three cases are important since each continuous t-norm is definable as an
ordinal sum of copies of Lukasiewicz, Minimum and Product t-norms (see e.g.
[Klement et al., 2000]), and the min and max operations are definable from * and
=. Indeed, for each continuous t-norm * and its residuated implication =, the
following identities are true:

min(z,y) = zx(z=1y),
max(z,y) = min((z=vy) =y, (y=2)= ).

Actually, two of these logics correspond to many-valued systems already studied
before fuzzy logic was born. These are the well-known infinitely-valued Lukasiewicz
[1930] and Godel [1932] logics* which are the logical systems corresponding to the
so-called Lukasiewicz and minimum t-norms and their residuated implications re-
spectively (see, for example, [Cignoli et al., 1999; Gottwald, 2001] for excellent
descriptions of these logics). Much later, already motivated by research on fuzzy
logic, Product logic, the many-valued logic corresponding to Product t-norm and
its residuum, was also axiomatized in [Héjek et al., 1996]. All these logics enjoy
standard completeness, that is, completeness with respect to interpretations over
the algebra on the unit real interval [0, 1] defined by the corresponding t-norm and
its residuum. Namely, it holds that:

¢ is provable in Lukasiewicz logic iff ¢ € TAUT (xy)
 is provable in Gddel logic it ©eTAUT(xq)
¢ is provable in Product logic ifft e TAUT (xn).

Q

A main step in the formalization of fuzzy logic in narrow sense is Hajek’s mono-
graph [Hajek, 1998a), where the author introduced the Basic Fuzzy logic BL as a
common fragment of the above mentioned three outstanding many-valued logics,
and intending to syntactically capture the common tautologies of all propositional
calculi PC(x) for * being a continuous t-norm. The language of BL logic is built
(in the usual way) from a countable set of propositional variables, a conjunction
&, an implication — and the constant 0. Since for a continuous t-norm * and its
residuum = we have min(z,y) = = * (z = y), in BL the connective A is taken as
definable from & and —:

4G6del logic is also known as Dummett logic, referring to the scholar who proved its com-
pleteness.
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oAy is p&(p — )

Other connectives (V, =, =) are defined as in PC'(%).
The following formulas are the azioms® of BL:

o — 1) = (¥ = x) = (¢ = X))

— (¥ = x)) = ((p&y) — x)
Ew&w) —x) — (p— (¥ — x))

(

(

(¢

(p&(p — ) = (V&Y — ¢))

Es@

((p =) —=x) = (¥ —=¢) —x)—x)

The deduction rule of BL is modus ponens.

Axiom (A1) captures the transitivity of the residuum, axioms (A2) and (A3)
stand for the weakening and commutativity properties of the conjunction, axiom
(A4) forces the commutativity of the defined A connective and it is related to the
divisibility and the continuity of the &, axioms (Ab5a) and (A5b) stand for the
residuation property of the pair (&,—), axiom (A6) is a form of proof-by-cases
property and is directly related to the pre-linearity axiom (¢ — ¥)V (¢ — ),
which is an equivalent formulation of (A6), and finally axiom (A7) establishes that
0 is the least truth-value.

These axioms and deduction rule defines a notion of proof, denoted Fpy, in
the usual way. As a matter of fact, Lukasiewicz, Godel and Product logics are
axiomatic extensions of BL. Indeed, it is shown in [Hajek, 1998a] that Lukasiewicz
logic is the extension of BL by the axiom

(L) e — o,

forcing the negation to be involutive, and Gdédel logic is the extension of BL by
the axiom

(G) = (p&yp).

forcing the conjunction to be idempotent. Finally, product logic is just the exten-
sion of BL by the following two axioms:

(1) ==x — (((p&x) — (P&x)) = (¢ — V),
(T12) A= —0.

The first axiom indicates that if ¢ # 0, the cancellation of ¢ on both sides of
the inequality a-c¢ < b- ¢ is possible, hence the strict monotony of the conjunction

5These are the original set of axioms proposed by Héjek in [Héjek, 1998a). Later Cintula
showed [Cintula, 2005a] that (A3) is redundant.
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on (0,1]. The last axiom is due to the fact that negation in product logic behaves
such that n(a) =a —-0=01ifa > 0.

From a semantical point of view, if one takes a continuous t-norm x for the
truth function of & and the corresponding residuum =- for the truth function of
— (and evaluating 0 by 0) then all the axioms of BL become 1-tautologies (have
identically the truth value 1). And since modus ponens preserves 1-tautologies, all
formulas provable in BL are 1-tautologies, i.e. if Fpr ¢ then ¢ € N{TAUT(x) :
* is a continuous t-norm}. This shows that BL is sound with respect to the
standard semantics, i.e. with respect to evaluations on [0, 1] taking as truth-
functions continuous t-norms and their residua.

Actually, standard semantics is a particular case of a more general algebraic
semantics. Indeed, the algebraic counterpart of BL logic are the so-called BL-
algebras. A BL-algebra is an algebra L = (L, *,=,A,V,0,1) with four binary
operations and two constants such that:

(i) (L,A,V,0,1) is a lattice with the largest element 1 and the least element 0
(with respect to the lattice ordering <),

(ii) (L,#,1) is a commutative semigroup with the unit element 1, i.e. * is com-
mutative, associative and 1 x = x for all x,

(iii) the following conditions hold:

(1) z<(z=y) iff x*xz <y forall z,y, 2. (residuation)
(2) zAhy=xx(x=y) (divisibility)
3B) (z=y)VvVy=z) =1 (pre-linearity)

Thus, in other words, a BL-algebra is a bounded, integral commutative restduated
lattice satisfying (2) and (3). The class of all BL-algebras forms a variety. Due to
(3), each BL-algebra can be decomposed as a subdirect product of linearly ordered
BL-algebras. BL-algebras defined on the real unit interval [0, 1], called standard
BL-algebras, are determined by continuous t-norms, i.e. any standard BL-algebra
is of the form [0,1], = ([0, 1], *, =, min, max, 0, 1) for some continuous t-norm x,
where = is its residuum.

By defining ~z = & = 0, it turns out that the algebraic semantics of Lukasiewicz
logic, defined by the class of MV-algebras (or Wajsberg algebras), correspond to the
subvariety of BL-algebras satisfying the additional condition ——x = z, while the
algebraic semantics of Gddel logic, defined by the class of G-algebras, corresponds
to the subvariety of BL-algebras satisfying the additional condition z x z = x.
Finally, Product algebras, which define the algebraic semantics for Product logic,
are just BL-algebras further satisfying

x A —x =0,
2= ((rxz=yxz)=>x=y)=1

Given a BL-algebra L, one can define L-evaluations of formulas in the same way
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as in [0, 1] just by taking as truth-functions the operations of L. An L-evaluation
e is called a model of a formula ¢ when e(¢) =1 (1 being the top element of the
algebra), and it is a model of a set of formulas I" if it is a model of every formula of
I'. A L-tautology is then a formula getting the value 1 for each L-evaluation, i.e.
any L-evaluation is a model of the formula. In particular, when L = [0,1],, the
set of L-tautologies is the set TAUT (%) introduced before. Then, the logic BL is
sound with respect to L-tautologies: if ¢ is provable in BL then ¢ is an L-tautology
for each BL-algebra L. Moreover, Héjek proved the following completeness results
for BL, namely the following three conditions are proved in [Héjek, 1998a] to be
equivalent:

(i) T'FBL ¢,

(ii) for each BL-algebra L, any L-evaluation which is a model of T', it is a model
of ¢ as well,

(iii) for each linearly ordered BL-algebra L, any L-evaluation which is a model
of T, it is a model of ¢ as well,

Héjek’s conjecture was that BL captured the 1-tautologies common to all many-
valued calculi defined by a continuous t-norm. In fact this was proved [Héjek,
1998b; Cignoli et al., 2000] to be the case soon after, that is, it holds that

@ is provable in BL iff ¢ € {TAUT (%) : = is a continuous t-norm}

This is the so-called standard completeness property for BL. More than that, a
stronger completeness property holds: if I is a finite set of formulas, then I' gy, ¢
if and only if for each standard BL-algebra L, any L-evaluation which is a model
of T', it is a model of . This result is usually referred as finite strong standard
completeness of BL.

On the other hand, in [Esteva et al., 2004] the authors provide a general method
to get a finite axiomatization, as an extension of BL, of each propositional calculus
PC(x), for * being a continuous t-norm. Therefore, for each of these logics, denoted
L., one has that a formula ¢ is provable in L, iff ¢ € TAUT (). Note that L, is
equivalent to Godel logic G when * = min, to Lukasiewicz logic L. when * is the
Lukasiewicz t-norm #j, and to Product logic when * is the product of real numbers.

Actually, the book [Hajek, 1998a] was the starting point of many fruitful and
deep research works on BL logic and their extensions, as well as on its algebraic
counterpart, the variety of BL-algebras. See the special issue [Esteva and Godo
(eds.), 2005] for a quite exhaustive up-to-date overview on recent results on BL-
algebras and BL-logics.

The well-known result that a t-norm has residuum if and only if the t-norm is
left-continuous makes it clear that BL is not the most general t-norm-based logic
(in the setting of residuated fuzzy logics). In fact, a weaker logic than BL, called
Monoidal t-norm-based Logic, MTL for short, was defined in [Esteva and Godo,
2001] and proved in [Jenei and Montagna, 2002] to be the logic of left-continuous
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t-norms and their residua. Thus MTL is indeed the most general residuated t-
norm-based logic. The basic difference between BL and MTL is the divisibility
axiom (or algebraically the equality z Ay = x % (x = y)), which characterizes the
continuity of the t-norm and which is not satisfied in MTL. This means that the
min-conjunction A is not definable in MTL and, as opposed to BL, it has to be
introduced as a primitive connective into the language together with BL primitive
connectives (strong conjunction &, implication — and the truth constant 0). Ax-
ioms of MTL are obtained from those of BL by replacing axiom (A4) by the three
following ones:

(Ada) @AY —o
(Adb) AP =P Ap
(Adc) &l — ) = @AY

Most of well-known fuzzy logics (among them Lukasiewicz logic, Godel logic,
Hajek’s BL logic and Product logic)—as well as the Classical Propositional Cal-
culus®—can be presented as axiomatic extensions of MTL. Tables 2 and 3 collect
some axiom schemata’ and the axiomatic extensions of MTL they define®. Notice
that in extensions of MTL with the divisibility axiom (Div), i.e. in extensions of
BL, the additive conjunction A is in fact definable and therefore it is not consid-
ered as a primitive connective in their languages. For the sake of homogeneity we
will keep £ = {&, —, A, 0} as the common language for all MTL extensions.

The algebraic counterpart of MTL logic is the class of the so-called MTL-
algebras. MTL-algebras are in fact pre-linear residuated lattices (understood as
commutative, integral, bounded residuated monoids). Of particular interest are
the MTL-algebras defined on the real unit interval [0, 1], which are defined in fact
by left-continuous t-norms and their residua. Jenei and Montagna proved that
MTL is (strongly) complete with respect to the class of MTL-algebras defined on
the real unit interval. This means in particular that

@ is provable in MTL iff ¢ € {TAUT(x) :  is a left-continuous t-norm}.

One common property of all MTL extensions is that they enjoy a local form of the
deduction theorem, namely, for any MTL axiomatic extension L it holds that

T U {p} Fr ¢ iff there exists n € N such that I' b, o™ — 9,

6Indeed, Classical Propositional Calculus can be presented as the extension of MTL (and of
any of its axiomatic extensions) with the excluded-middle axiom (EM).

7 Axioms of pseudo-complementation (PC) and n-contraction (C,) are also known respectively
by the names of weak contraction and n-potence, see e.g. [Galatos et al., 2007).

80f course, some of these logics were known well before MTL was introduced. We only want
to point out that it is possible to present them as the axiomatic extensions of MTL obtained by
adding the corresponding axioms to the Hilbert style calculus for MTL given above. Moreover,
these tables only collect some of the most prominent axiomatic extensions of MTL, even though
many other ones have been studied in the literature (see e.g. [Noguera, 2006], [Wang et al.,
2005b] and [Wang et al., 2005a]).
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’ Axiom schema, \ Name ‘
- — Involution (Inv)
=V ((¢ — p&ip) — V) Cancellation (C)
(&) V (¥ — p&ip) — @) Weak Cancellation (WC)
o — & Contraction (Con)
VA — p&(p — ) Divisibility (Div)
YA —0 Pseudo-complementation (PC)
PV Excluded Middle (EM)
(p&tp — 0) V (p At — @&p) | Weak Nilpotent Minimum (WNM)
T — " n-Contraction (Cy,)

Table 2. Some usual axiom schemata in fuzzy logics.

where @™ stands for & .7. &¢p. It is local in the sense that n depends on particular
formulas involved T', ¢ and 4. It turns out that the only axiomatic extension of
MTL for which the classical (global) deduction theorem

TU{pttr v iffiTFL p—

holds is for L being Godel fuzzy logic. This fact clearly indicates, that in general,
syntactic inference ¢ F ¢ in BL, MTL and any of their extensions L does not
implement Zadeh’s entailment principle of approximate reasoning in the semantics
(except in Godel logic). For Zadeh, the inference of a fuzzy proposition ¢ from ¢
means that v is always at least as true as ¢ in all interpretations. At the syntactic
level, it generally corresponds to proving -y, ¢ — %, not ¢ b 1. At the semantic
level, the latter only corresponds to the inclusion of cores of the corresponding
fuzzy sets (that is, the preservation of the highest membership value 1).

Regarding this issue, the NM logic can be considered the closest to Godel logic,
since it also enjoys a global form of deduction theorem, but with n = 2 in the
above deduction theorem expression, i.e. it holds that

FU{QO}"NMiﬁiﬂ‘FI—NJM (p&(p—>¢.

for all T, p,%. Actually, NM is a genuine MTL-extension (i.e. it is not a BL-
extension) that axiomatizes the calculus defined by the nilpotent minimum t-norm
*xn (see Section 2.1), and satisfies the following standard completeness property:

© is provable in NM iff ¢ € TAUT (xnnr)

where z xyp y = min(z,y) if € > 1 —y, z *xyy y = 0 otherwise. This logic,
introduced in [Esteva and Godo, 2001], has very nice logical properties besides the
above global deduction theorem, as having an involutive negation (like Lukasiewicz
logic), or being complete for deduction from arbitrary theories (not only for theo-
rems). Indeed, this logic has received much attention by the Chinese school leaded
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’ Logic \ Additional axiom schemata \ References
SMTL (PC) [Héjek, 2002]
IIMTL (C) [Hijek, 2002]
WCMTL (WQC) [Montagna et al., 2006]
IMTL (Inv) [Esteva and Godo, 2001]
WNM (WNM) [Esteva and Godo, 2001]
NM (Inv) and (WNM) [Esteva and Godo, 2001]
C,MTL (Cn) [Ciabattoni et al., 2002]
C,IMTL (Inv) and (C,,) [Ciabattoni et al., 2002]
BL (Div) [Héjek, 1998a)
SBL (Div) and (PC) [Esteva et al., 2000]
L (Div) and (Inv) [Hajek, 1998a]
I (Div) and (C) [Hajek et al., 1996]
G (Con) [Hajek, 1998a]

Table 3. Some axiomatic extensions of MTL obtained by adding the corresponing
additional axiom schemata and the references where they have been introduced
(in the context of fuzzy logics).

by G.J. Wang. It turns out that he independently introduced in [Wang, 1999;
Wang, 2000] a logic in the language (-, V, —), called £*, with an algebraic seman-
tics consisting of a variety of algebras called Rg-algebras. Pei later showed [Pei,
2003] that both R, algebras and NM were in fact definitionally equivalent, and
hence that logics NM and L£* were equivalent as well. A similar relation was also
found for IMTL and weaker version of L£*.

In the tradition of substructural logics, both BL and MTL are logics without
contraction (see Ono and Komori’s seminal work [1985]). The weakest residuated
logic without contraction is Hohle’s Monoidal Logic ML [Hohle, 1995], equiva-
lent to FL., (Full Lambek calculus with exchange and weakening)? introduced
by Kowalski and Ono [2001] as well as to Adillon and Verdi’s IPC*\c (Intu-
itionistic Propositional Calculus without contraction) [Adillon and Verdd, 2000],
and that is the logic corresponding to the variety of (bounded, integral and com-
mutative) residuated lattices. From them, MTL can be obtained by adding the
prelinearity axiom and from there, a hierarchy of all t-norm-based fuzzy logics
can be considered as different schematic extensions [Kowalski and Ono, 2001;
Esteva et al., 2003]. Figure 1 shows a diagram of this hierarchy with the main
logics involved.

The issue of completeness of these and other t-norm based fuzzy logics extending
of MTL has been addressed in the literature. In fact, several kinds of algebraic
completeness have been considered, depending on the number of premises. Here we

9 Also known as aMALL or aMAILL (affine Multiplicative Additive fragment of (propositional)
Intuitionistic Linear logic or Hpcx [Ono and Komori, 1985].
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CLASSICAL LOGIC

GODEL LUKASIEWICZ
Div
Lin
IMTL
INTUITIONISTIC Lin
aMALL

MONOIDAL (FLew, Intuitionistic without contraction)

Figure 1. Hierarchy of some substructural and fuzzy logics.

will only refer to the completeness properties with respect to the usually intended
semantics (standard semantics) on the real unit interval [0, 1].

For any L axiomatic extension of MTL and for every set of L-formulas T'U {¢},
we write I' =1, ¢ when for every evaluation e of formulas on the any standard
L-algebra (L-chain on [0, 1]) one has e(p) = 1 whenever e(¢)) = 1 for all ¢ € T.
Then:

e L has the property of strong standard completeness, SSC for short, when for
every set of formulae T', Tk, o iff T =1, .

e L has the property of finite strong standard completeness, FSSC for short,
when for every finite set of formulae I', I' Fp, o iff T =1, 0.

e L has the property of (weak) standard completeness, SC for short, when for
every formula @, Fr, ¢ iff Ef @.

Of course, the SSC implies the FSSC, and the FSSC implies the SC. Table 4
gathers the different standard results for some of the main t-norm based logics.
Note that for some of these logics one may restrict to check completeness with
respect to a single standard algebra defined by a distinguished t-norm, like in the
cases of G, L, IT and NM logics.

In the literature of t-norm based logics, one can find not only a number of ax-
iomatic extensions of MTL but also extensions by means of expanding the language
with new connectives. Some of these expansions (like those with Baaz[1996]’s A
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’ Logic H SC \ FSSC \ SSC \ References ‘
MTL Yes | Yes Yes [Jenei and Montagna, 2002]
IMTL || Yes | Yes | Yes [Esteva et al., 2002]

SMTL || Yes | Yes Yes [Esteva et al., 2002]

IOMTL || Yes | Yes | No [Horéik, 2005b; Horéik, 2007]
BL Yes | Yes No | [Hajek, 1998a; Cignoli et al., 2000]

SBL || Yes | Yes No [Esteva et al., 2000]
L Yes Yes No see [Héujek7 1998a]
II Yes | Yes No [Hajek, 1998a]
G Yes | Yes Yes see [Hajek, 1998a]
WNM || Yes Yes Yes [Esteva and Godo, 2001]
NM Yes Yes Yes [Esteva and Godo, 2001]

Table 4. Standard completeness properties for some axiomatic extensions of MTL
and their references. For the negative results see [Montagna et al., 2006].

connective, an involutive negation, with other conjunction or implication connec-
tives, or with intermediate truth-constants) will be addressed later in Sections 3.3
and 3.4. All of MTL extensions and most of its expansions defined elsewhere share
the property of being complete with respect to a corresponding class of linearly
ordered algebras. To encompass all these logics and prove general results common
to all of them, Cintula introduced the notion of core fuzzy logics'® in [Cintula,
2006]. Namely, a finitary logic L in a countable language is a core fuzzy logic if:

(i) L expands MTL;
(ii) L satisfies the congruence condition: for any ¢, v, x, ¢ = ¥ Fr, x(¢) = x(¥);

(iii) L satisfies the following local deduction theorem:
I, ¢ by, 9 iff there a is natural number n such that T' Fy, & .7. &p — 9.

Each core fuzzy logic L has a corresponding notion of L-algebra (defined as usual)
and a corresponding class IL of L-algebras, and enjoys many interesting properties.
Among them we can highlight the facts that L is algebraizable in the sense of Blok
and Pigozzi [1989] and L is its equivalent algebraic semantics, that L is indeed
a variety, and that every L-algebra is representable as a subdirect product of L-
chains, and hence L is (strongly) complete with respect to the class of L-chains.

Predicate fuzzy logics Predicate logic versions of the propositional t-norm
based logics described above have also been defined and studied in the literature.
Following [Hajek and Cintula, 2007] we provide below a general definition of the
predicate logic LV for any core fuzzy logic L.

10 Actually, Cintula also defines the class of A-core fuzzy logics to capture all expansions having
the A connective (see Section 3.4), since they have slightly different properties.
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As usual, the propositional language of L is enlarged with a set of predicates
Pred, a set of object variables Var and a set of object constants Const, together
with the two classical quantifiers V and 3. The notion of formula trivially gener-
alizes taking into account that now, if ¢ is a formula and x is an object variable,
then (Vx)y and (3z)p are formulas as well.

In first-order fuzzy logics it is usual to restrict the semantics to L-chains only.
For each L-chain 4 an L-interpretation for a predicate language PL = (Pred, Const)
of LV is a structure

M= (M7 (TP)PEPred; (mc)ceConst>

where M # (), rp : MeP) — A and m. € M for each P € Pred and ¢ € Const.
For each evaluation of variables v : Var — M, the truth-value ||ga||f\4,17U of a formula
(where v(x) € M for each variable x) is defined inductively from

||P($, G )||Jl\4/l,v = TP(U(*T)’ e, Me ')a
taking into account that the value commutes with connectives, and defining

H(Vx)cpH{\‘}Iv = inf{||<p||i\4,17v, | v(y) = v'(y) for all variables, except z}
H(Elx)wh\‘}[m = sup{||<p||{\44m/ | v(y) = v'(y) for all variables, except z}

if the infimum and supremum exist in A, otherwise the truth-value(s) remain
undefined. An structure M is called A-safe if all infs and sups needed for definition
of the truth-value of any formula exist in 4. Then, the truth-value of a formula ¢
in a safe A-structure M is just

lllse = inf{llolish o | v: Var — M},

When ||¢||s% = 1 for a A-safe structure M, the pair (M, .A) is said to be a model
for ¢, written (M, A) = .

The axioms for LV are the axioms resulting from those of L. by substitution of
propositional variables with formulas of PL plus the following axioms on quanti-
fiers (the same used in [Héjek, 1998a] when defining BLY):

(V1)  (Vx)e(x) — @(t) (t substitutable for  in ¢(x))
(31)  (t) — (3x)p(z) (t substitutable for = in p(x))
(vV2)  (Va)(v — ) — (v — (Vz)p) (x not free in v)
(32) (Vx)(¢ — v) — ((3x)p — v) (z not free in v)
(V3)  (Vx)(¢ Vv) — ((Vz)p V) (x not free in v)

Rules of inference of MTLY are modus ponens and generalization: from ¢ infer
(Vz)ep.

A completeness theorem for first-order BL was proven in [Héjek, 1998a] and
the completeness theorems of other predicate fuzzy logics defined in the literature
have been proven in the corresponding papers where the propositional logics were
introduced. The following general formulation of completeness for predicate core
and A-core fuzzy logics is from the paper [Héjek and Cintula, 2006]: for any be a
(A-)core fuzzy logic L over a predicate language PL, it holds that



62 Didier Dubois, Francesc Esteva, Lluis Godo, Henri Prade

T Fry ¢ iff (M, A) = ¢ for each model (M, A) of T,

for any set of sentences 1" and formula ¢ of the predicate language PL.

For some MTL axiomatic extensions L there are postive and negative results
of standard completeness of the corresponding predicate logic LV. For instance,
for L being either Godel, Nilpotent Minimum, MTL, SMTL or IMTL logics, the
corresponding predicate logics GV, NMV, MTLY, SMTLV and IMTLY have been
proved to be standard complete for deductions from arbitrary theories (see [Hajek,
1998a; Esteva and Godo, 2001; Montagna and Ono, 2002]). However, the predicate
logics LV, IV, BLV, SBLY and IIMTLY are not standard complete [Hajek, 1998a;
Montagna et al., 2006; Horéik, 2007].

For more details on predicate fuzzy logics, including complexity results and
model theory, the interested reader is referred to [Héjek and Cintula, 2006] and to
the excellent survey [Hajek and Cintula, 2007).

3.2 Proof theory for t-norm based fuzzy logics

From a proof-theoretic point of view, it is well known that Hilbert-style calculi are
not a suitable basis for efficient proof search (by humans or computers). For the
latter task one has to develop proof methods that are “analytic”; i.e., the proof
search proceeds by step-wise decomposition of the formula to be proved. Sequent
calculi, together with natural deduction systems, tableaux or resolution methods,
yield suitable formalisms to deal with the above task. In this section we survey
some analytic calculi that have been recently proposed for MTL (e.g. see [Gabbay
et al., 2004] for a survey) and some of its extensions using hypersequents, a natural
generalization of Gentzen’s sequents introduced by Avron [1991].

Cut-free sequent calculi provide suitable analytic proof methods. Sequents are
well-known structures of the form

@17"'7‘)077,'71/}17"'51;[}7”

which can be intuitively understoof as “p; and ...and ¢, implies ¢ or ...4,,”.
Sequent calculi have been defined for many logics, however they have problems
with fuzzy logics, namely to cope with the linear ordering of truth-values in [0, 1].
To overcome with this problem when devising a sequent calculus for Gédel logic,
Avron [1991] introduced a natural generalization of sequents called hypersequents.
A hypersequent is an expression of the form

TiFA| .| Tak A,

where for all ¢ = 1,...n, I'; F A; is an ordinary sequent. I'; F A; is called a
component of the hypersequent. The intended interpretation of the symbol “|”
is disjunctive, so the above hypersequent can be read as stating that one of the
ordinary sequents I'y F A; holds.

Like in ordinary sequent calculi, in a hypersequent calculus there are axioms and
rules which are divided into two groups: logical and structural rules. The logical
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rules are essentially the same as those in sequent calculi, the only difference is the
presence of dummy contexts G and H, called side hypersequents which are used
as variables for (possibly empty) hypersequents. The structural rules are divided
into internal and external rules. The internal rules deal with formulas within
components. If they are present, they are the usual weakening and contraction
rules. The external rules manipulate whole components within a hypersequent.
These are external weakening (EW) and external contraction (EC):

H H|THA|THA

(EW) ———— (EC)
H|THA H|THA

In hypersequent calculi it is possible to define further structural rules which si-
multaneously act on several components of one or more hypersequents. It is this
type of rule which increases the expressive power of hypersequent calculi with re-
spect to ordinary sequent calculi. An example of such a kind of rule is Avron’s
communication rule:

H|I,,I"+A G|, T2+B

(com)

H|G|I,yA|T, Ty B

Indeed, by adding (com) to the hypersequent calculus for intuitionistic logic one
gets a cut-free calculus for Gédel logic [Avron, 1991]. Following this approach, a
proof theory for MTL has been investigated in [Baaz et al., 2004], where an an-
alytic hypersequent calculus has been introduced. This calculus, called HMTL,
has been defined by adding the (com) rule to the hypersequent calculus for intu-
itionistic logic without contraction IPC* \ ¢ (or equivalently Monidal logic ML or
Full Lambek with exchange and weaking FL.,,). More precisely, axioms and rules
of HMTL are those of Table 3.2.

In fact, in [Baaz et al., 2004] it is shown that HMTL is sound and complete
for MTL and that HMTL admits cut-elimination. Cut-free hypersequent calculi
have also been obtained by Ciabattoni et al. [Ciabattoni et al., 2002] for IMTL
and SMTL.

Elegant hypersequent calculi have also been defined by Metcalfe, Olivetti and
Gabbay for Lukasiewicz logic [Metcalfe et al., 2005] and Product logic [Metcalfe
et al., 2004a], but using different rules for connectives. A generalization of both
hypersequents and sequents-of-relations, called relational hypersequents is intro-
duced in [Ciabattoni et al., 2005]. Within this framework, they are able to provide
logical rules for Lukasiewicz, Godel and Product logics that are uniform i.e., iden-
tical for all three logics and then purely syntactic calculi with very simple initial
relational hypersequents are obtained by introducing structural rules reflecting the
characteristic properties of the particular logic. Such a framework is also used by
Bova and Montagna in a very recent paper [Bova and Montagna, 2007] to provide
a proof system for BL, a problem which has been open for a long time.

Finally, let us comment that other proof search oriented calculi include a tableaux
calculus for Lukasiewicz logic [Hihnle, 1994], decomposition proof systems for
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H|THFA G|AT'FC

AFA 0FA (cut)
H|G|T,)T'FC
Internal and External Structural Rules :
H|TFC
w _ EC), EW), com
()H|F,B}—C (EC), (EW), (com)

Multiplicative fragment :

H|T,A,BFC H|THA G|I'FB

&,l) ——— (&, )
H|T,A&BFC H|G|I,T"+ A&B
G|THA H|T',BFC H|T,A+B
(=,0) (=) ———
G|H |,/ T'"A— BFC H|THFA—B
Additive fragment :
H|T A FC G|THFA H|TFB
(A li)i=1,2 (A7)
H|T,AiNAFC G|H|TFAAB
H|TA+-C G|I,BFC H|TFA;
(v, 1) (Vy7i)iz1,p ————
H|G|T,AvBFC H|TkF AV A,

Table 5. Axioms and rules of the hypersequent calculus HMTL.

Gédel logic [Avron and Konikowska, 2001], and goal-directed systems for Luka-
siewicz and Godel logics [Metcalfe et al., 2004b; Metcalfe et al., 2003]. Also, a
general approach is presented in [Aguzzoli, 2004] where a calculus for any logic
based on a continuous t-norm is obtained via reductions to suitable finite-valued
logics, but not very suitable for proof search due to a very high branching factor
of the generated proof trees. For an exhaustive survey on proof theory for fuzzy
logics, the interested reader is referred to the forthcoming monograph [Metcalfe et
al., to appear].

3.8 Dealing with partial truth: Pavelka-style logics with truth-constants

The notion of deduction in t-norm based fuzzy logics is basically crisp, in the sense
it preserves the distinguished value 1. Indeed, a deduction

Tk vy

in a complete logic L actually means that 1) necessarily takes the truth-value 1 in
all evaluations that make all the formulas in 7" 1-true. However, from another point
of view, more in line with Zadeh’s approximate reasoning, one can also consider
t-norm based fuzzy logics as logics of comparative truth. In fact, the residuum = of
a (left-continuous) t-norm # satisfies the condition 2 = y = 1 if, and only if, < y
for all z,y € [0,1]. This means that a formula ¢ — v is a logical consequence
of a theory T, ie. if T Fr ¢ — 9, if the truth degree of ¢ is at most as high
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as the truth degree of ¢ in any interpretation which is a model of the theory T.
Therefore, implications indeed implicitly capture a notion of comparative truth.
This is fine, but in some situations one might be also interested to explicitly
represent and reason with partial degrees of truth. For instance, in any logic L.
of a left-continuous t-norm *, any truth-evaluation e satisfying e(p — ) > a and
e(¢) > B, necessarily satisfies e(¢)) > « *  as well. Therefore, having this kind
of graded (semantical) form of modus ponens inside the logic (as many applied
fuzzy systems do [Dubois et al., 1991c]) may seem useful when trying to devise
mechanisms for allowing deductions from partially true propositions.

One convenient and elegant way to allow for an explicit treatment of degrees of
truth is by introducing truth-constants into the language. In fact, if one introduces
in the language new constant symbols @ for suitable values a € [0, 1] and stipulates
that

e(@) =
for all truth-evalutations, then a formula of the kind @ — ¢ becomes 1-true under
any evaluation e whenever a < e(y).

This approach actually goes back to Pavelka [1979] who built a propositional
many-valued logical system PL which turned out to be equivalent to the expansion
of Lukasiewicz Logic by adding into the language a truth-constant 7 for each real
r € [0,1], together with a number of additional axioms. The semantics is the same
as Lukasiewicz logic, just expanding the evaluations e of propositional variables
in [0,1] to truth-constants by requiring e(¥) = r for all » € [0,1]. Although
the resulting logic is not strong standard complete (SSC in the sense defined in
Section 3.1) with respect to that intended semantics, Pavelka proved that his logic
is complete in a different sense. Namely, he defined the truth degree of a formula
@ in a theory T as

lellr = inf{e(¢) | e is a PL-evaluation model of T},
and the provability degree of ¢ in T as
|plr = sup{r € [0,1] | T'FpL 7 — ¢}

and proved that these two degrees coincide. This kind of completeness is usu-
ally known as Pavelka-style completeness, and strongly relies on the continuity of
Lukasiewicz truth functions. Note that ||¢|lr = 1 is not equivalent to T Fpy, ¢,
but only to T Fpy, T — ¢ for all » < 1. Novéak extended Pavelka’s approach to
Lukasiewicz first order logic [Novik, 1990a; Novék, 1990b].

Later, Hajek [1998a] showed that Pavelka’s logic PL could be significantly sim-
plified while keeping the completeness results. Indeed he showed that it is enough
to extend the language only by a countable number of truth-constants, one for each
rational in [0, 1], and by adding to the logic the two following additional axiom
schemata, called book-keeping axioms:

T&S < T %[ 5
T —8< 7T =S5
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for all r € [0,1]NQ, where *z, and =, are the Lukasiewicz t-norm and its residuum
respectively. He called this new system Rational Pavelka Logic, RPL for short.
Moreover, he proved that RPL is strong standard complete for finite theories
(FSSC in the usual sense). He also defined the logic RPLV, the extension of RPL
to first order, and showed that RPLY enjoys the same Pavelka-style completeness.

Similar rational expansions for other t-norm based fuzzy logics can be analo-
gously defined, but unfortunately Pavelka-style completeness cannot be obtained
since Lukasiewicz Logic is the only fuzzy logic whose truth-functions (conjunction
and implication) are continuous functions.

However, several expansions with truth-constants of fuzzy logics different from
Lukasiewicz have been studied, mainly related to the other two outstanding con-
tinuous t-norm based logics, namely Godel and Product logic. We may cite [Hajek,
1998a] where an expansion of Ga (the expansion of Godel Logic G with Baaz’s
projection connective A) with a finite number of rational truth-constants, [Es-
teva et al., 2000] where the authors define logical systems obtained by adding
(rational) truth-constants to G.. (Godel Logic with an involutive negation) and
to II (Product Logic) and II.. (Product Logic with an involutive negation). In
the case of the rational expansions of IT and I an infinitary inference rule (from
{¢p > 7:7r € Qn(0,1]} infer ¢ — 0) is introduced in order to get Pavelka-
style completeness. Rational truth-constants have been also considered in some
stronger logics (see Section 3.4) like in the logic LH% [Esteva et al., 2001], a logic
that combines the connectives from both Lukasiewicz and Product logics plus the
truth-constant 1/2, and in the logic PL [Horéik and Cintula, 2004], a logic which
combines Lukasiewicz Logic connectives plus the Product Logic conjunction (but
not implication), as well as in some closely related logics.

Following this line, Cintula gives in [Cintula, 2005d] a definition of what he calls
Pavelka-style extension of a particular fuzzy logic. He considers the Pavelka-style
extensions of the most popular fuzzy logics, and for each one of them he defines an
axiomatic system with infinitary rules (to overcome discontinuities like in the case
of IT explained above) which is proved to be Pavelka-style complete. Moreover he
also considers the first order versions of these extensions and provides necessary
conditions for them to satisfy Pavelka-style completeness.

Recently, a systematic approach based on traditional algebraic semantics has
been considered to study completeness results (in the usual sense) for expansions
of t-norm based logics with truth-constants. Indeed, as already mentioned, only
the case of Lukasiewicz logic was known according to [Hajek, 1998a]. Using this al-
gebraic approach the expansions of the other two distinguished fuzzy logics, Godel
and Product logics, with countable sets of truth-constants have been reported in
[Esteva et al., 2006] and in [Savicky et al., 2006] respectively. Following [Esteva et
al., 2007a; Esteva et al., 2007b], we briefly describe in the rest of this section the
main ideas and results of this general algebraic approach.

If L, is a logic of (left-continuous) t-norm *, and C = {C, x, =, min, max, 0, 1)
is a countable subalgebra of the standard L,-algebra [0, 1], then the logic L.(C)
is defined as follows:
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(i) the language of L.(C) is the one of L, expanded with a new propositional
variable 7 for each r € C
(ii) the axioms of L, (C) are those of L, plus the bookeeping axioms

T&S > T*s
T =87 =,8

for each r, s € C. The algebraic counterpart of the L, (C) logic consists of the class
of L,(C)-algebras, defined as structures

A= (A& — ANV {FAreC))

such that:
1. (A, &, —, A, \/,ﬁA,TA> is an L,-algebra, and
2. for every r,s € C' the following identities hold:
FALEA = 7w st
7 -3 ==
A L, (C)-chain defined over the real unit interval [0, 1] is called standard. Among
the standard chains, there is one which reflects the intended semantics, the so-

called canonical L. (C)-chain
[07 ]-]L*(C) = <[07 1]a *, =, mina max, {’I’ re C}>7

i. e. the one where the truth-constants are interpreted by themselves. Note that,
for a logic L. (C) there can exist multiple standard chains, as soon as there exist
different ways of interpreting the truth-constants on [0, 1] respecting the book-
keeping axioms. For instance, for the case of Godel logic, when * = min and
C =1[0,1] N Q, the algebra A = ([0,1],&, —, A, V, {74 : r € C}) where

A _ 1, ifr>a
“ 1 0, otherwise

is a standard L, (C) algebra for any o > 0.

Since the additional symbols added to the language are 0-ary, L.(C) is also an
algebraizable logic and its equivalent algebraic semantics is the variety of L, (C)-
algebras, This, together with the fact that L.(C)-algebras are representable as
a subdirect product of L, (C)-chains, leads to the following general completeness
result of L,(C) with respect to the class of L.(C)-chains: for any set I' U {¢} of
L.(C) formulas,

I' o, (c) ¢ if, and only if,
for each L, (C)-chain A, e(p) = T for all A-evaluation e model of T'.
The issue of studying when a logic L. (C) is also complete with respect to the

class of standard L. (C)-chains (called standard completeness) or with respect to the
canonical L,(C)-chain (called canonical completeness) has been addressed in the
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literature for some logics L,. Héjek already proved in [Hajek, 1998a] the canonical
completeness of the expansion of Lukasiewicz logic with rational truth-constants
for finite theories. More recently, the expansions of Godel (and of some t-norm
based logic related to the nilpotent minimum t-norm) and of Product logic with
countable sets of truth-constants have been proved to be canonical complete for
theorems in [Esteva et al., 2006] and in [Savicky et al., 2006] respectively. A rather
exhaustive description of completeness results for the logics L. (C) can be found in
[Esteva et al., 2007a; Esteva et al., 2007b] and about complexity in [Hajek, 2006b].

One negative result for many of these logics (with the exception of Lukasiewicz
logic) is that they are not canonical complete for deductions from non-empty
theories. However, such canonical completeness can be recovered in some cases
(see e.g. [Esteva et al., 2007a)) when the one considers the fragment of formulas
of the kind

T =,

where ¢ is a formula without additional truth-constants. Actually, this kind of
formulas, under the notation as a pair (7, ), have been extensively considered
in other frameworks for reasoning with partial degrees of truth, like in Novak’s
formalism of fuzzy logic with evaluated syntax based on Lukasiewicz Logic (see
e.g. [Novak et al., 1999]), in Gerla’s framework of abstract fuzzy logics [Gerla,
2001] or in fuzzy logic programming (see e.g. [Vojtas, 2001]).

3.4 More complex residuated logics

Other interesting kinds of fuzzy logics are those expansions obtained by joining
the logics of different t-norms or by adding specific t-norm related connectives to
certain logics. In this section we describe some of them, in particular expansions
with Baaz’s A connective, expansions with an involutive negation, and the logics
LIT, LH% and PL combining connectives from Lukasiewicz and Product logics.

Logics with A Here below we describe La, the expansion of an axiomatic ex-
tension L of MTL with Baaz’s A connective. The intended semantics for the A
unary connective, introduced in [Baaz, 1996], is that Ay captures the crisp part of
a fuzzy proposition ¢ (similar to the core of a fuzzy set). This is done by extending
the truth-evaluations e on formulas with the additional requirement:

e(Ag@)z{ 1, ife(p)=1

0, otherwise

Therefore, for any formula ¢, Ap behaves as a classical (two-valued) formula. At
the syntactical level, axioms and rules of La are those of L plus the following
additional set of axioms:

(A1) Ap VvV -Agp,
(A2) A(p V) — (Ap V AY),
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(A3) Ap — o,
(Ad) Ap — AN,
(A5) A(p — ) — (Ap — AY).

and the Necessitation rule for A: from ¢ derive Ap!''. The notion of proof in La
is the usual one.

Notice that in general the local deduction theorem for MTL and its extensions
L fails for the logics La. Indeed, ¢ 1, Ay, but for each n it may be the case
Vo, " — Ap. Take, for example, a strict continuous t-norm #, hence isomorphic
to the product. Then for all 0 < z < 1, 2™ > 0. However, every logic La satisfies
another form of deduction theorem, known as [Hajek, 1998al:

TU{p}Fiff T - Ap — 1.

The algebraic semantics of La is given by La-algebras, i.e. L-algebras expanded
with a unary operator 9, satisfying the following conditions for all z,y:

(01) 6(z) vV —d(z) =1

)<z
<4(0(x)
=y) < (0(z) = 0(y))

Notice that in any linearly ordered La-algebra 6(z) =1 if x = 1, and 6(z) =0
otherwise. The notions of evaluation, model and tautology are obviously adapted
from the above case. Then the following is the general completeness results for
La logics [Hajek, 1998a; Esteva and Godo, 2001]: for each set of La-formulas T
and each La-formula ¢ the following are equivalent:

1. T |—LA (Y2
2. for each La-chain A and each A-model e of T', e(p) = 1,
3. for each La-algebra A and each A-model e of T', e(p) = 1.

Standard completeness for La logics have been proved in the literature whenever
the logic L has been shown to be standard complete, like e.g. it is the case for all
the logics listed in Table 3.

Logics with an involutive negation Basic strict fuzzy logic SBL was intro-
duced in [Esteva et al., 2000] as the axiomatic extension of BL by the single axiom
(PC) —(p A =), and SMTL in an analogous way as extension of MTL [H&jek,
2002]. Note that Gédel logic G and Product logic IT are extensions of SBL (and

11Note that this rule holds because syntactic derivation only preserves the maximal truth value,
contrary to Zadeh’s entailment principle
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thus of SMTL as well). In any extension of SMTL, the presence of the axiom (PC)
forces the negation — to be strict, i.e. any evaluation e model of (PC) one has

_ [ 1 ife(p)=0
e(me) = { 0, otherwise

This kind of “two-valued” negation is also known in the literature as Gddel nega-
tion. In the logics with Goédel negation, one cannot define a meaningful (strong)
disjunction V by duality from the conjunction &, i.e. to define Vi) as —(—p&—1),
as well as a corresponding S-implication ¢ —g 1 as V. It seems therefore nat-
ural to introduce in these logics an involutive negation ~ as an extra connective.
To do so, and noticing that a suitable combination of both kinds of negations
behaves like the A connective, i.e.

1, ife(p)=11 _
()= { 0, otherwise } =e(Ayp),

the logic SBL.., where the A connective is in fact a derivable connective (A is
- ~ ) was introduced in [Esteva et al., 2000] as an axiomatic extension of the
logic SBLa by the following two axioms:

(M) ~~p=0
(~2) Alp—=9) = (v =~ 9)

Axiom (~1) forces the negation ~ to be involutive and axiom (~2) to be or-
der reversing. Similar extensions have been defined for Gédel logic (G...), Product
logic (IL.) and SMTL (SMTL..).

Standard completeness for these logics was proved but, interestingly enough,
these two axioms are not enough to show completeness of SBL (II, SMTL, resp.)
with respect to SBL-algebras (II-algebras, SMTL-algebras resp.) on [0,1] ex-
panded only by the standard negation n(z) = 1 — x, one needs to consider all
possible involutive negations in [0,1], even though all of them are isomorphic.
This was noticed in [Esteva et al., 2000], and has been deeply studied by Cin-
tula et al. in [2006] where the expansions of SBL with an involutive negation are
systematically investigated. The addition of an involutive negation in the more
general framework of MTL has also been addressed by Flaminio and Marchioni in
[2006].

The logic LH%. LH% is a logic “putting Lukasiewicz and Product logics to-
gether”, introduced an studied in [Esteva and Godo, 1999; Montagna, 2000; Es-
teva et al., 2001 and further developed by Cintula in [2001a; 2001c; 2003; 2005b).
The language of the LII logic is built in the usual way from a countable set of
propositional variables, three binary connectives —, (Lukasiewicz implication), ®
(Product conjunction) and —y; (Product implication), and the truth constant 0.
A truth-evaluation is a mapping e that assigns to every propositional variable a
real number from the unit interval [0, 1] and extends to all formulas as follows:
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e(0)= 0, elp —r ) = min(1 —e(p) + e(¥), 1),
e(p O ) =e(p) - e(y), e(p —=nv) = { i&d))/e(gp), gtﬁéfviisgee(w) .

The truth constant 1 is defined as ¢ —p, ¢. In this way we have e(1) = 1 for any
truth-evaluation e. Moreover, many other connectives can be defined from those
introduced above:

Ly s @ —L0, -ny is ¢ —n0,
Ay I8 &l =1L Y), eV is p(re Aoy,
e®Y is pp —r Y, p& is  —p(-pe ® L),
po is  p&opy, e=9 is (p—=L V)& —L @),
Ap is -, Ve is -y,

with the following interpretations:
1, ife(p)=0
0, otherwise

e(p A y) = min(e(p), e(1)), e(p V) = max(e(p), e(¥)),

e(-rp) = 1—elp), e(-mp)
) = )

e(p @ w; = min(1, e(p) + e(¥)), e(w&wg = max(0, e(p) + e(y)) — 1),
p) = )

)

e(pov) = max(0,e(p) —e(y)),  e(e=v) =1—le(p) —e(¥)],
e(A {1, if e(p) = 1’ e(ch:{l’ if e(¢p) >0

, otherwise 0, otherwise
The logical system LII is the logic whose axioms are!?

(L) Axioms of Lukasiewicz logic (for —y,, &, 0);
(I1)  Axioms for product logic (for —,®,0);
(=) —ny —L Ly
(D) Alp = ¥) =g Alp = ¥)
(LI5)  »O0@Ox) =L (pOY)O(pOX)

and whose inference rules are modus ponens (for —) and necessitation for A:
from ¢ infer Ae.

The logic LH% is then obtained from LIT by adding a truth constant % together
with the axiom:

(L) 1=-,

m\»—A\

ObViously, a truth-evaluation e for LII is easily extended to an evaluation for

LIIL by further requiring e( ) 3

The notion of proof in LH7 is as usual and it is indeed strongly complete for
finite theories with respect to the given semantics. That is, if T" is a finite set of
formulas, then Ty 1 ¢ iff e(¢) =1 for any LH%—evaluation e model of T'.

2

It is interesting to remark that LIT and LH% are indeed very powerful logics. In-
deed LII conservatively extends Lukasiewicz, Product and Gédel logics (note that

12This definition, proposed in [Cintula, 2003], is actually a simplified version of the original
definition of LII given in [Esteva et al., 2001].
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Godel implication —¢ is also definable by putting ¢ —¢g ¥ as A(p — ) V ).
Moreover, as shown in [Esteva et al., 2001], rational truth constants 7 (for each
rational r € [0, 1]) are definable in LH% from the truth constant % and the connec-
tives. Therefore, in the language of LH% there is a truth-constant for each rational
in [0,1], and due to completeness of LII3, the following book-keeping axioms for
rational truth constants are provable:

(RLII1)  —,F
(RLTI3) TOS3

T—r, (RLI2) T—.5
7S, (RLII4) 7 —p 5

min(1,1—r + s),
T=pS,

where r =p s =1ifr < s, r =p s = s/r otherwise. Moreover, Cintula [2003]
shows (see also [Marchioni and Montagna, 2006]) that, for each continuous t-norm
x that is an ordinal sum of finitely many copies of Lukasiewicz, product and min-
imum t-norms, L, (the logic of the t-norm ) is interpretable in LH%. Indeed, he
defines a syntactical translation of L,-formulas into LHé—formulas7 say o — o,
such that L, proves ¢ if and only if LH% proves ¢’. Connections between the
logics LIT and II. (the extension of product logic IT with an involutive negation,
see above) have been also investigated in [Cintula, 2001c].

The predicate LIT and LH% logics have been studied in [Cintula, 2001a), showing
in particular that they conservatively extend Godel predicate logic.

To conclude, let us remark that the so-called LH%—algebras, the algebraic coun-
terpart of the logic LH%, are in strong connection with ordered fields. Indeed,
Montagna has shown [Montagna, 2000; Montagna, 2001], among other things,
that LH%-algebraS are substructures of fields extending the field of rational num-
bers. Morever, as recently shown in [Marchioni and Montagna, 2006; Marchioni
and Montagna, to appear|, that the theory of real closed fields is faithfully inter-
pretable in LH%. See also [Montagna and Panti, 2001; Montagna, 2005) for further
deep algebraic results regarding LII-algebras.

The logic PL. Starting from algebraic investigations on MV-algebras with addi-
tional operators by Montagna [2001; 2005], the logic PL, for Product-Lukasiewicz,
was introduced by Horéik and Cintula in [2004]. Basically, PL is an expansion of
Lukasiewicz logic by means of the product conjunction, and its language is built
up from three binary connectives, & (Lukasiewicz conjunction), — (Lukasiewicz
implication), ® (Product conjunction), and the truth constant 0. The axioms of
PL are those of Lukasiewicz logic, plus the following additional axioms:

(PL1) 9 © (¥&(x — 0)) < (v ©¥)&((¢p © x) — 0),

(
(PL3
(
(
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They also consider the logic PL’ as the extension of PL by the deduction rule:
(ZD) from —(p ® ), derive —p.

PL’ is shown to be standard complete with respect to the standard Lukasiewicz
algebra expanded with the product (of reals) operation (see also [Montagna, 2001]),
hence w. r. t. the intended semantics, while PL is not. In fact, it is the inference
rule (ZD) that makes the difference, forcing the interpretation of the product ®
connective to have no zero divisors. At the same time, in contrast to all the other
algebraic semantics surveyed so far, the class of algebras associated to the PL’
does not form a variety but a quasi-variety.

In [Horéik and Cintula, 2004], the authors also study expansions of these logics
by means of Baaz’s A connective and by rational truth constants, as well as their
predicate versions.

A logic which is very related to these systems is Takeuti and Titani’s logic [1992].
It is a predicate fuzzy logic based on the Gentzen’s system LJ of intuitionistic
predicate logic. The connectives used by this logic are just the connectives of
the predicate PL logic with a subset of rational truth-constants but Takeuti and
Titani’s logic has two additional deduction rules and 46 axioms and it is sound
and complete w.r.t. the standard PLa-algebra (cf. [Takeuti and Titani, 1992,
Th. 1.4.3]). In [Horéik and Cintula, 2004] it is shown it exactly corresponds to
the expansion of predicate PLa logic with truth-constants which are of the form
k/2™, for natural numbers k and n.

3.5 Further issues on residuated fuzzy logics

The aim in the preceding subsections has been to survey main advances in the
logical formalization of residuated many-valued systems underlying fuzzy logic in
narrow sense. This field has had a great development in the last 10-15 years, and
many scholars from different disciplines like algebra, logic, computer science or
artificial intelligence joined efforts. Hence, our presentation is not exhaustive by
far. A lot of aspects and contributions have not been covered by lack of space
reasons, although they deserve to be commented. At the risk of being again
incomplete, we briefly go through some of them in the rest of this subsection.

A. Other existing expansions and fragments of MTL and related logics

Hoop fuzzy logics: In [Esteva et al., 2003] the positive (falsehood-free) frag-
ments of BL and main extensions (propositional and predicate calculi) are ax-
iomatized and they are related 0O-free subreducts of the corresponding algebras,
which turn out to be a special class of algebraic structures known as hoops (hence
the name of hoop fuzzy logic). Similar study is carried for MTL and extensions,
introducing the related algebraic structures which are called semihoops. Issues of
completeness, conservativeness and complexity are also addressed. The class of
the so-called basic hoops, hoops corresponding to BLH, the hoop variant of BL,
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have an important role in the algebraic study of linearly ordered chains [Agliané
et al., to appear].

Rational Lukasiewicz logic and DMYV-algebras: A peculiar kind of ex-
pansion which allows the representation of rational truth-constants is given by the
indexRational Lukasiewicz logicRational Lukasiewicz logic RL introduced by Gerla
[2001b). RL is obtained by extending Lukasiewicz logic by the unary connectives
On, for each n € N, plus the following axioms:

(D1) 0P 7. Bonp « @ (D2) =0p0 ® —(0np® 7. BOnp).

where @ is Lukasiewicz strong disjunction. The algebraic semantics for RL is given
by DMV-algebras (divisible MV-algebras). A Lukasiewicz logic evaluation e into
the real unit interval is extended to the connectives d,, by e(d,¢) = e(¢)/n. In this
way one can define in RL all rationals in [0, 1]. RE was shown to enjoy both finite
strong standard completeness and Pavelka-style completeness (see [Gerla, 2001b]
for all details). In particular, Hajek’s Rational Pavelka logic can be faithfully
interpreted in RL.

Fuzzy logics with equality:  The question of introducing the (fuzzy) equality

predicate in different systems of fuzzy logic has been dealt with in several papers,
see e.g. [Liau and Lin, 1988; Bélohlavek, 2002c; Héjek, 1998a; Novik et al., 1999;
Novék, 2004; Bélohlavek and Vychodil, 2005] . Actually, in most of the works,
fuzzy equality is a generalization of the classical equality because it is subject to
axioms which are formally the same as the equality axioms in classical predicate
logic. Semantically, fuzzy equality is related to the characterization of graded
similarity among objects, with the meaning that the more similar are a couple of
objects, the higher is the degree of their equality.

B. About computational complexity

The issue of complexity of t-norm based logics has also been studied in a number of
papers starting with Mundici’s [1994] pioneering work regarding NP-completeness
of Lukasiewicz logic and flourishing during the nineties, with some problems still
left open. It has to be pointed out that the dichotomy of the SAT and TAUT
problems in classical logic, where checking the tautologicity of ¢ is equivalent to
check that —¢ is not satisfiable and vice-versa, is no longer at hand in many-valued
logics. Unlike in classical logic, for a many-valued semantics there need not be a
simple relationship between its TAUT and SAT problems. This is the reason why,
given a class IC of algebras of the same type, it is natural to distinguish the fol-
lowing sets of formulas (as suggested in [Baaz et al., 2002] for the SAT problems):

TAUTF = {¢ |VA € K,Vea,ea(p) =1}
TAUTS, = {¢ | VA € K,Vea,ea(p) > 0}

pos

SATF = {p | 3A € K,3ea,ealp) =1}
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SAT;%S ={p|JA e K,Tea,ea(p) >0}

The interested reader is referred to two excellent surveys on complexity results
and methods used: the one by Aguzzoli, Gerla and Hannikova [2005] concerning
a large family of propositional fuzzy logics (BL and several of its expansions) as
well as some logics with the connective A; and the one by Héjek’s [2005b] for the
case of prominent predicate fuzzy logics.

C. Weaker systems of fuzzy logic

Non commutative fuzzy logics:  Starting from purely algebraic motivations
(see [Di Nola et al., 2002]), several authors have studied generalizations of BL and
MTL (and related t-norm based logics) with a non-commutative conjunction &,
e.g. [Hajek, 2003a; Héjek, 2003b; Jenei and Montagna, 2003]. These logics have
two implications, corresponding to the left and right residuum of the conjunction.
The algebraic counterpart are the so-called pseudo-BL and pseudo-MTL algebras.
Interestingly enough, while there are pseudo-MTL algebras over the real unit in-
terval [0, 1], defined by left continuous pseudo-t-norms (i.e. operations satisfying
all properties of t-norms but the commutativity), there are not pseudo-BL alge-
bras, since continuous pseudo-t-norms are necessarily commutative. Still a weaker
fuzzy logic, the so-called flea logic is investigated in [Héjek, 2005c], which is a
common generalization of three well-known generalizations of the fuzzy (proposi-
tional) logic BL, namely the monoidal t-norm logic MTL, the hoop logic BHL and
the non-commutative logic pseudo-BL.

Weakly implicative fuzzy logics: Going even further on generalizing systems

of fuzzy logic, Cintula [2006] has introduced the framework of weakly implicative
fuzzy logics. The main idea behind this class of logics is to capture the notion of
comparative truth common to all fuzzy logics. Roughly speaking, they are logics
close to Rasiowa’s implicative logics [Rasiowa, 1974] but satisfying a proof-by-
cases property. This property ensures that these logics have a semantics based on
linearly ordered sets of truth-values, hence allowing a proper notion of comparative
truth. The interested reader is referred to [Behounek and Cintula, 2006b] where
the authors advocate for this view of fuzzy logic.

D. Functional representation issues

McNaughton famous theorem [McNaughton, 1951], establishing that the class of
functions representable by formulas of Lukasiewicz logic is the class of piecewise
linear functions with integer coefficients, has been the point of departure of many
research efforts trying to generalize it for other important fuzzy logics, i.e. trying to
describe the class of real functions which can be defined by the truth tables of for-
mulas of a given fuzzy logic. For instance we may cite [Gerla, 2000; Gerla, 2001a;
Wang et al., 2004; Aguzzoli et al., 2005; Aguzzoli et al., 2006] for the case of
Godel, Nilpotent Minimum and related logics, [Cintula and Gerla, 2004] for the
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case of product logic, [Montagna and Panti, 2001] for the case of the Lukasiewicz
expansions like LA, PLa, LII, LH% logics. It is interesting to notice that the
problem of whether the class of functions (on [0, 1]) defined by formulas of Prod-
uct Lukasiewicz logic PL (see Section 3.4) amounts to the famous Pierce-Birkhoff
conjecture: “Is every real-valued continuous piecewise polynomial function on real
affine n-space expressible using finitely many polynomial functions and the opera-
tions of (pointwise) supremum and infimum?” This has been actually proved true
for the case of functions of three variables, but it remains an open problem for the
case of more variables.

3.6 T-norm based fuzzy logic modelling of approximate reasoning

We have already referred in previous sections to the distinction between fuzzy
logic in a narrow sense and in a broad sense. In Zadeh’s opinion [1988], fuzzy logic
in the narrow sense is an extension of many-valued logic but having a different
agenda, in particular including the approximate reasoning machinery described in
Section 2 (flexible constraints propagation, generalized modus ponens, etc. ) and
other aspects not covered there, such as linguistic quantifiers, modifiers, etc. In
general, linguistic and semantical aspects are mainly stressed.

The aim of this section is to show that fuzzy logic in Zadeh’s narrow sense can
be presented as classical deduction in the frame of the t-norm based fuzzy logics
described in previous subsections, and thus bridging the gap between the contents
of Section 2 and Section 3.

In the literature one can find several approaches to cast main Zadeh’s approxi-
mate reasoning constructs in a formal logical framework. In particular, Novak and
colleagues have done much in this direction, using the model of fuzzy logic with
evaluated syntax, fully elaborated in the monograph [Novak et al., 1999] (see the
references therein and also [Dvoidk and Novék, 2004]), and more recently he has
developed a very powerful and sophisticated model of fuzzy type theory [Novak,
2005; Novék and Lehmke, 2006]. In his monograph, Héjek [1998a] also has a part
devoted to this task.

In what follows, we show a simple way of how to capture at a syntactical level,
namely in a many-sorted version of predicate fuzzy logic calculus, say MTLV,
some of the basic Zadeh’s approximate reasoning patterns, basically from ideas
in [Hajek, 1998a; Godo and Hajek, 1999]. It turns out that the logical structure
becomes rather simple and the fact that fuzzy inference is in fact a (crisp) deduc-
tion becomes rather apparent. The potential advantges of this presentation are
several. They range from having a formal framework which can be common or
very similar for various kinds of fuzzy logics to the availability of well-developed
proof theoretical tools of many-valued logic.

Consider the simplest and most usual expressions in Zadeh’s fuzzy logic of the
form

“ris A7,
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discussed in Section 2.2, with the intended meaning the variable x takes the value
in A, represented by a fuzzy set 4 on a certain domain U. The representation of
this statement in the frame of possibility theory is the constraint

(Vu) (e (u) < pa(w))

where 7, stands for the possibility distribution for the variable z. But such a
constraint is very easy to represent in MTLY as the

(Vo) (X (z) — A(z))

(Caution!: do not confuse the logical variable x in this logical expression from the
linguistic (extra-logical) variable z in “z is A”) where A and X are many-valued
predicates of the same sort in each particular model M. Their interpretations
(as fuzzy relations on their common domain) can be understood as the member-
ship function pa : U — [0,1] and the possibility distribution m, respectively.
Indeed, one can easily observe that || (Vz)(X(x) — A(x))|lm= 1 if and only if
| X ()| ar,e<||A(z)]|as,e, for all x and any evaluation e. From now on, variables
ranging over universes will be xz,y; “x is A” becomes (Va)(X (z) — A(z)) or just
X C A;if z is 2-dimmensional variable (x,y), then an expression “z is R” becomes
(Vx,y)(Z(x,y) — R(z,y)) or just Z C R.

In what follows, only two (linguistic) variables will be involved z,y and z =
(z,y). Therefore we assume that X,Y (corresponding to the possibility distribu-
tions 7, and m,) are projections of a binary binary fuzzy predicate Z (correspond-
ing to the joint possibility distribution 7 ,). The axioms we need to state in order
to formalize this asumption are:

iz (Vo,y)(Z(z,y) — X(2)) & (Va,y)(Z(2,y) = Y(y))
2: (Vo)(X(x) = () Z(x,y)) & (Vy)(Y(y) — Gx)Z(x,y))

Condition IT1 expresses the monotonicity conditions 7, ,, (u,v) < 7, (u) and g, (u, v)
< 7y (v), whereas both conditions IT1 and II2 used together express the marginal-
ization conditions g (u) = sup,ms (v, v) and m,(v) = sup,my 4 (u,v). These can
be equivalently presented as the only one condition Proj, as follows:

Proj: (Va)(X(z) = (3y)Z(z,y)) & (Vy)(Y(y) = Bx)Z(z,y))

Next we shall consider several approximate reasoning patterns described in Sec-
tion 2, and for each pattern we shall present a corresponding tautology and its
derived deduction rule, which will automatically be sound.

1. Entailment Principle: From “x is A” infer “x is A*”, whenever pa(u) <
wax(u) for all .

Provable tautology:
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(ACA") - (X CA— X CAY
Sound rule:
ACA* XCA
X C A
2. Cylindrical extension: From “z is A” infer “(z,y) is AT”, where p4+ (u,v) =
14 (u) for each v.

Provable tautology:
Il — [(X € A) = ((Vay)(AF (z,y) < A(z)) — (Z € AY))]
Sound rule:

I, X C A, (Vay)(A* (2,y) < Ax))
Z C A+

3. min—Combination: From “r is A;” and “x is Ay” infer “z is A1 N As”, where
HAINA, (u) = min(MAl (u)a KA, (u))

Tautology:

Rule:
X CA,LXCA

X C (A1 N Ag)
where (A1 A Ag)(z) is an abbreviation for A;(x) A Ax(z).

4. Projection: From “(x,y)is R” infer “y is Ry”, where ug, (y) = sup,, pr(u,v)
for each v.

Provable tautology:

2 — (2 € R) — (Vy)(Y(y) — (F2)R(z,y)))
Sound rule:
2, ZCR
(Vy)(Y(y) — (B2)R(z,y))
Note that the formalization of the maz—min composition rule (from “z is A” and

“(z,y) is R” infer “y is B”, where ip(y) = sup, min(ia(u), jir(u, v)))

Cond, Proj, (X C A),(Z C R)
Y CB ’

where Cond is the formula (Vy)(B(y) = (3z)(A(x) A R(x,y))), is indeed a derived
rule from the above ones.

More complex patterns like those related to inference with fuzzy if-then rules
“if z is A then y is B” can also be formalized. As we have seen in Section 2, there
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are several semantics for the fuzzy if-then rules in terms of the different types
constraints on the joint possibility distribution 7, , it may induce. Each particular
semantics will obviously have a different representation. We will describe just a
couple of them.

Within the implicative interpretations of fuzzy rules, gradual rules are inter-
preted by the constraint 7, ,(u,v) < A(u) = B(v), for some residuated impli-
cation =. According to this interpretation, the folllowing is a derivable (sound)

rule
Cond, Proj, X CA*, ZCA— B

Y C B* ’
where (A — B)(z,y) stands for A(z) — B(y) and Cond is (Vy)[B*(y) = (3z)(A*(x)
A(A(z) — B(y)))]- If one wants to strengthen this rule as to force to derive
(Vy)(B*(y) = B(y)) when adding the condition (Vz)(A*(x) = A(x)) to the premises,
then one has to move to another generalized modus ponens rule that is also deriv-
able

Cond, 112", X CA*, ZC A— B
Y C B* ’

where Cond is now (Vy)(B*(y) = (3x)[A*(z) & (A(x) — B(y)))] and where condi-
tion 12" is (Vy)(Y(y) — (F2)(X(z) & Z(z,vy))), a slightly stronger condition than
I12.

Finally, within the conjunctive model of fuzzy rules, where a rule “if z is A
then y is B” is interpreted by the constraint 7, ,(u,v) > A(u) A B(v), and an
observation “z is A*” by a positive constraint w,(u) > A*(u), one can easily
derive the Mamdani model (here with just one rule)

Cond, Proj, X D A*, Z 2O ANB
Y D B* ’

where Cond is (Vy)[B*(y) = (3z)(A*(z) A A(z)) A B(y)]. Interestingly enough, if
the observation is instead modelled as a negative constraint 7, (u) < A*(u), then
one can derive the following rule,

Cond, Proj, (3z)X(x), X CA*, ZD AANB
Y D B* ’

where Cond is now (Vy)[B*(y) = (Vz)(A*(z) — (A(z)) A B(y))], which is in
accordance with the discussion in Section 2.5.

3.7 Clausal and resolution-based fuzzy logics

S-fuzzy logics. Another family of fuzzy logics, very different from the class
of logics presented in the previous subsections, can be built by taking as basic
connectives a conjunction M, a disjunction LI and a negation —, rather than a con-
junction and a (residuated) implication. These connectives are to be interpreted
in [0,1] by the triple (max, min, 1 — -), or more generally by a De Morgan triple
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(T, S, N) where T is a t-norm, N a strong negations function and S is the N-dual
t-conorm, i.e. S(x,y) = N(T(N(z),N(y)). See [Klement and Navara, 1999] for a
comparison of these two fuzzy logic traditions.

Butnariu and Klement [1995] introduced the so-called S-fuzzy logics, associated
to the family of Frank t-norms. This is a parametrized family of continuous t-
norms {7 }xe[o,00], Strictly decreasing with respect to the parameter A, and which
has three interesting limit cases A = 0, 1, co corresponding to the three well known
t-norms: Ty = min, 71 = *p (product t-norm) and 7o, = *f, (Lukasiewicz t-norm).
For A € (0, 00),

(A" =1\ —1)

Tx(z,y) = logy(1 + N1

)

is a t-norm isomorphic to .

The language of S-fuzzy logics L is built over a countable set of propositional
variables and two connectives M and —. Disjunction LI and implication — are
defined conenctives, p U is =(—p M=) and ¢ — ¢ is =(p M —). Semantics
of L is defined by evaluations of propositonal variables into [0, 1] that extend to
arbitrary propositions by defining

e(p M) =Tx(e(p), e(v)), e(-p) =1—e(p).

Notice that the interpretation of the implication is given by

6(90 - "/}) = ISA (6(90)7 6(’(/}))7

where Ig, (x,y) = SA(1 — x,y) is an S-implication (see Section 2.1), with Sy being
the dual t-conorm of 7. This is the main reason why these logics are called S-
fuzzy logics. When A\ = 0, Ly is the so-called max-min S-logic, while for A = oo,
Lo corresponds to Lukasiewicz logic L.

In S-fuzzy logics L for A # oo there are no formulas that take the value 1 under
all truth-evaluations, but on the other hand, the set of formulas which are always
evaluated to an strictly positive value is closed by modus ponens. This leads to
define that a formula ¢ is a L£y-tautology whenever e(y) > 0 for all £-evaluation
e. Then the authors prove the following kind of completeness: the set of L-
tautologies coincide with classical (two-valued) tautologies. This is in accordance
with the well-known fact that, in the frame of Product logic IT (and more generally
in SMTL), the fragment consisting of the double negated formulas ——¢ is indeed
equivalent to classical logic.

Fuzzy logic programming systems. Many non-residuated logical calculi
that have early been developed in the literature as extensions of classical logic
programming systems are related to some form of S-fuzzy logic, and a distinguish-
ing feature is that the notion of proof is based on a kind of resolution rule, i.e.
computing the truth value |4 U x|| from ||¢ U || and ||[-¢ U x]|-

The first fuzzy resolution method was defined by [Lee, 1972] and it is related
to the max-min S-fuzzy logic mentioned above. At the syntactic level, formulas
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are classical first-order formulas (thus we write below A, and V instead of M and
U resp.) but at the semantic level, formulas have a t¢ruth value which may be
intermediary between 0 and 1. An interpretation M is defined by an assignment
of a truth value to each atomic formula, from which truth values of compound
formulas are computed in the following way:

=@l = 1= llellm,
lp Adllm = min([elm, [¢]lnm),
loVlim = max(llella, [[¢]m)-

The notions of validity, consistency and inconsistency are generalized to fuzzy
logic: Let ¢ be a fuzzy formula. ¢ is valid iff ||p|lm > 0.5 for each interpretation
M, i.e the set of designated truth values is [0.5,1]. ¢ is inconsistent iff ||¢||m < 0.5
for each interpretation M. And, ¢ entails another formula ¢, denoted ¢ = v, if
lv]lm > 0.5 for each interpretation M such that ||p|m > 0.5. [Lee and Chang,
1971] proved that a fuzzy formula is valid (respec. inconsistent) iff the formula is
classically valid (respectively, inconsistent), i.e. considering the involved predicates
and propositions as crisp; and that ¢ = v in fuzzy logic iff ¢ = v in classical
logic. The resolvent of two clauses C; and C5 is defined as in classical first-order
logic. [Lee, 1972] proved that provided that C; and Cy are ground clauses, and if
min(||C1|], [|C2]|) = a > 0.5 and max(||C1 |, [|C2]|) = b, then a < ||R(C1,Ca)|| < b
for each resolvent R(C7,C3) of C; and Cy (see the discussion in section 2.3).
This is generalized to resolvents of a set of ground clauses obtained by a number
of successive applications of the resolution principle. Hence, Lee’s resolution is
sound. This result also holds for intervals of truth values with a lower bound
greater than 0.5. Lee’s proof method does not deal with refutation, hence it is not
complete (since resolution is not complete for deduction). Many subsequent works
have been based on Lee’s setting. In [Shen et al., 1988; Mukaidono et al., 1989
Lee’s resolution principle was generalized by introducing a fuzzy resolvent. Let C
and Cy be two clauses of fuzzy logic and let R(C7,C3) be a classical resolvent of
Cq and Cs. Let [ be the literal on the basis of which R(C1, Cs) has been obtained.
Then, the fuzzy resolvent of C; and Cy is R(C1,Cs) V (I A—=l) with the truth value
max(||R(Cy, Ca) ||, ||(IA-L)]). Tt is proved that a fuzzy resolvent is always a logical
consequence of its parent clauses, which generalizes Lee’s result. See also [Chung
and Schwartz, 1995] for a related approach.

One of the drawbacks of these and other early approaches is that they are based
on the language of classical logic, and thus, does not make it possible to deal with
intermediate truth values at the syntactic level. Nevertheless, the trend initiated
by [Lee, 1972] blossomed in the framework of logic programming giving birth to a
number of fuzzy logic programming systems. An exhaustive survey on fuzzy logic
programming before 1991 is in [Dubois et al., 1991c, Sec. 4.3]. Most of them are
mainly heuristic-based and not with a formal logical background. This is in part
due to the difficulty of adapting resolution-based proof methods to fuzzy logics with
residuated implication, with the exception of Lukasiewicz logic (whose implication
is also an S-implication). Indeed, a resolution rule for Lukasiewicz-based logics has
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been proposed in [Thiele and Lehmke, 1994; Lehmke, 1995; Klawonn and Kruse,
1994; Klawonn, 1995]. Lehmke and Thiele defined a resolution system for so-called
weighted bold clauses. Clauses are of the form C' = [ U---Ul,, where [; are literals
in classical way (they consider only propositional logic) and U is the Lukasiewicz
(strong) disjunction (i.e. ||Cy U Cs|| = min(||Cy]| + ||C2],1)). They introduce the
resolution rule as follows:

T+ C1, and p occurs in Cy
T F C5, and —p occurs in Cy

TH((CruC)\p\~p

where \ denotes the operation of omitting the corresponding literal. Then, they
get the following result:

If THC then T |= C, and if T has no 1-model then 7'+ L.

Klawonn and Kruse [1994] turned to predicate fuzzy logic in the setting of finitely-
valued Lukasiewicz logics. They introduce special implication clauses of the form
(Vz1...2,)(p = A) and (Va;...2,)p, where A is an atomic formula and ¢ con-
tains only “and” and “or” types of connectives and no quantifiers. In this frame-
work they define a prolog system (called LULOG) with a complete proof procedure
for deriving the greatest lower bound for the truth-value of implication clauses,
and based on the following graded resolution rule: from (—pU, «) and (- Uy, 5)
derive (—p U x, max(a + 3 — 1,0).

Soundness and completeness results can be also found in the literature for
fuzzy prolog systems where rules (without negation) are interpreted by as for-
mulas p1& ... &p, — ¢ of genuine residuated logic. For instance we may cite
[Mukaidono and Kikuchi, 1993] for the case of Gddel semantics, and [Vojtas, 1998]
for the general case where & and — are interpreted by a left-continous t-norm
and its residdum. Moreover, Vojt4s [2001] presented a soundness and complete-
ness proof for fuzzy logic programs without negation and with a wide variety of
connectives, and generalized in the framework of multi-adjoint residuated lattices
by Medina et al. [2001].

3.8 Graded consequence and fuzzy consequence operators

The systems of t-norm-based logics discussed in the previous sections aim at for-
malizing the logical background for fuzzy set based approximate reasoning, and
their semantics are based on allowing their formulas to take intermediary degrees
of truth. But, as already pointed out in Section 3.3, they all have crisp notions
of consequence, both of logical entailment and of provability. It is natural to ask
whether it is possible to generalize these considerations to the case that one starts
from fuzzy sets of formulas, and that one gets from them, as logical consequence,
fuzzy sets of formulas.

One form of attacking this problem is by extending the logic with truth-constants
as described in Section 3.3. However, there is also another approach, more alge-
braically oriented toward consequence operations for the classical case, originating
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from Tarski [1930], see also [Wéjcicki, 1988]. This approach treats consequence op-
erations as closure operators. Many works have been devoted to extend the notions
of closure operators, closure systems and consequence relations from two-valued
logic to many-valued / fuzzy logics.

Actually, both approaches have the origin in the work of Pavelka. Although one
of the first works on fuzzy closure operators, was done by Michalek [1975] in the
framework of Fuzzy Topological Spaces, the first and best well-known approach to
fuzzy closure operators in the logical setting is due to Pavelka [1979] and the basic
monograph elaborating this approach is Novéak, Perfilieva and Mo¢koi’s [1999]. In
this approach, closure operators (in the standard sense of Tarski) are defined as
mappings from fuzzy sets of formulas to fuzzy sets of formulas. In some more detail
(following [Gottwald and Hajek, 2005]’s presentation), let £ be a propositional
language, P(L) be its power set and F (L) the set of L-fuzzy subsets of £, where
L= (L,x,=,AV,<,0,1) is a complete MTL-algebra. Propositions of £ will be
denoted by lower case letters p,q, ..., and fuzzy sets of propositions by upper case
letters A,B, etc. For each A € F(L) and each p € L, A(p) € L will stand for the
membership degree of p to A. Moreover, the lattice structure of L induces a related
lattice structure on F(£), (F(£),N,U, C,0,1), which is complete and distributive
as well, where N, U are the pointwise extensions of the lattice operations A and Vv
to F(L), i.e.

(ANB)(p) = A()AB(p),forallpeL
(AU B)(p) A(p) vV B(p), for all p € L,

and where the lattice (subsethood) ordering and top and bottom elements are
defined respectively by

ACB iff A(p)<B(p) forallpe L

O(p) =0 and 1(p)=1,forallpe L.

For any k € L, we shall also denote by k the constant fuzzy set defined by k(p) = k
for all p € L. The Pavelka-style approach is an easy matter as long as the semantic
consequence is considered. An L-evaluation e is a model of a fuzzy set of formulas
A € F(L) if and only if

A(p) < e(p)

holds for each formula p. This leads to define as semantic consequence of A the
following fuzzy sets of formulas:

c*m™(A)(p) = ﬂ{e(p) | e model of A}, for each p € L

For a syntactic characterization of this consequence relation it is necessary to
have some logical calculus K which treats formulas of the language together with
truth degrees. So the language of this calculus has to extend the language of the
basic logical system by having also symbols for the truth degrees (truth-constants)
denoted 7 for each r € L, very similar to what has been described in Section 3.3.
Once this is done, one can consider evaluated formulas, i.e. pairs (7, p) consisting of



84 Didier Dubois, Francesc Esteva, Lluis Godo, Henri Prade

a truth constant and a formula. Using this notion, one can understand in a natural
way each fuzzy set of formulas A as a (crisp) set of evaluated formulas {(A(p),p) |
p € L}. Then, assuming the calculus K has a suitable notion of derivation for
evaluated formulas b, then each K-derivation of an evaluated formula (7, p) can
be understood as a derivation of p to the degree r € L. Since p can have multiple
derivations, it is natural to define the provability degree of p as the supremum
of all these degrees. This leads to the following definition of fuzzy syntactical
consequence of a fuzzy set of formulas A:

cv(A)(p) = J{r € LI {(A(q),q) | ¢ € L} Fic (F.p)}

This is in fact an nfinitary notion of provability, that can be suitably handled
by Lukasiewicz logic L since it has their truth-functions continuous. Indeed, by
defining the derivation relation Fx from the set of axioms of L written in the form
(1, ), and having as inference rule the following kind of evaluated modus ponens

(7,p) (5,p — q)
(T*s,q)

)

where * is Lukasiewicz t-norm, it can be shown (see e.g. [Novdk et al., 1999]) that
one gets the following strong completeness result:

> (A)(p) = C*"(A)(p)

for any formula p and any fuzzy set of formulas A, that establishes the equivalence
between the semantical and syntactical definitions of the consequence operators in
the setting of Lukasiewicz logic.

Thus Pavelka’s fuzzy consequence operators map each fuzzy set of formulas A
(i-e. each set of evaluated formulas) to a fuzzy set of formulas denoted generically
C(A) (i.e. a set of evaluated formulas) that corresponds to the set of evaluated
formulas that are consequences of the initial set represented by A. And this
mapping fulfills the properties of a fuzzy closure operator as defined by Pavelka
[1979]. Namely, a fuzzy closure operator on the language £ is a mapping C :
F(L) — F(L) fulfilling, for all A, B € F(L), the following properties:

C1) fuzzy inclusion: A C C(A)
C?2) fuzzy monotony: if A C B then C(A) C C(B)
C3) fuzzy idempotence: C(C(A)) C C(A).

This generalization of the notion of consequence operators leads to study closure
operators and related notions like closure systems and consequence relations in
other, more general fuzzy logic settings. In the rest of this section we review some
of the main contributions.

Gerla [1994a] proposes a method to extend any classical closure operator C
defined on P(L), i.e. on classical sets of formulas, into a fuzzy closure operator
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C* defined in F(L), i.e. on fuzzy sets of formulas. This approach is further
delevoped in [Gerla, 2001, Chap. 3]. In the following, we assume F (L) to be
fuzzy sets of formulas valued on a complete linearly-ordered Gédel BL-algebra L,
i.e. a BL-chain (L, A,V,®,=,0,1) where ® = A. Then, given a closure operator
C : P(L) — P(L), the canonical extension of C' is the fuzzy operator C* :
F(L) — F(L) defined by

C*(A)(p) =sup{a e L |pe C(Ad)},

where A, stands for the a-cut of A, i.e. Ay, = {p € L | A(p) > a}. According
to this definition, the canonical extension C* is a fuzzy closure operator such
that C*(A)(p) = 1 if p € C(0) and C*(A)(p) > sup{A(@1) A... AN Algn) | p €
CH{aq1s---,qn})} If C is compact, then the latter inequality becomes an equality.
It also follows that a fuzzy set A is closed by C* then any a-cut of A is closed
by C. Canonical extensions of classical closure operators were characterized in
[Gerla, 2001] in the following terms: a fuzzy closure operator C' is the canonical
extension of a closure operator if, and only if, for every meet-preserving function

f: L — L such that f(1) =1, if C(A) = A then C(f o A) = f o A. In other
words, this characterization amounts to requiring that if A belongs to the closure
system defined by C, then so does f o A.

As regards the generalization of the notion of consequence relation, Chakraborty
[1988; 1995] introduced the notion of graded consequence relation as a fuzzy relation
between crisp sets of formulas and formulas. To do this, he assumes to have
a monoidal operation ® in L such that (L,®,1,<,=) is a complete residuated
lattice. Then a fuzzy relation gc : P(L) x L — L is called a graded consequence
relation by Chakraborty if, for every A, B € P(L) and p,q € L, gc fulfills:

gcl) fuzzy reflexivity: ge(A,p) =1 for allp € A
9¢2) fuzzy monotony: if B C A then ge(B,p) < ge(A, p)
g9e3) fuzzy cut: [inf,ep ge(A, q)] ® ge(AU B,p) < ge(A,p).*3

Links between fuzzy closure operators and graded consequence relations were ex-
amined by Gerla [1996] and by Castro Trillas and Cubillo [1994]. In particular
Castro et al. point out that several methods of approximate reasoning used in
Artificial Intelligence, such as Polya’s models of plausible reasoning [Polya, 1954]
or Nilsson’s probabilistic logic [Nilsson, 1974], are not covered by the formalism of
graded consequence relations, and they introduce a new concept of consequence
relations, called fuzzy consequence relations which, unlike Chakraborty’s graded
consequence relation, apply over fuzzy sets of formulas. Namely, a fuzzy relation
fe: F(L) x L+ L is called a fuzzy consequence relation in [Castro et al., 1994]
if the following three properties hold for every A, B € F(L) and p,q € L:

fel) fuzzy reflexivity: A(p) < fe(A,p)

3By residuation, this axiom is equivalent to [infse g gc(A, q)] < ge(A U B, p) = gc(A, p)
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fe2) fuzzy monotony: If B C A then fe(B,p) < fc(A,p)
fe3) fuzzy cut: if for all p, B(p) < fc(A,p), then for all g, fe(AUB,q) < fc(4,q)

However, it is worth noticing that fuzzy consequence relations as defined above,
when restricted over crisp sets of formulas, become only a particular class of graded
consequence relations. Namely, regarding the two versions of the fuzzy cut prop-
erties, (gc3) and (fe3), it holds that for A, B € P(L), if B(p) < fc(A,p) for all
p € L, it is clear that infyep fe(4,q) = 1.

Let us point out that, in the classical setting, there are well known relationships
of interdefinability among closure operators, consequence relations and closure
systems. In the fuzzy framework, fuzzy closure operators and fuzzy consequence
relations are related in a analogous way, as proved in [Castro et al., 1994]:

e if C'is a fuzzy closure operator then fe, defined as fc(A,p) = C(A)(p), is a
fuzzy consequence relation.

o if fcis a fuzzy consequence relation then C, defined as C'(A) = fe(A,-), is
a fuzzy closure operator.

Therefore, via these relationships, the fuzzy idempotence property (6’3) for clo-
sure operators and the fuzzy cut property (fc3) for consequence relations become
equivalent.

In the context of MTL-algebra L = (L, A, V,®,=-,0, 1), using the notation of
closure operators and the notion of degree of inclusion between L-fuzzy sets of
formulas defined as as

[A Cg B] = inf A(p) = B(p),
peL
the relation between Chakraborty ’s graded consequence and Castro et. al.’s fuzzy
consequence relation becomes self evident. As already mentioned, the former is
defined only over classical sets while the latter is defined over fuzzy sets, but both
vield a fuzzy set of formulas as output. Nevertheless, having this difference in
mind, the two first conditions of both operators become syntactically the same as
C1 and C2 of Pavelka’s definition of fuzzy closure operators while the fuzzy cut
properties (the third ones) become very close one to another:

ge3) fuzzy cut: ([B Cg C(A)]® C(AUB)) C C(A),
where [B Cg C(A)] = infyep C(A)(q) (recall that B is a classical set).

fe3) fuzzy cut: if B C C(A) then C(AU B) C C(A)

In [Rodriguez et al., 2003] a new class of fuzzy closure operators is introduced,
the so-called implicative closure operators, as a generalization of Chakraborty’s
graded consequence relations over fuzzy sets of formulas. The adjective implicative
is due to the fact that they generalize the Fuzzy Cut property (gc¢3) by means of
the above defined degree of inclusion, which in turn depends on the implication
operation = of the algebra L. More precisely, a mapping C' : F(L) — F(L) is
called an implicative closure operator if, for every A, B € F(L), C tulfills:
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C1) fuzzy inclusion: A C C(A)
C?2) fuzzy monotony: If B C A then C(B) C C(A)
C3) fuzzy cut'* [B Eg C(A)] < [C(AU B) Cg C(A)]

The corresponding implicative consequence relation, denoted by I, is defined as
I.(A,p) = C(A)(p). The translation of the properties of Implicative closure oper-
ators to implicative consequence relations read as follows:

icl) fuzzy reflexivity: A(p) < I.(A,p)

ic2) fuzzy monotony: If B C A then ic(B,p) < I.(A,p)

ic3) fuzzy cut: [BCg C(A)] < I.(AUB,p) = I.(4,p).

Now, it is easy to check that the restriction of implicative consequence relations
over classical sets of formulas are exactly Chakraborty’s graded consequence rela-
tions, since if B is a crisp set, [B Cg C(A)] = infyep I.(A,p). On the other hand,
fuzzy consequence relations are implicative as well, since property (ic3) clearly im-
plies (fe3). Therefore, implicative consequence relations generalize both graded
and fuzzy consequence relations.

The relationship of implicative consequence operators to deduction in fuzzy log-
ics with truth constants (as reported in Section 3.3) is also addressed in [Rodriguez
et al., 2003]. An it turns out that, although implicative closure operators are very
general and defined in the framework of BL-algebras, strangely enough, they do
not capture graded deduction (Pavelka-style) in any of the extensions of BL, except
for Godel’s logic.

Belohlavek [2001; 2002a] proposes yet another notion of closure operator over
fuzzy sets with values in a complete residuated lattice L, with the idea of capturing
what he calls generalized monotonicity condition that reads as ““if A is almost a
subset of B then the closure of A is almost a subset of the closure of B”. Using the
degree of inclusion defined before!'®, for every order filter K of L, a new closure
operator is defined as follows. An Lg-closure operator on F(L) is a mapping
C: F(L) — F(L) satisfying for all A, A1, Ay € F(L) the conditions:

(B1) AC C(A)
(B2) [A; Cg As] < [C(A1) Eg C(As)] whenever [A; Cg As] € K.

(B3) C(A) = C(C(4))

14The original and equivalent presentation of this property in [Rodriguez et al., 2003] is [BCg
C(A)] ® C(AU B) C C(A), directly extending (g.3).

15 Actually, in Belohldvek’s paper it is considered as a fuzzy relation denoted as S(A1, Aa),
instead of [A1 Cg A2] used above.
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It is clear that for L = {0, 1}, Ly;}-closure operators are classical closure operators
and for L = [0, 1], Ly1}-closure operators are precisely the fuzzy closure operators
studied by Gerla.

In fact, although introduced independently, this notion is very close to implica-
tive closure operators. Indeed, it is shown in [Bélohldvek, 2001] that conditions
(B2) and (B3) can be equivalently replaced by the following condition:

(B4) [A; Cg C(Ag)] < [C(A1) Eg C(As)] whenever [A; Eg C(A4s)] € K.

Notice the similarity between (B4) and (C3). Indeed, when K = L, (C3) alone
is slightly stronger than (B4), this shows that in that case implicative closure
operators are L g-closure operators. But in [Rodriguez et al., 2003] it is proved that
in the presence of (C1) and (C2), (C3) is actually equivalent to (B4). Therefore,
when K = L, both implicative operators and L -closure operators are exactly the
same, as also witnessed by the very similar characterizations of these two kinds of
fuzzy closure operators provided in [Rodriguez et al., 2003] and [Bélohlavek, 2001;
Bélohlavek, 2002a] in terms of their associated fuzzy closure systems.

The study of the relationships between fuzzy closure operators and fuzzy sim-
ilarities and preorders have also received some attention in the literature. In
classical logic it is clear that the relation R(p,1) iff ¢ F 1 defines a preorder in
the set of formulas and E(p, ) = R(1,9) A R(p, 1) defines and equivalence rela-
tion. This is not the case in the fuzzy setting, but there exist some relations that
have been analyzed in several papers, e.g. [Castro and Trillas, 1991; Gerla, 2001;
Rodriguez et al., 2003; Elorza and Burillo, 1999; Bélohlavek, 2002a).

Finally, let us briefly comment that in the literature, different authors have
studied the so-called fuzzy operators defined by fuzzy relations. Given a L-fuzzy
relation R : £ x L —— L on a given logical language L, the associated fuzzy
operator Cr over F(L) is defined by:

Cr(A)(q) = Ve {Ap) @ R(p,q)}

for all A € F(L), that is Cr computes the image of fuzzy sets by sup —® compo-
sition with R. Properties of these operators have been studied for instance when R
is a fuzzy preorder [Castro and Trillas, 1991] or when is a fuzzy similarity relation
[Castro and Klawonn, 1994; Esteva et al., 1998]. A special class of fuzzy operators
appearing in the context of approximate reasoning patterns has been studied by
Boixader and Jacas [Boixader and Jacas, 1998]. These operators, called exten-
sional inference operators, are required to satisfy a extensionality condition which
is very similar to condition (B2) above, and they can be associated to particular
models of fuzzy if-then rules.

3.9 Concluding remarks: what formal fuzzy logic is useful for?

From the contents of the section it will probably become clear that the concept
of fuzzy logic, even understood as a formal system of many-valued logic, admits
of multiple formalizations and interpretations. This may be felt as a shortcoming
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but it can also be thought as an indication of the richness and complexity of the
body of existing works. It may be particularly interesting for the reader to consult
a recent special issue [Novak, 2006] of the journal Fuzzy Sets and Systems devoted
to discuss the question of what fuzzy logic is. So far no definitive answer exists.

The other important conceptual question is: what formal fuzzy logic is useful
for?. The use of fuzzy logic (in narrow sense) to model linguistic vagueness would
seem to be the most obvious application, however it is not generally accepted yet
within the philosophic community. In fact vagueness often refers to semantic am-
biguity and this is often confused with the gradual nature of linguistic categories.
Fuzzy logic clearly accounts for the latter, but it is true as well that linguistic
categories can be both gradual and semantically ambiguous. Also, fuzzy logic is
not often used for knowledge representation in Artificial Intelligence (AI) because
of the lack of epistemic concepts in it, and because there is a strong Boolean logic
tradition in AI. However, introducing many-valuedness in Al epistemic logics can
be handled in fuzzy logic as explained in next section. Fuzzy logic may prove on
the other hand to be very useful for the synthesis of continuous functions, like
Karnaugh tables were used for the synthesis of Boolean functions. This prob-
lem has no relationship to approximate reasoning, but this topic is close to fuzzy
rule-based systems used as neuro-fuzzy universal approximators of real functions.

New uses of first order logic related to the Semantic Web, such as description
logics, can also benefit from the framework of fuzzy logic, so as to make formal
models of domain ontologies more flexible, hence more realistic. This subject-
matter may well prove to be a future prominent research trend, as witnessed
by the recent blossoming of publications in this area, briefly surveyed below..
Description logics [Baader et al., 2003], initially named “terminological logics”,
are tractable fragments of first-order logic representation languages that handle
the notions of concepts (or classes), of roles (and properties), and of instances or
objects, thus directly relying at the semantic level on the notions of set, binary
relations, membership, and cardinality. They are especially useful for describing
ontologies that consist in hierarchies of concepts in a particular domain.

Since Yen’s [1991] pioneering work, many proposals have been made for intro-
ducing fuzzy features in description logic [Tresp and Molitor, 1998; Straccia, 1998;
Straccia, 2001; Straccia, 2006a), and in semantic web languages, since fuzzy sets
aim at providing a representation of classes and relations with gradual member-
ship, which may be more suitable for dealing with concepts having a somewhat
vague or elastic definition. Some authors have recently advocated other settings
for a proper handling of fuzzy concepts, such as the fuzzy logic BL [Héjek, 2005a;
Hajek, 2006a], or an approach to fuzzy description logic programs under the answer
set semantics [Lukasiewicz, 2006].

Moreover, some authors [Hollunder, 1994; Straccia, 2006b; Straccia, 2006¢] have
also expressed concern about handling uncertainty and exceptions in description
logic. Hollunder [1994] has introduced uncertainty in terminological logics using
possibilistic logic (see Section 4.1). Recently, Dubois, Mengin and Prade [2006]
have discussed how to handle both possibilistic uncertainty and fuzziness prac-
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tically in description logic (by approximating fuzzy classes by finite families of
nested ordinary classes).

4 FUZZY SET-BASED LOGICAL HANDLING OF UNCERTAINTY AND
SIMILARITY

Fuzzy logics as studied in the previous section can be viewed as abstract formal
machineries that can make syntactic inferences about gradual notions, as opposed
to classical logic devoted to binary notions. As such it does not contain any
epistemic ingredient, as opposed to Zadeh’s approximate reasoning framework.
Indeed, a fuzzy set, viewed as a possibility distribution, can model graded incom-
plete knowledge, hence qualifies as a tool for handling uncertainty that differs from
a probability distribution. However, it should be clear that a fuzzy set can capture
incomplete knowledge because it is a set, not because it is fuzzy (i.e. gradual).
Hence no surprise if some logics of uncertainty can be devised on the basis of
fuzzy set theory and the theory of approximate reasoning. This is naturally the
case of possibilistic logic and its variants, which bridge the gap with knowledge
representation concerns in artificial intelligence, such as non-monotonic reasoning.
The gradual nature of fuzzy sets also lead to logics of graded similarity. More-
over, being abstract machines handling gradual notions, fuzzy logic can embed
uncertainty calculi because belief is just another (usually) gradual notion. This
section surveys the application of fuzzy logic to current trends in reasoning about
knowledge and beliefs.

4.1 Possibilistic logic

Zadeh’s approach to approximate reasoning can be particularized to offer proper
semantics to reasoning with a set of classical propositions equipped with a complete
pre-ordering that enable reliable propositions to be distinguished from less reliable
ones. Conclusions are all the safer as they are deduced from more reliable pieces of
information. The idea of reasoning from sets of (classical) logic formulas stratified
in layers corresponding to different levels of confidence is very old. Rescher [1976]
proposed a deductive machinery on the basis of the principle that the strength of a
conclusion is the strength of the weakest argument used in its proof, pointing out
that this idea dates back to Theophrastus (372-287 BC)!6. However, Rescher did
not provide any semantics for his proposal. The contribution of the possibilistic
logic setting is to relate this idea (measuring the validity of an inference chain by
its weakest link) to fuzzy set-based necessity measures in the framework of Zadeh
[1978a]’s possibility theory, since the following pattern, first pointed out by Prade
[1982], then holds

N(=pVq) > a and N(p) > f imply N(g) > min(«, 3),

16 A disciple of Aristotle, who was also a distinguished writer and the creator of the first botanic
garden!



Fuzzy Logic 91

where N is a necessity measure; see section 2.2 equation (14). This interpretative
setting provides a semantic justification to the claim that the weight attached to
a conclusion should be the weakest among the weights attached to the formulas
involved in a derivation.

Basic formalism

Possibilistic logic (Dubois and Prade [1987; 2004]; Dubois, Lang and Prade [2002;
1994b], Lang[1991; 2001]) manipulates propositional or first order logical formulas
weighted by lower bounds of necessity measures, or of possibility measures. A
first-order possibilistic logic formula is essentially a pair made of a classical first
order logic formula and a weight expressing certainty or priority. As already said,
in possibilistic logic [Dubois et al., 1994a; Dubois et al., 1994b; Dubois and Prade,
1987], weights of formulas p are interpreted in terms of lower bounds a € (0, 1]
of necessity measures, i.e., the possibilistic logic expression (p, @) is understood as
N(p) > a, where N is a necessity measure.

Constraints of the form II(p) > « could be also handled in the logic but they
correspond to very poor pieces of information [Dubois and Prade, 1990; Lang et al.,
1991}, while constraint N(p) > o < II(—p) < 1 — « expresses that —p is somewhat
impossible, which is much more informative. Still, both kinds of constraints can
be useful for expressing situations of partial or complete ignorance about p by
stating both II(p) > a and II(—p) > o and then propagating this ignorance to
be able to determine what is somewhat certain and what cannot be such due to
acknowledged ignorance (to be distinguished from a simple lack of knowledge when
no information appears in the knowledge base). A mixed resolution rule [Dubois
and Prade, 1990]

N(-pVq)>aand I(pVr)>Fimply lI(¢gVr)>fifa>1-7
(ifa<1-=p3,TgVr)>0)

is at the basis of the propagation mechanism for lower possibility bound infor-
mation in a logic of graded possibility and certainty (Lang, Dubois, and Prade
[1991]). In the following, we focus on the fragment of possibilistic logic handling
only lower necessity bound information.

Syntaz

An axiomatisation of 1st order possibilistic logic is provided by Lang [1991]; see
also [Dubois et al., 1994a]. In the propositional case, the axioms consist of all
propositional axioms with weight 1. The inference rules are:

e {(-pV q,a),(p.8)} F (¢,min(e, 3)) (modus ponens)
e for f < a, (p,a) F (p, ) (weight weakening),

where - denotes the syntactic inference of possibilistic logic. The min-decomposabi-
lity of necessity measures allows us to work with weighted clauses without lack of
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generality, since N(A;=1,p;) > « iff Vi, N(p;) > «. It means that possibilistic
logic expressions of the form (A;=1 np;, @) can be interpreted as a set of n formulas
(pi, @). In other words, any weighted logical formula put in Conjunctive Normal
Form is equivalent to a set of weighted clauses. This feature considerably simplifies
the proof theory of possibilistic logic. The basic inference rule in possibilistic logic
put in clausal form is the resolution rule:

(—pVaq,a);(pVrpB)F (¢Vrmin(a,3)).

Classical resolution is retrieved when all the weights are equal to 1. Other valid
inference rules are for instance:

e if p classically entails ¢, (p, ) F (¢, @) (formula weakening)
o (Va)p(z),a) F (p(s),a) (particularization)

e (p,a);(p,B) F (p, max(c, B)) (weight fusion).

Observe that since (—p V p,1) is an axiom, formula weakening is a particular case
of the resolution rule (indeed (p,a); (—pVpVr,1) F (pVr,a)). Formulas of the
form (p,0) that do not contain any information (Vp, N(p) > 0 always holds), are
not part of the possibilistic language.

Refutation can be easily extended to possibilistic logic. Let K be a knowledge
base made of possibilistic formulas, i.e., K = {(p;, ;) }i=1.n. Proving (p,«) from
K amounts to adding (—p, 1), put in clausal form, to K, and using the above
rules repeatedly until getting K U {(-p,1)} F (L, @). Clearly, we are interested
here in getting the empty clause with the greatest possible weight [Dubois et al.,
1987]. It holds that K F (p,«) if and only if K, - p (in the classical sense), where
K,={p| (p,p) € K, > a}. Proof methods for possibilistic logic are described
by Dubois, Lang and Prade [1994a], Liau and Lin [1993], and Hollunder [1995].
See [Lang, 2001] for algorithms and complexity issues.

Remarkably enough, the repeated use of the probabilistic counterpart to the
possibilistic resolution rule (namely, Prob(—pV q) > «; Prob(pVr) > 8+ Prob(qV
r) > max(0, a+F—1)) is not in general sufficient for obtaining the best lower bound
on the probability of a logical consequence, in contrast to the case of possibilistic
logic.

An important feature of possibilistic logic is its ability to deal with inconsistency.
The level of inconsistency of a possibilistic logic base is defined as

Ince(K) =max{a | K F (L,a)}

where, by convention max@) = 0. More generally, Inc(K) = 0 if and only if
K* ={p; | (pi, ;) € K)} is consistent in the usual sense. Note that this not true in
case «; would represent a lower bound of the probability of p; in a probabilistically
weighted logic.
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Semantics

Semantic aspects of possibilistic logic, including soundness and completeness re-
sults with respect to the above syntactic inference machinery, are presented in
[Lang, 1991; Lang et al., 1991; Dubois et al., 1994b; Dubois et al., 1994a). From
a semantic point of view, a possibilistic knowledge base K = {(p;, ;) }i=1,n is
understood as the possibility distribution 7 representing the fuzzy set of models
of K:

where [p;] denotes the sets of models of p; such that pp,,)(w) = Lifw € [p;] (ie. w =
pi), and pupp,,)(w) = 0 otherwise). In the above formula, the degree of possibility of
w is computed as the complement to 1 of the largest weight of a formula falsified
by w. Thus, w is all the less possible as it falsifies formulas of higher degrees. In
particular, if w is a counter-model of a formula with weight 1, then w is impossible,
ie. mg(w) = 0. It can be shown that 7x is the largest possibility distribution
such that Ng(p;) > «;, Vi = 1,n, i.e., the possibility distribution which allocates
the greatest possible possibility degree to each interpretation in agreement with
the constraints induced by K (where N is the necessity measure associated with
Tk, namely Ng(p) = min,e[-,(1 — 7k (v)) ). It may be that Nk (p;) > o, for
some %, due to logical constraints between formulas in K. The possibilistic closure
corrects the ranking of formulas for the sake of logical coherence.

Moreover, it can be shown that 7 = wx if and only if, for any level «, K, and
K!, are logically equivalent in the classical sense. K and K’ are then said to be
semantically equivalent. The semantic entailment is then defined by K |= (p, o) if
and only if Nk (p) > a, i.e., if and only if Vw, 7x (w) < max () (w), 1 — a).

Besides, it can be shown that Inc(K) = 1 — max, mx(w). Soundness and
completeness are expressed by

KF(pa) & KE (p,a).

In this form of possibilistic entailment, final weights attached to all formulas
are at least equal to the inconsistency level of the base. The inconsistency-free
formulas, which are above this level, entail propositions that have higher weights.
Biacino and Gerla [1992] provide an algebraic analysis of possibility and necessity
measures generated by this form of inference. The closure of a possibilistic knowl-
edge base is an example of canonical extension of the closure operator of classical
logic in the sense of [Gerla, 2001, Chap. 3).

To summarize, a possibilistic logic base is associated with a fuzzy set of models.
This fuzzy set is understood as either the set of more or less plausible states of the
world (given the available information), or as the set of more or less satisfactory
states, according to whether we are dealing with uncertainty or with preference
modeling. Conversely, it can be shown that any fuzzy set F representing a fuzzy
piece of knowledge, with a membership function pp defined on a finite set is
semantically equivalent to a possibilistic logic base.
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There is a major difference between possibilistic logic and weighted many-valued
logics of Pavelka-style [Pavelka, 1979; Héjek, 1998a), especially fuzzy Prolog lan-
guages like Lee’s fuzzy clausal logic [Lee, 1972], although they look alike syntac-
tically. Namely, in the latter, a weight t attached to a (many-valued) formula p
often acts as a truth-value threshold, and (p, t) in a fuzzy knowledge base expresses
the requirement that the truth-value of p should be at least equal to t for (p,t)
to be valid. So in such fuzzy logics, while truth is many-valued, the validity of a
weighted formula is two-valued. For instance, in Pavelka-like languages, (p,t) can
be encoded as ¢ — p adding a truth-constant ¢ to the language. Using Rescher-
Gaines implication, ¢ — p has validity 1 if p has truth-value at least ¢, and 0
otherwise; then (p,t) is Boolean. Of course, using another many-valued implica-
tion, (p,t) remains many-valued. On the contrary, in possibilistic logic, truth is
two valued (since p is Boolean), but the validity of (p, o) with respect to classical
interpretations is many-valued [Dubois and Prade, 2001]. In some sense, weights
in Pavelka style may defuzzify many-valued logics, while they fuzzify Boolean for-
mulas in possibilistic logic. Moreover inferring (p, «) in possibilistic logic can be
viewed as inferring p with some certainty, quantified by the weight «, while in
standard many valued logics (i.e. with a standard notion of proof) a formula is
either inferred or not [Héjek, 1998a).

Since possibilistic logic bases are semantically equivalent to fuzzy sets of inter-
pretations, it makes sense to use fuzzy set aggregation operations for merging the
bases. Pointwise aggregation operations applied to fuzzy sets can be also directly
performed at the syntactic level. This idea was first pointed out by Boldrin [1995]
(see also [Boldrin and Sossai, 1995]), and generalized [Benferhat et al., 1998¢c] to
two possibilistic bases K1 = {(p;, ;) | i € I} and Ky = {(g;,0;) | j € J}. It can
be, in particular, applied to triangular norm and triangular co-norm operations.
Let 77 and mg be the result of the combination of 7x, and 7k, based on a t-norm
operation T', and the dual t-conorm operation S(a,3) = 1—T(1—«, 1— () respec-
tively. Then, m7 and 7g are respectively associated with the following possibilistic
logic bases:

o Kp =K1 UKy U{(piVq;,S(as,B5)) | (i, i) € K1,(q5,085) € Ka},
o Ks={(piVq,T(,0)) | (pi,ui) € Ki1,(qj,8) € Ka}.

With T' = min, K;n = K1 U K> in agreement with possibilistic logic semantics.
This method also provides a framework where symbolic approaches for fusing
classical logic bases [Konieczny and Pino-Pérez, 1998] can be recovered by making
the implicit priorities induced from Hamming distances between sets of models,
explicit [Benferhat et al., 2002; Konieczny et al., 2002].

Bipolar possibilistic logic

A remarkable variant of possibilistic logic is obtained by no longer interpreting
weights as lower bounds of necessity (nor possibility) measures, but as constraints
in terms of yet another set function expressing guaranteed possibility. Section 2.2
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recalled how a possibility measure II and a necessity measure N are defined from a
possibility distribution 7. However, given a (non-contradictory, non-tautological)
proposition p, the qualitative information conveyed by 7 pertaining to p can be
assessed not only in terms of possibility and necessity measures, but also in terms
of two other functions. Namely, A(p) = min,ep) 7(w) and V(p) = 1 — A(—p).
A is called a guaranteed possibility function [Dubois and Prade, 1992c]'?. Thus
a constraint of the form A(p) > « expresses the guarantee that all the models
of p are possible at least at degree a. This is a form of positive information,
which contrasts with constraints of the form N(p) > a (< II(—p) < 1 — «) that
rather expresses negative information in the sense that counter-models are then
(somewhat) impossible [Dubois et al., 2000].

Starting with a set of constraints of the form A(p;) > §; for j = 1,...,n,
expressing that (all) the models of p; are guaranteed to be possible at least at
level 3;, and applying a principle of maximal specificity that minimizes possibility
degrees, the most informative possibility distribution 7, such that the constraints
are satisfied is obtained. Note that this principle is the converse of the one used
for defining mg, and is in the spirit of a closed-world assumption: only what is
said to be (somewhat) guaranteed possible is considered as so. Namely

Te(w) = max min (g, (w), B;)-
By contrast with IT and N, the function A is non-increasing (rather than non-
decreasing) w. r. t. logical entailment. Fusion of guaranteed possibility-pieces of
information is disjunctive rather than conjunctive (as expressed by 7, by contrast
with the definition of 7x). A satisfies the characteristic axiom

A(pV q) = min(A(p), Alg)),
and the basic inference rules, in the propositional case, associated with A are
o [-pAg,al,[pAr 8]t [gAr,min(q, )] (resolution rule)
e if p entails ¢ classically, [q, o] F [p, o] (formula weakening)
e for 8 < a, [p,a] F [p, 3] (weight weakening)
e [p,al;[p, B] F [p, max(a, B)] (weight fusion).

where [p,a] stands for A(p) > «. The first two properties show the reversed
behavior of A-based formulas w. r. t. usual entailment. Indeed, if all the models
of ¢ are guaranteed to be possible, then it holds as well to any subset of models,
e.g. the models of p, knowing that p entails ¢q. Besides, observe that the formula
[p A g, a] is semantically equivalent to [¢, min(v(p), )], where v(p) = 1 if p is true
and v(p) = 0 if p is false. This means that p A ¢ is guaranteed to be possible at
least to the level a, if ¢ is guaranteed to be possible to this level when p is true.

17Not to be confused with Baaz A operator in Section 3.4.
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This remark can be used in hypothetical reasoning, as in the case of standard
possibilistic formulas. So, A-based formulas behave in a way that is very different
and in some sense opposite to the one of standard (N-based) formulas (since the
function A is non-increasing).

When dealing with uncertainty, this leads to a twofold representation setting
distinguishing between

e what is not impossible because not ruled out by our beliefs; this is captured
by constraints of the form N(p;) > «; associated with a possibility distribu-
tion 7* expressing the semantics of a standard possibilistic knowledge base,

e and what is known as feasible because it has been observed; this is expressed
by constraints of the form A(g;) > §; associated with ..

In other words, it offers a framework for reasoning with rules and cases (or ex-
amples) in a joint manner. Clearly, some consistency between the two types of
information (what is guaranteed possible cannot be ruled out as impossible) should
prevail, namely
Yw, ma(w) < 7 (w)

and should be maintained through fusion and revision processes [Dubois et al.,
2001]. The idea of a separate treatment of positive information and negative
information has been also proposed by Atanassov [1986; 1999] who introduces the
so-called intuitionistic fuzzy sets '® as a pair of membership and non-membership
functions constrained by a direct counterpart of the above inequality (viewing
1 — 7* as a non-membership function). However, apart from the troublesome use
of the word ‘intuitionistic’ here, the logic of intuitionistic fuzzy sets (developed
at the semantic level) strongly differs from bipolar possibilitic logic. See [Dubois
et al., 2005] for a discussion. A proposal related to Atanassov’s approach, and
still different from bipolar possibilitic logic (in spite of its name) can be found in
[Zhang and Zhang, 2004].

Possibilistic logic can be used as a framework for qualitative reasoning about
preference [Liau, 1999; Benferhat et al., 2001d; Dubois et al., 1999]. When mod-
eling preferences, bipolarity enables us to distinguish between positive desires en-
coded using A, and negative desires (states that are rejected) where N-based con-
straints describe states that are not unacceptable [Benferhat et al., 2002c]. Deon-
tic reasoning can also be captured by possibilistic logic as shown by Liau [1999].
Namely, necessity measures encode obligation and possibility measures model im-
plicit permission. Dubois et al. [2000] have pointed out that A functions may
account for explicit permission.

4.2 Ezxtensions of possibilistic logic

Possibilistic logic is amenable to different extensions. A first idea is to exploit
refined or generalized scales, or yet allows weights to have unknown, or variable

18This is a misleading terminology as the underlying algebra does not obey the properties of
intuitionistic logic; see [Dubois et al., 2005]
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values, while preserving classical logic formulas and weights interpreted in terms
of necessity measures. Variable weights enables a form of hypothetical reasoning
to be captured, as well as accounting for some kinds of fuzzy rules as we shall see.

Lattice-valued possibilistic logics

The totally ordered scale used in possibilistic logic can be replaced by a complete
distributive lattice. Examples of the interest of such a construct include:

e multiple-source possibilistic logic [Dubois et al., 1992b], where weights are
replaced by fuzzy sets of sources that more or less certainly support the truth
of formulas;

e timed possibilistic logic [Dubois et al., 1991b] where weights are fuzzy sets
of time points where formulas are known as being true with some time-
dependent certainty levels

e a logic of supporters [Lafage et al., 2000], where weights are sets of irredun-
dant subsets of assumptions that support formulas.

A formal study of logics where formulas are associated with general “weights”
in a complete lattice has been carried out by Lehmke [2001b]. Necessity val-
ues attached to formulas can be encoded as a particular case of such “weights”.
More generally, a partially ordered extension of possibilistic logic whose semantic
counterpart consists of partially ordered models has been recently proposed by
(Benferhat, Lagrue and Papini, [2004b]).

A recent extension [Dubois and Prade, 2006] of possibilistic logic allows a cal-
culus where formulas, which can be nested, encode the beliefs of different agents
and their mutual beliefs. One can for instance express that all the agents in a
group have some beliefs, or that there is at least one agent in a group that has a
particular belief, where beliefs may be more or less entrenched.

Symbolic weights

Rather than dealing with weights in a partially ordered structure, one may con-
sider weights belonging to a linearly ordered structure, but handled in a symbolic
manner in such a way that the information that some formulas are known to
be more certain than others (or equally certain as others) can be represented by
constraints on the weights. This may be useful in particular in case of multiple
source knowledge. This idea already present in Benferhat et al. [1998a] (where
constraints encodes a partial order on the set of sources), has been more recently
reconsidered by encoding the constraints as propositional formulas and rewriting
the propositional possibilitic logic knowledge base in a two-sorted propositional
logic [Benferhat et al., 2004a]. The principle is to translate (p, ) into pV A (un-
derstood as “p is true or situation is A-abnormal”) and o < 3 into -BV A (a
statement is all the more certain, as it is more abnormal to have it false, and
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strong abnormality implies weaker abnormality). This view appears to be fruitful
by leading to efficient compilation techniques both when the constraints partially
order the weights [Benferhat and Prade, 2005], or linearly order them as in stan-
dard possibilistic logic [Benferhat and Prade, 2006).

Variable weights and fuzzy constants

It has been noticed that subparts of classical logic formulas may be ‘moved’ to
the weight part of a possibilistic logic formula. For instance, the possibilistic
formula (—p(x)Vq(z), @) is semantically equivalent to (¢(x), min(pup(x), «)), where
pp(z) = 1if p(x) is true and pp(x) = 0 if p(z) is false. It expresses that ¢(z) is
a-certainly true given the proviso that p(x) is true. This is the basis of the use of
possibilistic logic in hypothetical reasoning [Dubois et al., 1991a] and case by case
reasoning [Dubois and Prade, 1996b], which enables us to compute under what
conditions a conclusion could be at least somewhat certain, when information is
missing for establishing it unconditionally.

Such wvariable weights can be also useful for fuzzifying the scope of a universal
quantifier. Namely, an expression such that (—p(z) V ¢(x), @) can be read “Vx €
P, (gq(x),«)” where the set P = {z | p(z) is true}. Making one step further, P
can be allowed to be fuzzy [Dubois et al., 1994c]. The formula (g(z), up(z)) then
expresses a piece of information of the form “the more x is P, the more certain
q(x) is true”. A fuzzy restriction on the scope of an existential quantifier can be
also introduced in the following way [Dubois et al., 1998]. From the two classical
first order logic premises “Vao € A, —p(z,y)Vq(x,y)”, and “Jz € B, p(z,c)”, where
¢ is a constant, we can conclude that “Jz € B, q(z,c)” provided that B C A. Let
p(B,c) stand for that 3z € B, ¢(x,¢)”. Then B can be called imprecise constant.
Letting A and B be fuzzy sets, the following pattern can be established:

(=p(z,y) V q(z,y), min(pa(z), @)); (p(B, ¢), B) F (¢(B, ¢), min(Np(A), a, §).

where Np(A) = inf; max(pa(t),1 — pp(t)) is the necessity measure of the fuzzy
event A based on fuzzy information B and it can be seen as a (partial) degree of
unification of A given B. See [Alsinet et al., 1999 ; Alsinet, 2001; Alsinet et al.,
2002| for a further development and logical formalization of these ideas in a logic
programming framework. In particular, in that context the above pattern can be
turned into a sound rule by replacing B by the cut Bg in Ng(A). A complete proof
procedure based on a similar resolution rule dealing only with fuzzy constants has
been defined [Alsinet and Godo, 2000; Alsinet and Godo, 2001]. This framework
has been recently extended in order to incorporate elements of argumentation
theory in order to deal with conflicting information [Chesfievar et al., 2004; Alsinet
et al., 2006].

Embedding possibilistic logic in a non-classical logic

Another type of extension consists in embedding possibilistic logic in a wider object
language adding new connectives between possibilistic formulas. In particular, it is
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possible to cast possibilistic logic inside a (regular) many-valued logic such as Godel
or Lukasiewicz logic. The idea is to consider many-valued atomic sentences ¢ of the
form (p, o) where p is a formula in classical logic. Then, one can define well-formed
formulas of the form ¢ V ¥, A, — 1, etc. where the “external” connectives
linking ¢ and 1 are those of the chosen many-valued logic. From this point of view,
possibilistic logic can be viewed as a fragment of Godel or Lukasiewicz logic that
uses only one external connective: conjunction A interpreted as minimum. This
approach involving a Boolean algebra embedded in a non-classical one has been
proposed by Boldrin and Sossai [1997; 1999] with a view to augment possibilistic
logic with fusion modes cast at the object level. Hajek et al. [1995] use this method
for both probability and possibility theories, thus understanding the probability
or the necessity of a classical formula as the truth degree of another formula. This
kind of embedding inside a fuzzy logic works for other uncertainty logics as well
as explained in section 4.5.

Lastly, possibilistic logic can be cast in the framework of modal logic. Modal
accounts of qualitative possibility theory involving conditional statements were
already proposed by Lewis [1973a] (this is called the VN conditional logic, see
[Dubois and Prade, 1998a; Farifias and Herzig, 1991]). Other embeddings of
possibilistic logic in modal logic are described in [Boutilier, 1994; Hajek, 1994;
Hijek et al., 1994].

Possibilistic extensions of non-classical logics

One may consider counterparts to possibilistic logic for non-classical logics, such as
many-valued logics. A many-valued logic is cast in the setting of possibility theory
by changing the classical logic formula p present in the possibilistic logic formula
(p, @) into a many-valued formula, in Godel or Lukasiewicz logic, for instance. Now
(p, @) is interpreted as C(p) > «, where C(p) is the degree of necessity of a fuzzy
event as proposed by Dubois and Prade [Dubois and Prade, 1990] (see section 2.3).
Alsinet and Godo [Alsinet, 2001; Alsinet and Godo, 2000] cast possibilistic logic
in the framework of Gédel many-valued logic. A possibilistic many-valued formula
can also be obtained in first-order logic by making a fuzzy restriction of the scope
of an existential quantifier pertaining to a standard first order possibilistic formula,
as seen above.

Besnard and Lang [1994] have proposed a possibilistic extension of paracon-
sistent logic in the same spirit. Quasi-possibilistic logic (Dubois, Konieczny, and
Prade [2003]) encompasses both possibilistic logic and quasi-classical logic (a para-
consistent logic due to Besnard and Hunter [1995]; see also [Hunter, 2002]). These
two logics cope with inconsistency in different ways, yet preserving the main fea-
tures of classical logic. Thus, quasi-possibilistic logic preserves their respective
merits, and can handle plain conflicts taking place at the same level of certainty
(as in quasi-classical logic), while it takes advantage of the stratification of the
knowledge base into certainty layers for introducing gradedness in conflict analy-
sis (as in possibilistic logic).
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Lehmke [2001a; 2001b] has tried to cast Pavelka-style fuzzy logics and possibilis-
tic logic inside the same framework, considering weighted many-valued formulas
of the form (p, 7), where p is a many-valued formula with truth set T, and 7 is a
“label” defined as a monotone mapping from the truth-set T' to a validity set L. T
and L are supposed to be complete lattices, and the set of labels has properties that
make it a fuzzy extension of a filter in L”. Labels encompass what Zadeh [1975a]
called “fuzzy truth-values” of the form “very true”, “more or less true”. They are
continuous increasing mappings from 7' = [0, 1] to L = [0, 1] such that 7(1) = 1. A
(many-valued) interpretation Val, associating a truth-value 8 € T to a formula p,
satisfies (p,7), to degree A € L, whenever 7(6) = A\. When T = [0,1], L = {0, 1},
7(6) = 1 for 6 > ¢, and 0 otherwise, then (p, 7) can be viewed as a weighted formula
in some Pavelka-style logic. When T'={0,1}, L = [0,1], 7(f) = 1 — « for § = 0,
and 1 for § = 1, then (p,7) can be viewed as a weighted formula in possibilistic
logic. Lehmke [2001a] has laid the foundations for developing such labelled fuzzy
logics, which can express uncertainty about (many-valued) truth in a graded way.
It encompasses proposals of Esteva et al. [1994] who suggested that attaching a
certainty weight a to a fuzzy proposition p can be modeled by means of a labeled
formula (p, 7), where 7(0) = max(1 — «, 0), in agreement with semantic intuitions
formalized in [Dubois and Prade, 1990]. This type of generalization highights the
difference between many-valued and possibilistic logics.

Refining possibilistic inference

A last kind of extension consists in keeping the language and the semantics of
possibilistic logics, while altering the inference relation with a view to make it more
productive. Such inference relations that tolerate inconsistency can be defined
at the syntactic level [Benferhat et al., 1999a). Besides, proof-paths leading to
conclusions can be evaluated by more refined strategies than just their weakest
links [Dubois and Prade, 2004].

4.3 Possibilistic nonmonotonic inference

A nonmonotonic inference notion can be defined in possibilistic logic as K Fper p
if and only if K F (p, @) with a > Inc(K). It can be rewritten as K" - (p, ),
where K" = K\ {(p;, ;) | a; < Inc(K)} is the set of weighted formulas whose
weights are above the level of inconsistency (they are thus not involved in the
inconsistency). Indeed, Inc(K°™) = 0. This inference is nonmonotonic because
due to the non-decreasingness of the inconsistency level when K is augmented,
K Fprep p may not imply K U {(g, 1)} Fpref p-

The semantic counterpart to the preferential nonmonotonic inference K Fpcr p
(that is, K F (p,a) with a > Inc(K)) is defined as K |=p.f p if and only if
Nk (p) > Inc(K), where Ng derives from the possibility distribution 7x that
describes the fuzzy set of models of K. The set {w | mx(w) is maximal} forms
the set of best models B(K) of K. It turns out that K |=,.; p if and only
if B(K) C [p] if and only if K ks p. It can be shown that B(K) C [p] is
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equivalent to Ik (p) > Ik (—p) where Ik is the possibility measure defined from
7k [Dubois and Prade, 1991c]. Similarly K U {(p,1)} Epres ¢ is equivalent to
Ikg(p Aq) > Ig(p A —q). The latter corresponds to the idea of inferring a belief
q from a contingent proposition p in the context of some background knowledge
described by 7 (encoded in K'), which we denote p |=r,. q.

Conversely, a constraint of the form II(p A ¢) > II(p A —q) is a proper encoding
of a default rule expressing that in context p, having ¢ true is the normal course
of things. Then a knowledge base made of a set of default rules is associated
with a set of such constraints that induces a family (possibly empty in case of
inconsistency) of possibility measures. Two types of nonmonotonic entailments
can be then defined (see [Benferhat et al., 1992; Benferhat et al., 1997a; Dubois
and Prade, 1995] for details):

1. the above preferential entailment =, based on the unique possibility dis-
tribution 7 obeying the above constraints (it leads to an easy encoding of
default rules as possibilistic logic formulas);

2. a more cautious entailment, if we restrict to beliefs inferred from all possi-
bility measures obeying the above constraints.

Clearly p =, ¢ means that when only p is known to be true, ¢ is an expected,
normal conclusion since ¢ is true in all the most plausible situations where p is
true. This type of inference contrasts with the similarity-based inference of Section
4.4 since in the latter the sets of models of ¢ is enlarged so as to encompass the
models of p, while in possibilistic entailment, the set of models of p is restricted
to the best ones. Preferential possibilistic entailment |=, satisfies the following
properties that characterize nonmonotonic consequence relations

Restricted Reflexivity: ppvp, if frp= 1
Consistency Preservation: p [ L
Left logical equivalence: if |Ep =p/, from p |~ q deduce p’ |~ ¢
Right weakening: from ¢ = ¢’ and p |~ ¢ deduce p |~ ¢’
Closure under conjunction: p |~ g and p |~ r deduce p |~ g A r
OR: from p prand g~ r deduce pV gl r
Rational monotony: from p |~ r and p |£ —q deduce pAq |~ r
Cut: frompAgrand pl~ q deduce p |~ r.

But for the two first properties (replaced by a mere reflexivity axiom), these
are the properties of the so-called rational inference of Lehmann and Magidor
[1992]. Let us explain some of these axioms. Restricted reflexivity just excludes
the assumption that everything follows by default from a contradiction. Consis-
tency preservation ensures the consistency of lines of reasoning from consistent
arguments. Right weakening and closure for conjunction ensures that the set of
plausible consequences of p is a deductively closed set. The OR rule copes with
reasoning by cases. Rational monotony controls the amount of monotonicity of
the possibilistic inference: from p =, r we can continue concluding r if ¢ is also
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true, provided that it does not hold that, in the context p, —q is expected. The
cut rule is a weak form of transitivity.
Liau and Lin [1996] have augmented possibilistic logic with weighted condition-
als of the form
(e) (aF
p—qandp—g¢q
that encode Dempster rule of conditioning (II(q | p) = II(p A ¢)/II(p)), and cor-
respond to constraints II(p A ¢) > ¢ - II(p) and I(p A q) > ¢ - II(p) respectively
with ¢ being a coefficient in the unit interval. Liau [1998] considers more general
conditionals where a t-norm is used instead of the product. Note that if p = T
(tautology), then
.
T A9, g and —=(T (= —q)
stands for II(q) > ¢ for N(q) > c respectively. This augmented possibilistic logic

enables various forms of reasoning to be captured such as similarity-based and
default reasoning as surveyed in [Liau and Lin, 1996).

4.4 Deductive Similarity Reasoning

The question raised by interpolative reasoning is how to devise a logic of similarity,
where inference rules can account for the proximity between interpretations of the
language. This kind of investigation has been started by Ruspini [1991] with a
view to cast fuzzy patterns of inference such as the generalized modus ponens of
Zadeh into a logical setting, and pursued by Esteva et al. [1994]. Indeed in the
scope of similarity modeling, a form of generalized modus ponens can be expressed
informally as follows,

p is close to being true
p approximately implies ¢
q is not far from being true

where “close”, “approximately”, and “not far” refer to a similarity relation S,
while p and ¢ are classical propositions. The universe of discourse €2 serves as
a framework for modeling the meaning of classical propositions pi, p2, ..., Pn
in a formal language L, by means of constraints on a set of interpretations €.
Interpretations are complete descriptions of the world in terms of this language,
and assign a truth-value to each propositional variable. Let [p] denote the set of
models of proposition p, i.e., the set of interpretations which make p true. If w is
a model of p, this is denoted denoted w = p. The set of interpretations € is thus
equipped with a similarity relation S, that is a reflexive, symmetric and t-norm-
transitive fuzzy relation. The latter property means that there is a triangular
norm 7" such that Yw, ', ", T(S(w,w’),S(w',w")) < S(w,w”). For any subset
A of Q, a fuzzy set A* can be defined by
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(24) A*(w) = 51.1611)4 S(w,w)

where S(w,w’) is the degree of similarity between w and w’. A* is the fuzzy set of
elements close to A. Then proposition p can be fuzzified into another proposition
p* which means “approzimately p” and whose fuzzy set of models is [p*] = [p]*
as defined by (24). Clearly, a logic dealing with propositions of the form p* is a
fuzzy logic in the sense of a many-valued logic, whose truth-value set is the range
of S(w,w’), for instance [0, 1]. The satisfaction relation is graded and denoted =%
namely,

wpEYp iff  there exists a model w’ of p
which is a-similar to w,

in other words, iff [p*](w) > «, i.e., w belongs to the a-cut of [p*], that will be
denoted by [p*]a.

One might be tempted by defining a multiple-valued logic of similarity. Un-
fortunately it cannot be truth-functional. Namely given S, truth evaluations v,
defined as v(p) = [p*](w), associated to the interpretation w, are truth-functional
neither for the negation not for the conjunction. Indeed, in general, [p A ¢]*(w) is
not a function of [p*](w) and [¢*](w) only. This feature can be observed even if S
is a standard equivalence relation. Indeed, for A C 2, A* = S o A is the union of
equivalence classes of elements belonging to A, i.e., it is the upper approximation
of A in the sense of rough set theory [Pawlak, 1991], and it is well known that
[AN BJ* C [A]* N [B]* and no equality is obtained (e.g., when AN B = , but
[A]*N[B]* # ). This fact stresses the difference between similarity logic and other
truth-functional fuzzy logics. The reason is that here all fuzzy propositions are in-
terpreted in the light of a single similarity relation, so that there are in some sense
less fuzzy propositions here than in more standard many-valued calculi. Similarity
logic is more constrained, since the set of fuzzy subsets {[p]* : p € L} of Q induced
by classical propositions of the language L, is in a one-to-one correspondence to a
Boolean algebra (associated with L), and is only a proper subset of the set [0, 1]
of all fuzzy subsets of Q. However it holds that [A U B]* = [A]* U [B]*.

The graded satisfaction relation can be extended over to a graded semantic
entailment relation: a proposition p entails a proposition ¢ at degree «, written
p E* g, if each model of p makes ¢* at least a-true, where ¢* is obtained by means
of a T-transitive fuzzy relation S [Dubois et al., 1997]. That is,

p = ¢ holds iff [p] € [¢"]a-

p E® ¢ means “p entails ¢, approximately” and « is a level of strength. The
properties of this entailment relation are:
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Nestedness: if p =* ¢ and 8 < « then p =7 ¢;
T-Transitivity:  if p =* r and r =7 ¢ then p E=T(*8) ¢;
Reflexivity: p ! p;
Right weakening: if p =% ¢ and ¢ |= 7 then p =% r;
Left strengthening: if p =7 and r =% ¢ then p E ¢;
Left OR: pVr E*qiff p E* ¢ and r =° g;
Right OR: if r has a single model, r =* pV ¢ iff r =% p or r % q.

The fourth and fifth properties are consequences of the transitivity property
(since ¢ = r entails ¢ =! 7 due to [q] C [r] € [r*]1). They express a form of
monotonicity. The transitivity property is weaker than usual and the graceful
degradation of the strength of entailment it expresses, when T # min, is rather
natural. It must be noticed that = does not satisfy the Right And property, i.e.,
from p = g and p =% r it does not follow in general that p E* ¢ A r. Hence the
set of approximate consequences of p in the sense of E=* will not be deductively
closed. The left OR is necessary to handle disjunctive information, and the right
OR is a consequence of the decomposability w.r.t. the V connective in similarity
logic. Characterization of the similarity-based graded entailment in terms of the
above properties as well as for two other related entailments are given in [Dubois
et al., 1997].

The idea of approximate entailment can also incorporate “background knowl-
edge” in the form of some proposition K. Namely, [Dubois et al., 1997] propose
another entailment relation defined as p =% ¢ iff [K] C ([p*] — [¢*])a, where
— is the R-implication associated with the triangular norm 7" and [p*] — [¢*]
expresses a form of gradual rule “the closer to the truth of p, the closer to the
truth of ¢”. Then, using both =* and =%, a deductive notion of interpolation
based on gradual rules, as described in Section 2.5, can be captured inside a logi-
cal setting. The relations and the differences between similarity-based logics and
possibilistic logic are discussed in [Esteva et al., 1994] and in [Dubois and Prade,
1998b). The presence of a similarity relation on the set of interpretation suggests
a modal logic setting for similarity-based reasoning where each level cut S, of §
is an accessibility relation. Especially p =% ¢ can be encoded as p = <,q, where
&y, is the possibility modality induced by S,. Such a multimodal logic setting is
systematically developed by Esteva et al. [1997b].

Finally, let us mention that a different approach to similarity-based reasoning,
with application to the framework of logic programming, has been formally de-
veloped in [Ying, 1994; Gerla and Sessa, 1999; Biacino et al., 2000; Formato et
al., 2000]. The idea is to extend the classical unification procedure in classical
first order logic by allowing partial degrees of matching between predicate and
constants that are declared a priori to be similar to some extent. A comparison
between both approaches can be found in [Esteva et al., 2001].
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4.5 Fuzzy logic theories to reason under uncertainty

Although fuzzy logic is not a logic of uncertainty per se, as it has been stressed
in Sections 1 and 2, a fuzzy logic apparatus can indeed be used in a non standard
(i.e. non truth-functional) way to represent and reasoning with probability or other
uncertainty measures. This is the case for instance of the approach developed by
Gerla [1994b]. Roughly speaking, Gerla devises a probability logic by defining a
suitable fuzzy consequence operator C, in the sense of Pavelka (see Section 3.8),
on fuzzy sets v of the set B of classical formulas (modulo classical equivalence) in a
given language, where the membership degree v(p) of a proposition p is understood
as lower bound on its probability. A (finitely additive) probability w on B is a fuzzy
set (or theory) that is complete, i.e. fulfilling w(p) + w(—p) = 1 for each p € B.
Models of fuzzy set v are probabilities w such that v < w (i.e. v(p) < w(p) for each
p). The probabilistic theory C(v) generated by v is the greatest lower bound of
the probabilities greater than or equal to v. Then Gerla defines a fuzzy deduction
operator D based on some inference rules to deal with probability envelopes (called
the h-m-k-rules and the h-m-collapsing rules) and shows that C' and D coincide,
this gives the probabilistic completeness of the system.

In a series of works starting in [Hajek et al., 1995], a different logical approach
to reason about uncertainty has been developed that is able to combine notions
of different classical uncertainty measures (probability, necessity/possibility and
belief functions) with elements of t-norm based fuzzy logics: the basic observation
is that “uncertainty” or belief is itself a gradual notion, e.g. a proposition may be
totally, quite, more or less, or slightly certain (in the sense of probable, possible,
believable, plausible, etc.).

For instance in the case of probability, one just starts with Boolean formulas ¢
and a probability on them; then there is nothing wrong in taking as truth-degree
of the fuzzy proposition Py := “gp is probable” just the probability degree of the
crisp proposition ¢. Technically speaking, the approach boils down to considering
the following identity

probability degree of ¢ = truth degree of Py,

where P is a (fuzzy) modality with the intended reading: Py stands for the fuzzy
proposition “p is probable”. Notice that such an approach clearly distinguishes
between assertions like “(p is probable) and (¢ is probable)” on the one hand and
“(p A1) is probable” in the other. This is the basic idea exposed in [Hajek et al.,
1995] and then later refined by Hajek in [H&jek, 1998a). Taking Lukasiewicz logic
L as base logic, this is done by first enlarging the language of L by means of a
unary (fuzzy) modality P for probably, defining two kinds of formulas:

- classical Boolean formulas: ¢, 1), ... (which are definable in L), and

- modal formulas: for each Boolean formula ¢, P(y) is an atomic modal for-
mula and, moreover, such a class of modal formulas, MF, is taken closed
under the connectives of Lukasiewicz logic — and —p,
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and then by defining a set of axioms and an inference rule reflecting those of a
probability measure, namely:

(FP1) P(=p V1) =L (Pe =1 PY),
(FP2) P(=p) =1 =Py,
(FP3) P(p V) =L (Py —1 P(e AY)) =1 PY),

and the necessitation rule for P: from ¢ infer P(y), for any Boolean formula ¢.
The resulting fuzzy probability logic, F'/P(L), is sound and (finite) strong com-
plete [Héjek, 1998a] with respect to the intended probabilistic semantics given
by the class of probabilistic Kripke models. These are structures M = (W, u, €)
where W is a non-empty set, e : W x BF — {0,1} (where BF denotes the set
of Boolean formulas) is such that, for all w € W, e(w,-) is a Boolean evalua-
tion of non-modal formulas, and p is a finitely additive probability measure on
a Boolean subalgebra Q C 2% such that, for every Boolean formula ¢, the set
[plw = {w € W : e(w,p) = 1} is p-measurable, i.e. [p]w € Q and hence u([¢]w)
is defined. Then, the truth-evaluation of a formula Py in a model M is given by

| P() lam= p(lelw)

and it is extended to compound (modal) formulas using Lukasiewicz logic connec-
tives. The completeness result for F'P(L) states that a (modal) formula ® follows
(using the axioms and rules of F/P(L)) from a finite set of (modal) formulas I" iff
|| @ ||;m= 1 in any probabilistic Kripke model M that evaluates all formulas in T’
with value 1. The same results holds for FP(RPL), that is, if the expansion of L
with rational truth-constants RPL is used instead of L as base logic. Thus both
FP(L) and FP(RPL) are adequate for a treatment of simple probability.

Let us comment that the issue of devising fuzzy theories for reasoning with
conditional probability has also been developed for instance in [Godo et al., 2000;
Flaminio and Montagna, 2005; Flaminio, 2005; Godo and Marchioni, 2006] tak-
ing LH% as base logic instead of Lukasiewicz logic in order to express axioms of
conditional probability involving product and division.

The same easy approach can be used to devise a fuzzy modal theory to reason
with necessity measures, hence very close to possibilistic logic. In fact, buiding the
modal formulas MF as above, just replacing the modality P by another modality
N, the logic FN(L) is defined as FP(L) by replacing the axioms (FP1), (FP2)
and (FP3) by the following ones:

(FN1) N(—¢ V1) =1 (No —1 Ny),
(FN2) ~N_L
(FN3) N(p A1) =1 (N A NY)

and keeping the necessitation rule for N: from ¢ infer N(y), for any Boolean
formula ¢. This axiomatization gives completeness with respect to the intended
semantics, i.e. w. r. t. the class of necessity Kripke models M = (W, u,e),
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where now 4 is a necessity measure on a suitable Boolean subalgebra Q C 2V,
Note that one can define the dual modality II, IIp as = N—¢p, and then the truth-
value of Iy in a necessity Kripke models is just the corresponding possibility
degree. If we consider the theory FN(RPL), the necessity modal theory over RPL
(thus introducing rational truth-constants), then one faithfully cast possibilistic
logic into FFN(RPL) by transforming possibilistic logic expressions (p, «) (with «
rational) into the modal formulas @ — 7, p. See [Marchioni, 2006] for an extension
to deal with generalized conditional necessities and possibilities.

This kind of approach has been generalized to deal with Dempster-Shafer belief
functions'®. The idea exploited there is that belief functions on propositions can
be understood as probabilities of necessities (in the sense of S5 modal formulas).
So, roughly speaking, what one needs to do is to define the above F'P(L) over S5
formulas rather than over propositional calculus formulas. Then the belief modal
formula By, where ¢ is a classical (modality free) formula, is defined as POg. The
details are fully elaborated in [Godo et al., 2003], including completeness results
of the defined fuzzy belief function logic FB(L) w. r. t. the intended semantics
based on belief functions.

5 CONCLUSION

The idea of developing something like fuzzy logic was already part of Zadeh’s
concerns in the early fifties. Indeed, one can read in an early position paper of his,
entitled Thinking machines: a new field in FElectrical Engineering the following
premonitory statement?°:

“Through their association with mathematicians, the electrical engi-
neers working on thinking machines have become familiar with such
hitherto remote subjects as Boolean algebra, multivalued logic, and so
forth. And it seems that the time is not so far distant when taking
a course in mathematical logic will be just as essential to a graduate
student in electrical engineering as taking a course in complex variables
is at the present time.”

It seems that Zadeh’s prediction was correct to a large extent.

The historical development of fuzzy logic may look somewhat erratic. The con-
cept of approximate reasoning developed by Zadeh in the seventies in considerable
details did not receive great attention at the time, neither from the logical com-
munity, nor from the engineering community, let alone the artificial intelligence
community, despite isolated related works in the eighties. Many logicians did not
like it by lack of a syntax. Engineers exploited very successful, sometimes ad hoc,
numerical techniques borrowing only a small part of fuzzy set concepts. They did

19A belief function [Shafer, 1975] on a set W is a mapping bel : 2W — [0,1] sat-
isfying the following conditions: bel(W) = 1, bel(0) = 0 and bel(A41 U ... U Ap) >
Sozrcqr,.. ny (DHITbel(Nier A7), for each n.

Oappearing in the Columbia Engineering Quarterly, Vol. 3, January 1950, p. 31
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not implement the combination projection principle which is the backbone of ap-
proximate reasoning (see [Dubois et al., 1999] on this point). Finally there is a long
tradition of mutual distrust between artificial intelligence and fuzzy logic, due to
the numerical flavor of the latter. Only later on, in the late nineties, approximate
reasoning would be at work in possibilistic counterparts to Bayesian networks.

The nineties witnessed the birth of new important research trend on the log-
ical side, which is no less than a strong revival of the multiple-valued logic tra-
dition, essentially prompted by later theoretical developments of fuzzy set the-
ory (especially the axiomatization of connectives). However multiple-valued logic
had been seriously criticized at the philosophical level (see the survey paper by
Urquart[1986], for instance) because of the confusion between truth-values on the
one hand and degrees of belief, or various forms of incomplete information, on
the other hand, a confusion that even goes back to pioneers including Lukasiewicz
(e.g., the idea of "possible” as a third truth-value). Attempts to encapsulate ideas
of non-termination and error values (suggested by Kleene) in many-valued logics
in formal specification of software systems also seem to fail (see Hihnle [2005]).
In some sense, fuzzy set theory had the merit of giving multiple-valued logic a
more natural interpretation, in terms of gradual properties. The point is to bridge
the gap between logical notions and non-Boolean (even continuous) representation
frameworks. This has nothing to do with the representation of belief. It is interest-
ing to see that the current trend towards applying Lukasiewicz infinite-valued logic
and other multiple valued logics is not focused on the handling of uncertainty, but
on the approximation of real functions via normal forms (see the works of Mundici
[1994], Perfilieva [2004], Aguzzoli and Gerla [2005], etc.). Another emerging topic
is the reconsideration of mathematical foundations of set theory in the setting
of the general multiple-valued logic setting recently put together [Behounek and
Cintula, 2006b], sometimes in a category-theoretical framework [Hohle, 2007].

However, in this new trend, the fundamental thesis of Zadeh, namely that “fuzzy
logic is a logic of approximate reasoning” is again left on the side of the road. Yet
our contention is that a good approach to ensuring a full revival of fuzzy logic is to
demonstrate its capability to reasoning about knowledge and uncertainty. To this
end, many-valued logics must be augmented with some kind of modalities, and
the natural path to this end is the framework of possibility theory. The case of
possibilistic logic is typical of this trend, as witnessed by its connections to modal
logic, nonmonotonic logics and non-standard probabilities, along the lines inde-
pendently initiated by Lewis [1973b] and by Kraus, Lehmann and Magidor [1990].
However, possibilistic logic handles sharp propositions. Recent works pointed out
in the last part of this survey make first steps towards a reconciliation between
possibility theory, other theories of belief as well, and many-valued logic. Fuzzy
logic in the narrow sense being essentially a rigorous symbolic setting to reason
about gradual notions (including belief), we argue that this is the way to follow.
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