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Abstract

A model is defined that predicts an agent’s ascriptions of causality (and related
notions of facilitation and justification) between two events in a chain, based on
background knowledge about the normal course of the world. Background knowl-
edge is represented by nonmonotonic consequence relations. This enables the model
to handle situations of poor information, where background knowledge is not accu-
rate enough to be represented in, e.g., structural equations. Tentative properties of
causality ascriptions are discussed, and the conditions under which they hold are
identified (preference for abnormal factors, transitivity, coherence with logical en-
tailment, and stability with respect to disjunction and conjunction). Empirical data
are reported to support the psychological plausibility of our basic definitions.

1 INTRODUCTION

The problem of causal ascription that we will consider in this article needs to
be carefully distinguished from two other causality problems more commonly

1 Supported by a grant from the Agence Nationale pour la Recherche, project num-
ber NT05-3-44479.
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studied in Artificial Intelligence (AI), namely, diagnosis and the simulation of
dynamical systems. Note, however, that making a distinction between different
problems where causality is involved does not presuppose any opinion about
whether causality is a unique notion—it only suggests that different problems
can emphasize different aspects of a possibly unique notion.

Diagnosis problems are basically a matter of abduction: One takes advantage
of the knowledge of some causal links to infer the most plausible causes of an
observed event [1]. 2 In this setting, causality relations are often modelled by
conditional probabilities P (effect|cause). Nevertheless, Bayesian networks [3]
that represent a joint probability distribution by means of a directed graph
do not necessarily reflect causal links between their nodes, because different
graphical representations can be obtained depending on the ordering in which
variables are considered [4]—a problem that has been tackled by the notion
of intervention [5], to which we will come back at the end of this article.

Dynamical systems are modelled in AI in terms of qualitative physics [6], or
by means of logics of action [7–9]. Material implication being inappropriate to
represent a causal link, the latter approaches define a ‘causal rule’ as ‘if action
A has been executed then there exists a cause for B,’ where ‘there exists a cause
for B’ is expressed by means of a modal operator. Such causal theories are
generally nonmonotonic, leaving room for abnormality. Indeed, the behavior of
these causal theories tends to minimize unexplained (uncaused) abnormality
[10]. Our approach will give a central role to the notion of abnormality in
the detection of causal relations, in contrast with the aforementioned causal
theories [7–10], in which abnormality is merely minimized, and only denotes
the lack of an explanation. Furthermore, these approaches only establish the
existence of causes, but do not identify causes as such.

The problem of causal ascription discussed in this paper is not one of abductive
diagnosis (neither does it deal with the qualitative simulation of dynamical
systems, nor with the problem of describing changes caused by the execution
of actions, nor with what does not change when actions are performed). Our
problem is to infer an unknown causal relation from two known events and
some background non-causal knowledge. 3 We are concerned here with the as-
cription of causal relations within a sequence of reported events, that is, the
detection of pairs of events that can be considered as related by a causality
relation, under the normal course of things. In some sense, our work is rem-
iniscent of the ‘causal logic’ of Shafer [11], which provides a logical setting
that aims at describing the possible relations of concomitance between events

2 However, model-based diagnosis is rather a matter of inconsistency checking, find-
ing contradictions between good behavior assumptions and current observations of
a system [2], and does not refer to ideas of causality.
3 In contrast, abductive diagnosis amounts to inferring an unknown event (the
cause) from a known event (the effect) and a known causal relation.
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when an action takes place. However, Shafer’s logic does not leave room for
abnormality. This notion is central in our approach, as our view of normal
causality directly relates to relations of qualitative independence explored in
possibility theory [12]—causality and independence being somewhat antago-
nistic notions.

Models of causal ascriptions presuppose a representation of the underlying
causality-ascribing agent’s knowledge. Unlike standard diagnosis problems,
causality ascription is a problem of describing as ‘causal’ the link between two
observed events in a sequence. The first step in modelling causal ascription
is to define causality in the language chosen for the underlying representa-
tion of knowledge. In this article, we define and discuss a model of causal
ascription that represents knowledge by means of nonmonotonic consequence
relations obeying the rules of System P. 4 Indeed, agents often possess poor
knowledge about the world, under the form of default rules. Clearly, this type
of background knowledge is less accurate than, e.g., structural equations. It
is nevertheless appropriate to predict causal ascriptions in situations of re-
stricted knowledge. We first present the logical language we will use to rep-
resent background knowledge. We then define our main notion of causality
and establish some formal properties of the model. Next, we introduce a new
notion (facilitation), which is less committing than causality, in terms of the
beliefs required from the agent. Empirical data on facilitation vs. causality
ascriptions are reported to support the distinction between these two notions.
Finally, we relate our model to other works on causality in AI, and distinguish
the notion of epistemic justification from that of causality.

2 ASCRIBING CAUSALITY

An agent capable of acknowledging a causality link between two reported
events must possess some background knowledge allowing the recognition of
normal patterns of occurrence in a set of reported facts. Hence, a prerequisite
for a proper definition of causality ascription is a language for describing the
agent’s generic knowledge. This knowledge is generally qualitative in nature,
but should tolerate exceptional situations, since an agent is often capable of
distinguishing normal courses of things from abnormal ones.

In the following definitions, A, B, C, and F are events modelling either actions
or descriptions of states of affairs. Notations do not discriminate between
actions and descriptions, since this distinction does not yet play a role in the
model. These events will be time-stamped (e.g., At) when they are reported

4 This model was first advocated in two workshop papers [13,14]. The present paper
is an expanded version of [15] and [16]
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facts.

2.1 Modeling background knowledge

An agent is supposed to have observed or learned of a sequence of events, e.g.:
¬Bt, At, Bt+k. This expresses that B was false at time t, when A took place,
and that B became true afterwards (t+k denotes a time point after t). There
is no uncertainty about these events.

Moreover, the agent maintains a knowledge base made of conditional state-
ments of the form ‘in context C, if A takes place then B is generally true
afterwards’, or ‘in context C, B is generally true’. These will be denoted by
At ∧ Ct |∼ Bt+k, and by Ct |∼ Bt, respectively. (Time indices will be omitted
when there is no risk of confusion.) The conditional beliefs of an agent with
respect to B when A takes place or not in context C can take three forms: (i)
If A takes place B is generally true afterwards: At ∧Ct |∼ Bt+k; (ii) If A takes
place B is generally false afterwards: At ∧ Ct |∼ ¬Bt+k; (iii) If A takes place,
one cannot say whether B is generally true or false afterwards. In this case,
neither At ∧ Ct |∼ Bt+k nor At ∧ Ct |∼ ¬Bt+k holds. The fact that an agent
cannot assert A |∼ B is denoted by A 6|∼ B.

We assume that the nonmonotonic consequence relation |∼ satisfies the re-
quirements of ‘System P’ [17]; namely, |∼ is reflexive and the following pos-
tulates and characteristic properties hold (|= denotes classical logical entail-
ment):

• Right Weakening : E |∼ F and F |= G imply E |∼ G
• Left AND : E |∼ F and E |∼ G imply E |∼ F ∧G
• Right OR: E |∼ G and F |∼ G imply E ∨ F |∼ G
• Cautious Monotony : E |∼ F and E |∼ G imply E ∧ F |∼ G
• Cut : E |∼ F and E ∧ F |∼ G imply E |∼ G

As we are describing propositions as events (or subsets of possible worlds), and
not as well-formed formulas of propositional logic, we do not need any syntax
independence axiom. Right Weakening and Left AND together imply that the
set of beliefs of the agent is deductively closed. Right OR avoids the need for
reasoning by cases. Cut follows from the other axioms. Cautious Monotony
and Cut replace Monotony and Transitivity properties of classical inference so
as to lay bare the possibility of exceptional situations, and make this setting
maximally cautious.

System P enjoys only one half of the deduction theorem:

• HD : E ∧ F |∼ G implies E |∼ ¬F ∨G.
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In addition, we shall sometimes assume the property of Rational Monotony
[18], a strong version of Cautious Monotony involving an explicit handling of
operator 6|∼ as a means of reasoning about ignorance:

• Rational Monotony: E 6|∼ ¬F and E |∼ G imply E ∧ F |∼ G

Empirical studies repeatedly demonstrated [19–23] that System P and Ra-
tional Monotony provide a psychologically plausible representation of back-
ground knowledge and default inference. Arguments for using nonmonotonic
logics in modeling causal reasoning were also discussed in the cognitive sci-
ence literature [24]. Finally, system P is known to be a qualitative variant
of probabilistic reasoning, since the axioms of system P hold for infinitesimal
conditional probabilities [25,3]. These axioms hold as well for a special kind
of standard probabilities, namely, big-stepped probabilities [26,27]. There also
exists a possibilistic semantic for System P, which holds for any kind of pos-
sibility measure [28]. Moreover, adding Rational Monotony comes down to
reasoning with a single possibility distribution in possibilistic logic [28].

2.2 A definition of causality ascription

Assume that in a given context, described by the situation where the agent
knows that C holds, the occurrence of event B is considered to be exceptional
(i.e., C |∼ ¬B). Assume now that for some event A, it is part of the agent’s
background knowledge that A ∧ C |∼ B. If both conditions are satisfied, we
will say that in context C, A is perceived to be the cause of B (denoted
C : A ⇒ca B) when an agent learns that B was false when A was reported,
then B became true.

Definition 1 (Causality ascription) Let us assume that an agent learns of
the sequence ¬Bt, At, Bt+k. Let us call C (the context) the conjunction of all
other facts known by, or reported to, the agent at time t. If the agent believes
that C |∼ ¬B, and that A ∧ C |∼ B, the agent will perceive A to be the cause
of B in context C, noted C : A ⇒ca B.

Note that our formal framework for causality ascription is based on the use
of system P: that is, it only uses pieces of background knowledge featuring
|∼. Of course, in the above definition A can stand for any compound reported
fact such as A′ ∧ A′′.

Example 2 (Driving while intoxicated) When driving, one has generally
no accident, Drive |∼ ¬Accident . This is no longer true when driving fast while
drunk, which normally leads to an accident, Drive∧Fast∧Drunk |∼ Accident .
Suppose now that an accident took place after the driver drove fast while being
drunk. Fast ∧ Drunk will be perceived as the cause of the accident.
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In our model, C |∼ ¬B and A ∧ C |∼ B must be understood as pieces of
default knowledge used by the agent to interpret the chain of reported facts
¬Bt (in context C), At, Bt+k. An interesting situation arises when, in context
C, an agent learns of the sequence ¬Bt, At, and Bt+k, while it believes that
¬Bt ∧C |∼ ¬Bt+k, and that At ∧C |∼ ¬Bt+k. Then the agent cannot consider
that C : At ⇒ca Bt+k, and it may suspect some fact went unreported: finding
about it would amount to a diagnosis problem. In contrast, when an agent
believes that C |∼ ¬B and A ∧ C |∼ B, and learns of the sequence of events
¬Bt, At, and ¬Bt+k, the agent would conclude that At failed to produce its
normal consequence, for unknown reasons.

The introduction of the parameter k in Definition 1 implicitly refers to the
delay usually required for A to produce its effect, (namely, to make B happen).
This would suggest a further condition for the ascription of causality, namely,
that the value of k be consistent with the agent’s beliefs about such a delay
when A takes place. In the rest of this article, we will assume this condition
to be satisfied.

3 PROPERTIES OF CAUSAL ASCRIPTIONS

In this section, properties of our definition of causality are reviewed. The
validity of the results below presupposes the setting of system P only.

3.1 Impossibility of mutual causality

Proposition 3 From the minimal sequence of events required for C : A ⇒ca B,
it is impossible to believe C : B ⇒ca A.

PROOF. The ascription by an agent that C : A ⇒ca B requires (in addition
to particular beliefs of the agent) that the minimal sequence {¬Bt, At, Bt+k}
has taken place. This is clearly incompatible with the simultaneous ascription
that C : B ⇒ca A, since there is obviously no t′, k′ such that {¬Bt, At, Bt+k}
can be reconciliated with {¬At′ , Bt′ , At′+k′}. 2

Note that Proposition 3 does not exclude that, in turn, A is perceived to cause
B, then, later, B is perceived to cause A, in an oscillatory-like fashion.
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3.2 Preference for abnormal causes

Psychologists show that abnormal conditions are more likely to be selected
by human agents as the cause of an event [29] and all the more so if this
event is itself abnormal [30] (see also [31] in the area of legal philosophy). Our
model reflects this preference: Only what is abnormal in a given context can
be perceived as causing a change in the normal course of things in this context.

Proposition 4 If C : A ⇒ca B then C |∼ ¬A.

PROOF. If C : A ⇒ca B, it holds that C |∼ ¬B, C ∧ A |∼ B. Using HD,
C ∧ A |∼ B implies C |∼ ¬A ∨ B. Using AND, we get C |∼ (¬A ∨ B) ∧ ¬B,
that is C |∼ ¬A ∧ ¬B, and by RW, C |∼ ¬A. 2

Example 5 (The unreasonable driver) Let us imagine an agent who be-
lieves it is normal to be drunk in the context of driving (Drive |∼ Drunk).
This agent may think that it is exceptional to have an accident when driving
(Drive |∼ ¬Accident). In that case, the agent cannot but believe that accidents
are exceptional as well when driving while drunk: Drive∧Drunk |∼ ¬Accident .
As a consequence, when learning that someone got drunk, drove his car, and
had an accident, this agent will not consider that Drive : Drunk ⇒ca Accident .

A notable and straightforward consequence of Proposition 4 is that an agent
who perceives A to be the cause of B in context C will also assume, if not told
otherwise, that A was false before it became true at time t—provided that
context C is assumed to have been stable for some time before t.

3.3 Transitivity

Definition 1 does not grant general transitivity to ⇒ca. If C : A ⇒ca B and
C : B ⇒ca D, it does not always follow that C : A ⇒ca D. Formally: C |∼ ¬B
and A ∧ C |∼ B and C |∼ ¬D and B ∧ C |∼ D do not entail C |∼ ¬D and
A ∧ C |∼ D, because |∼ itself is not transitive. Although ⇒ca is not generally
transitive, it becomes so in one particular case.

Proposition 6 If C : A ⇒ca B, C : B ⇒ca D, B∧C |∼ A, and D reportedly
took place after A, then C : A ⇒ca D.

PROOF. From the definition of C : B ⇒ca D, it holds that B ∧ C |∼ D.
From B ∧ C |∼ A and B ∧ C |∼ D, applying Cautious Monotony yields
A ∧ B ∧ C |∼ D, which together with A ∧ C |∼ B (from the definition of
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C : A ⇒ca B) yields by Cut A ∧ C |∼ D; since it holds from the definition of
C : B ⇒ca D that C |∼ ¬D, the two parts of the definition of C : A ⇒ca D
that involve background knowledge are satisfied. Furthermore, C : A ⇒ca B
requires a sequence {At,¬Bt, Bt+k} and C : B ⇒ca D requires a sequence
{Bt′ ,¬Dt′ , Dt′+k′}. From C |∼ ¬D, it holds that ¬Dt (while it holds that
Dt′+k′ , it cannot be the case that t = t′ +k′ from the condition that D report-
edly took place after A, that is, t < t′ + k′). Hence the sequence holds that
{At,¬Dt, Dt′+k′}, as required by C : A ⇒ca D. 2

Example 7 (Mud on the plates) Driving back from the countryside, you
get a fine because your plates are muddy, Drive : Mud ⇒ca Fine. Let us
assume that you perceive your driving to the countryside as the cause for
the plates to be muddy, Drive : Countryside ⇒ca Mud . Transitivity will ap-
ply (and yield Drive : Countryside ⇒ca Fine) as soon as it holds hold that
Mud ∧ Drive |∼ Countryside: If mud on your plates usually means that you
went to the countryside, then the trip can be considered the cause of the fine.
If the presence of mud on your plates does not allow to infer that you went to
the countryside (perhaps you also regularly drive through muddy streets where
you live), then transitivity is no longer warranted; you will only consider that
the mud caused the fine, not that the trip did.

Note also that the restricted transitivity property expressed in proposition 6
agrees well with the fact that reports often identify actions with their con-
sequences, when the latter are prototypically diagnostic of the former. For
example, one may either say that a fast driver had an accident because he had
been drinking (action) or because he was inebriated (consequence). Indeed, in
this situation, one can assume that Inebriated |∼ Drinking .

3.4 Entailment and causality ascriptions

Classical entailment |= does not preserve ⇒ca. If C : A ⇒ca B and B |= B′,
one cannot say that C : A ⇒ca B′. Indeed, while A∧C |∼ B′ follows by right
weakening [17] from A ∧C |∼ B, it is not generally true that C |∼ ¬B′, given
that C |∼ ¬B.

Besides, according to Definition 1, if A′ |= A, the fact that C : A ⇒ca B does
not entail that C : A′ ⇒ca B, since C |∼ ¬B and A ∧ C |∼ B do not entail
A′ ∧ C |∼ B when A′ |= A. This fact is due to the extreme cautiousness of
System P. In contrast, assuming Rational Monotony would enable the latter
inference insofar as A ∧ C |∼ ¬A′ does not hold, as shown in the following
example.

Example 8 (Stone throwing) An agent believes that a window shattered
because a stone was thrown at it (Window : Stone ⇒ca Shatter), based on
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its beliefs that Window |∼ ¬Shatter and Stone ∧ Window |∼ Shatter . Us-
ing the Cautious Monotony of System P, it is not possible to predict that
the agent would make a similar ascription if a small stone had been thrown
(SmallStone), or if a white stone had been thrown (WhiteStone), or even if
a big stone had been thrown (BigStone), although it holds that SmallStone |=
Stone, WhiteStone |= Stone, and BigStone |= Stone. Adding Rational Monotony
[18] to System P allows the ascriptions Window : BigStone ⇒ca Shatter and
Window : WhiteStone ⇒ca Shatter , but also Window : SmallStone ⇒ca Shatter .
To block this last ascription, it would be necessary that the agent has spe-
cific knowledge about the harmlessness of small stones, such as Window ∧
Smallstone 6|∼ Shatter or even Window ∧ Smallstone |∼ ¬Shatter (or if it
were known that stones thrown through windows are generally not small).

3.5 Stability with respect to disjunction and conjunction

⇒ca is stable with respect to disjunction, both on the right and on the left, and
stable with respect to conjunction on the right. Such properties were laid bare
in [12] in the setting of qualitative possibility theory. The following proposition
shows their validity in system P.

Proposition 9 The following properties hold:

(1) If C : A ⇒ca B and C : A ⇒ca B′, then C : A ⇒ca B ∧B′.
(2) If C : A ⇒ca B and C : A ⇒ca B′, then C : A ⇒ca B ∨B′.
(3) If C : A ⇒ca B and C : A′ ⇒ca B, then C : A ∨ A′ ⇒ca B.

PROOF. Applying AND to the first part of the definitions of C : A ⇒ca B
and C : A ⇒ca B′, i.e., C |∼ ¬B and C |∼ ¬B′, yields C |∼ ¬B ∧ ¬B′, which
together with Right Weakening, yields C |∼ ¬B∨¬B′, and thus C |∼ ¬(B∧B′).
Now, applying AND to the second part of the definitions of C : A ⇒ca B and
C : A ⇒ca B′, i.e., A ∧ C |∼ B and A ∧ C |∼ B′, yields A ∧ C |∼ B ∧B′. The
definition of C : A ⇒ca B ∧B′ is thus satisfied, and Fact 1 is proved.

The second fact is proved similarly, just noticing that C |∼ ¬B ∧ ¬B′, and
A∧C |∼ B∨B′, obtained from A∧C |∼ B∧B′ by Right weakening, is exactly
C : A ⇒ca B ∨B′.

The proof of Fact 3 is obtained by separately applying OR to the first parts
and the second parts of the definitions of C : A ⇒ca B and C : A ⇒ca B′. 2

⇒ca is not stable with respect to conjunction on the left. If C : A ⇒ca B and
C : A′ ⇒ca B, then it is not always the case that C : A ∧ A′ ⇒ca B.
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Note that left conjunction of causal ascriptions would be pragmatically incon-
gruous. If one believes that C : A ⇒ca B and that C : A′ ⇒ca B, it would be
quite misleading to assert that C : A ∧ A′ ⇒ca B from a conversational point
of view, as it would suggest that both A and A′ were needed to make B happen.
If indeed either one of A and A′ are perceived as sufficient for having caused
B, it is more cooperative to assert C : A ∨ A′ ⇒ca B than C : A ∧ A′ ⇒ca B.

Example 10 (Busy professors) Suppose that professors in your department
seldom show up early at the office (Prof |∼ ¬Early). However, they generally
do so when they have many student papers to mark (Prof ∧Mark |∼ Early),
and also when they have a grant proposal to write (Prof ∧ Grant |∼ Early).
Today, a colleague is showing up early, and you know she has many papers
to mark and a grant proposal to write. You are ready to say that the papers
caused her to come early (Prof : Mark ⇒ca Early), and also to say that the
grant proposal caused her to come early (Prof : Grant ⇒ca Early). Would you
find it appropriate to say that the cause of her showing up early was the pa-
pers and the grant? Probably not, as it would give the misleading impression
that one and only one of those would have been insufficient for her to come in
early.

More formally, the failure of left conjunction for causal ascriptions is once
again due to the cautiousness of System P; for C : A ∧ A′ ⇒ca B to hold,
it is necessary that C ∧ A |∼ A′ or, alternatively, that C ∧ A′ |∼ A. Then
Cautious Monotony will yield A∧A′ ∧C |∼ B. Rational Monotony can soften
this constraint and make it enough that C ∧ A 6|∼ ¬A′ or C ∧ A′ 6|∼ ¬A.
Thus, left conjunction will fail when it is abnormal to observe A and A′ at the
same time, for example when A |∼ ¬A′. Note that it may also happen that
A ∧ A′ ∧ C |∼ ¬B without creating any inconsistency.

Example 11 (Busy professors, continued) Suppose that in your depart-
ment, it is very uncommon to have many papers to mark and a grant proposal
to write on the same day, say, Grant |∼ ¬Mark . This might make it even
more unlikely that you will say your colleague came in early because she had
many papers to write and a grant proposal to write. If Grant |∼ ¬Mark , it
is impossible to feel sure that Prof : Mark ∧Grant ⇒ca Early. For example,
it might be the case that faced with such an exceptional workload, professors
usually prefer working at home all day rather than coming to the office and be
distracted. If Grant |∼ Mark does not hold, then it is also impossible to come to
the conclusion that Prof : Mark ∧Grant ⇒ca Early. In that situation, when
a professor does anyway show up early when she has papers to mark and a
proposal to write, one might look for another explanation: maybe she has an
important meeting early in the morning, that she could not reschedule even
though she wanted to stay home and work?
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4 FACILITATION: DEFINITION AND EXPERIMENTATION

Causality is quite a strong notion, and one might suspect that some notion not
quite as strong may also make sense in some situations. For instance, suppose
some fact is generally believed to hold in a certain context, and the agent
does not believe in that fact any longer in some restricted context, without
necessarily believing its contrary. In this case the agent will be more cau-
tious in its causal interpretation of the sequence of events. In this section, we
model a companion relation to causality, that we call facilitation. Modelling
this relation requires to complement System P with Rational Monotony. Fur-
thermore, the distinction between causality and the new notion of facilitation
is sanctioned, as we will see, by the results of two experiments.

4.1 A variant of causality: facilitation

Assume that in a given context C, the occurrence of event B is known to be
exceptional (i.e., C |∼ ¬B), and that indeed ¬B is observed. Assume now that,
further on, a fact F is reported along with B, which becomes true. If F is such
that F ∧ C 6|∼ ¬B and F ∧ C 6|∼ B, we will say that in context C, F alone is
perceived to have facilitated the occurrence of B (denoted C : F ⇒fa B), since
in some sense the occurrence of F makes the occurrence of B unsurprising (but
not expected) to the agent.

Definition 12 (Facilitation ascription) Let us assume that an agent learns
of the sequence ¬Bt, Ft, Bt+k. Let us call C (the context) the conjunction of
all other facts known by or reported to the agent at time t. If the agent believes
that C |∼ ¬B, F ∧ C 6|∼ ¬B and F ∧ C 6|∼ B, it will perceive F as having
facilitated the occurrence of B in context C, noted C : A ⇒fa B.

Example 13 (Driving while intoxicated, again) When driving, one has
generally no accident, Drive |∼ ¬Accident . This is no longer true when driving
while drunk, which is not as safe (Drive ∧Drunk 6|∼ ¬Accident), even though
it does not systematically or almost systematically generate accidents (Drive∧
Drunk 6|∼ Accident). Suppose now that an accident took place, the driver being
drunk. Drunk will only be judged as having facilitated the accident. In order to
make a causality ascription, the agent needs a stronger piece of evidence, for
instance, that not only the driver was drunk but that he drove fast, as accidents
are much more likely to occur in this case.

Here, F ∧ C 6|∼ ¬B stands as a piece of default knowledge. In fact, 6|∼ can
be understood in two different ways: Either F ∧ C 6|∼ ¬B just means that
F ∧ C |∼ ¬B is not deducible from the agent’s knowledge base, or it means
that the agent really knows it is impossible to assert F ∧ C |∼ ¬B. For our
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present purpose, using Rational Monotony works as if the agent uses the fact
that he cannot draw the default conclusion ¬B from F ∧C to derive additional
conclusions, that Cautious Monotony would not support. The modelling of
facilitation thus requires Rational Monotony, which can be handled in the
system of Rational Closure, i.e., the setting of possibility theory [28].

Note that Definition 12 is less committing than saying that F ‘prevents’ ¬B
from persisting: 6|∼ does not allow the jump from ‘not having ¬B’ to ‘B’.
In Definition 1, the fact that B is exceptional in context C precludes the
possibility for C to be perceived as the cause of B — but not the possibility
that B |= C, i.e., that C is a necessary condition of B. Thus, context can be
a necessary condition of B without being perceived as its cause.

An interesting situation arises when an agent only knows that C |∼ ¬B and
F∧C 6|∼ ¬B, and learns of the sequence of events ¬Bt (in context C), Ft, Bt+k.
Although this situation should lead the agent to judge that C : Ft ⇒fa Bt+k, it
may be tempting to judge that C : Ft ⇒ca Bt+k, as long as no other potential
cause reportedly took place.

Propositions valid for causality sometimes hold as well for facilitation. For
instance, the following version of Proposition 4 is valid:

Proposition 14 If C : A ⇒ca B or C : A ⇒fa B, then C |∼ ¬A.

PROOF. C |∼ ¬A is false when either C |∼ A or C 6|∼ ¬A. If C |∼ A, it
cannot be true that both C |∼ ¬B and either A ∧ C 6|∼ ¬B (the definition of
C : A ⇒fa B) or A ∧ C |∼ B (the definition of C : A ⇒ca B). This is due to
the Cautious Monotony property of |∼, which forces C∧A |∼ ¬B from C |∼ A
and C |∼ ¬B. Likewise, the Rational Monotony of |∼ forces C ∧ A |∼ ¬B
from C 6|∼ ¬A and C |∼ ¬B; thus, it cannot be the case that C : A ⇒fa B or
C : A ⇒ca B when C 6|∼ ¬A. 2

Example 15 (The unreasonable driver is back) Let us imagine an agent
who believes it is normal to be drunk in the context of driving (Drive |∼
Drunk). This agent may think that it is exceptional to have an accident when
driving (Drive |∼ ¬Accident). In that case, the agent cannot but believe that
accidents are exceptional as well when driving while drunk: Drive ∧Drunk |∼
¬Accident . As a consequence, when learning that someone got drunk, drove his
car, and had an accident, this agent will neither consider that Drive : Drunk ⇒ca

Accident nor that Drive : Drunk ⇒fa Accident .

There is no previous empirical evidence supporting the distinction we intro-
duce between ascriptions of cause and facilitation. To check whether this dis-
tinction has intuitive appeal to lay reasoners, we conducted two experiments
in which we presented participants with different sequences of events. We
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assessed their relevant background knowledge, from which we predicted the
relations of cause and facilitation they should ascribe between the events in
the sequence. We then compared these predictions to their actual ascriptions.

4.2 Experiment 1

4.2.1 Methods

Participants were 46 undergraduate students, untrained in formal logic or in
philosophy. Participants read the stories of three characters, and answered six
questions after reading each story. In this section, we give a detailed presenta-
tion of the first story and the six questions that followed, and summarize the
rest of the material. The first story read as follows:

Benoît, who had never felt especially tired, recently took nightshifts at work,
with a new boss who turned out to be very stressful. One month later, Benoît
constantly feels very tired.

The first three questions were meant to check out each participant’s back-
ground knowledge regarding the relations between nightshifts and feeling con-
stantly tired, working under a stressful boss and feeling constantly tired, and
the relation between nightshifts under a stressful boss and feeling constantly
tired. For example, the first question read:

What do you think is the most common, the most normal: taking nightshifts
and feeling constantly tired, or taking nightshifts and not feeling constantly
tired? or are those equally common and normal?

Participants who chose the first, second, and third answer were assumed to en-
dorse either one of the following statements: Nightshifts |∼ Tired ; Nightshifts |∼
¬Tired ; and (Nightshifts 6|∼ Tired) ∧ (Nightshifts 6|∼ ¬Tired), respectively.

The fourth, fifth, and sixth questions measured participants’ ascriptions of
causality and facilitation between (i) taking nightshifts and feeling constantly
tired, (ii) working under a stressful boss and feeling constantly tired, and
(ii) taking nightshifts under a stressful boss and feeling constantly tired. For
example, the fourth question read:

Fill in the blank with the word ‘caused’ or ‘facilitated’, as seems the most
appropriate. If neither seems appropriate, fill in the blank with ‘xxx’: Taking
nightshifts . . . the fact that Benoît feels constantly tired.

The whole process was then repeated with a second and a third story. In the
second story, the character took nightshifts and had become a dad. In the
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third story, the character had a stressful boss and had become a dad. Thus,
overall, the three characters were described as constantly feeling very tired
(an uncommon feeling for them) after two recent changes in their lives, taken
from a pool of three: taking nightshifts, having a stressful boss, becoming a
dad. For each character, the first three questions assessed participants’ back-
ground knowledge with respect to (i) the relation between the first event and
feeling constantly tired; (ii) the second event and feeling constantly tired; and
(iii) the conjunction of the two events and feeling constantly tired. Then, the
fourth, fith, and sixth questions assessed participants ascriptions of causality
or facilitation between (i) the first event and feeling constantly tired; (ii) the
second event and feeling constantly tired; and (iii) the conjunction of the two
events and feeling constantly tired.

The experiment was conducted in French, 5 and the order in which the stories
were presented to the participants was counterbalanced (i.e., they were pre-
sented in one order to half of the participants and in the opposite order to the
other half).

4.2.2 Results

Out of the 116 ascriptions that the model predicted to be of facilitation, 68%
indeed were so, 11% were of causality, and 21% were neither. Out of the 224
ascriptions that the model predicted to be of causality, 46% indeed were, 52%
were of facilitation, and 2% were neither. (Remember that what is meant by
“ascription” is a choice of term—the ascription is of causality for participants
who selected the term “caused,” it is of facilitation for participants who se-
lected the term “facilitated” and the ascription is blank for participants who
declined to choose a term.) The global trend in the results is thus that back-
ground knowledge that theoretically matches a facilitation ascription indeed
largely leads people to make such an ascription, while background knowledge
that theoretically matches a causality ascription leads people to divide equally
between causality and facilitation ascriptions. This trend is statistically reli-
able for almost all ascriptions required by the task. Relevant statistics (χ2

scores) are higher than 7.7 for 7 out of the 9 ascriptions (p < .05, one-tailed,
in all cases), and higher than 3.2 for the remaining two ascriptions (p < .10,
one-tailed, in both cases). From these results, it appears that the notion of
facilitation does have intuitive appeal to lay reasoners, and that it is broadly
used as defined in our model. In particular, it clearly has a role to play in
situations where an ascription of causality sounds too strong a conclusion, but
no ascription at all sounds not strong enough.

5 The phrase ‘a favorisé’ was used for ‘facilitated’, instead of the apparently straight-
forward translation ‘a facilité’, for it seemed pragmatically awkward to use the
French verb ‘faciliter’ for an undesirable outcome like being constantly tired.
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4.3 Experiment 2

Experiment 2 was designed to consolidate the results of Experiment 1 and
to answer the following questions: Does the fact that background knowledge
matches Definition 1 or Definition 12 affect the strength of the link participants
perceive between two reported events, and does this perceived strength in turn
determine whether they make an ascription of causality or facilitation?

4.3.1 Methods

Participants were 41 undergraduates. Elements of their background knowledge
were assessed as in Experiment 1, in order to select triples of propositions
< Context ,Factor ,Effect > that matched either Definition 1 or Definition
12. E.g., a participant might believe that one has generally no accident when
driving, but that one will generally have an accident when driving after some
serious drinking; for this participant, < Drive, SeriousDrinking ,Accident > is
a match with Definition 1. Experiment 2 used a richer variety of themes than
Experiment 1, including alcohol and road accidents, the appropriate prepara-
tion of tea, and the way smoking can deteriorate one’s sensitivity to subtle
flavors.

Once background beliefs regarding each triple were assessed, participants rated
on a 9-point scale how strongly Factor and Effect were related. Finally, as a
measure of ascription, they chose an appropriate term to describe the relation
between Factor and Effect , from a list including causes, facilitates, refutes,
explains, justifies, and is independent of.

4.3.2 Results

Out of the 16 ascriptions that the model predicted to be of facilitation, 14 were
so, and 2 were of causality. Out of the 25 ascriptions that the model predicted
to be of causality, 11 were so, and 14 were of facilitation. Beliefs thus had the
expected influence on ascriptions, χ2 = 4.5, p < .05. The trend observed in
Experiment 1 is replicated in Experiment 2. We also conducted a mediation
analysis of our data, which consists in a series of 3 regression analyzes.

In all regression analyzes, background knowledge was encoded as −1 when it
matched Definition 12, and as +1 when it matched Definition 1. Ascriptions
of facilitation were encoded as −1, and ascriptions of causality were encoded
as +1. The first regression assessed the effect of background knowledge on
ascription, which was statistically significant, β = .33, p < .05. The second
regression assessed the effect of background knowledge on perceived strength,
which was also significant, β = .41, p < .01. In the third regression, back-
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Background knowledge

Perceived strength

Ascription

.41∗∗ .29∗

(.23)
.33∗

Fig. 1. Mediating role of perceived strength for the effect of background knowledge
on ascription. Coefficients are standardized βs, ∗p < .05, ∗∗p < .01.

ground knowledge and perceived strength were entered simultaneously. Per-
ceived strength was a reliable predictor of ascription, β = .29, p < .05, which
was no longer the case for background knowledge, β = .23, p > .05. Data
thus meet the requirements of a mediational effect. We can therefore conclude
that whether the background knowledge of participants matches Definition 12
or Definition 1 determines their final ascription of C : Factor ⇒fa Effect or
C : Factor ⇒ca Effect through its effect on the perceived strength of the link
between Factor and Effect .

The two experiments we have reported show that our basic definitions of
causality and facilitation ascriptions have some degree of descriptive valid-
ity. Human subjects do differentiate between causality and facilitation, and
broadly along the lines featured in our definitions. The next section will intro-
duce a third notion besides cause and facilitation, namely, that of justification
— but it will first discuss our model in relation to previous work on causality.

5 RELATED WORKS

In this section, we first compare our approach to causality with previous works
not focused on diagnosis. Then we show a distinction between causality as-
cription and the notion of explanation.

5.1 Causality, non-monotonicity, intervention.

One of the earliest formal account of causality is due to Von Wright[32]. Ac-
cording to this author, an action caused p to be true if and only if either:

• p was false before the action, and had the action not been taken, p would
not have become true, or

• the action maintains p true against the normal course of things, thus pre-
venting p from becoming false.
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The first situation straightforwardly relates to Definition 1. The second situ-
ation can also be represented in our setting: Bt is known to be true, and after
At takes place Bt+k is still true, although in the normal course of things, had
A not happened, B would have become false, i.e., Bt∧C |∼ ¬Bt+k. The agent
knowledge also includes Bt ∧At ∧C |∼ Bt+k. Letting C ′ = Bt ∧C, this can be
rewritten C ′ |∼ ¬Bt+k and A ∧ C ′ |∼ Bt+k, which is formally Definition 1.

Our approach is in fact directly inspired by previous works on epistemic qual-
itative independence in the setting of possibility theory, especially [12]. In this
paper, believing B is said to be independent of A when learning A does not
affect our belief in B. At the opposite, A is said to refute B when learning A
does turns our belief in B into believing ¬B. Our notion of causality is directly
based on the latter notion, in the scope of analyzing a sequence of reported
events, and using system P instead of possibility theory. When B is believed
and learning A only leads to drop this belief, A is said to ‘cancel’ B in [12].
This notion is instrumental in our definition of facilitation, in a setting that
is mathematically equally expressive to possibility theory.

Where our qualitative approach represents the knowledge underlying causal
ascriptions by means of nonmonotonic consequence relationships, quantita-
tive approaches would represent knowledge by means of structural equations.
Following [5], Halpern and Pearl [33,34] have proposed a model that distin-
guishes real causes (‘cause in fact’) from potential causes, by using an a pri-
ori distinction between ‘endogenous’ variables (the possible values of which
are governed by structural equations, for example physical laws), and ‘exoge-
nous’ variables (determined by external factors). Exogenous variables cannot
be deemed causal. Halpern and Pearl’s definition of causality formalizes the
notion of an active causal process. More precisely, the fact A that a subset
of endogenous variables has taken some definite values is the real cause of an
event B if (i) A and B are true in the real world, (ii) this subset is minimal,
(iii) another value assignment to this subset would make B false, the values
of the other endogenous variables that do not directly participate to the oc-
currence of B being fixed in some manner, and (iv) A alone is enough for B
to occur in this context. This approach, thanks to the richness of background
knowledge when it is represented in structural equations, makes it possible to
treat especially difficult examples. 6

6 Ascribing causality when analyzing a set of reported facts may find its motivation
in the search for responsibility behind the occurrence of these facts. Building upon
the notion of potential cause, Chockler and Halpern [35] have introduced definitions
of responsibility and blame: The extent to which a cause (or an agent) is respon-
sible for an effect is graded, and depends on the presence of other potential causes
(or agents). Clearly, the assessment of responsibility from identification of causal
relationships raises further problems that are beyond the scope of this article.
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Our model is however not to be construed as an alternative or a competitor
to models based on structural equations, like the one of Halpern and Pearl.
Indeed, we see our approach as a complement to structural equation modeling.
One might not have access to the accurate information needed to build a
structural equation model; in this case, our less demanding model might still
be operable. Alternatively, a decision-support system may be able to build a
structural equation model of the situation, although its users only have access
to qualitative knowledge. In that case, the system will be able to compare
its own causality ascriptions to the conclusions of the qualitative model, and
take appropriate explanatory steps, would those ascriptions be too different.
Indeed, our model does not aim at identifying the true, objective cause of an
event, but rather at predicting what causal ascription an agent would make
based on the limited information it has at its disposal.

Models based on structural equations are often supplemented with the useful
notion of intervention [5]. In many situations, finding the cause of an event will
be much easier if the agent can directly intervene in the manner of an experi-
menter. In future work, we intend to explore the possibility of supplementing
our own model with a similar notion by means of a do(•) operator. As for
now, we only give a brief example that suggests that our approach needs the
complementary notion of intervention for cleaner ascriptions of causality. An
ascription of causality (resp., facilitation) would be made iff the requirements
of Definition 1 (resp., 12) are met both for A, B, C and for do(A), B, C, where
do(A) means that the occurrence of A is forced by an intervention—thus re-
quiring that the definitions take into account the three distinct components
that are: factual observations, pieces of beliefs, and known interventions.

Example 16 (Yellow teeth) An agent learns that someone took up smok-
ing, that this person’s teeth yellowed, and that this person developed lung
cancer. The agent believes that generally speaking, it is abnormal to be a
smoker, to have yellow teeth, and to develop lung cancer (resp., (C |∼ ¬Smoke,
C |∼ ¬Yellow , C |∼ ¬Lung). The agent believes that it is normal for smok-
ers to have yellow teeth (C ∧ Smoke |∼ Yellow) and to develop lung cancer
(C ∧ Smoke |∼ Lung), and that it is not abnormal for someone who has yel-
low teeth to develop lung cancer (C ∧ Yellow 6|∼ ¬Lung). From these beliefs
and observations, Definitions 12 and 1 would allow for various ascriptions,
including the following one: Smoking caused the yellow teeth which in turn
facilitated lung cancer. With the additional constraint based on the do(•) op-
erator, only one set of ascriptions remains possible: Both the yellow teeth and
the lung cancer were caused by smoking. Yellow teeth cannot be said anymore
to facilitate lung cancer because, inasmuch as lung cancer is generally abnor-
mal, it holds that C ∧ do(Yellow) |∼ ¬ Lung: There is no reason to think that
one will develop lung cancer after painting one’s teeth yellow.
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5.2 Causality vs. justification

Perceived causality as expressed in Definition 1 should be distinguished from
the following situation, which we term ‘justification.’ We write that C : A ⇒ju B
when an agent judges that the occurrence of A in context C gave reason to
expect the occurrence of B.

Definition 17 (Justification) Let us assume that an agent learns of the
sequence ¬Bt, At, Bt+k. Let us call C (the context) the conjunction of all
other facts known by or reported to the agent at time t. If the agent believes
that C 6|∼ ¬B, C 6|∼ B, and that A ∧ C |∼ B, it will perceive A to justify the
expectation that B would occur in context C, noted C : A ⇒ju B.

What we call justification is borrowed again from [12] and is akin to the no-
tion of explanation following Spohn [36]: Namely, ‘A is a reason for B’ when
raising the epistemic rank for A raises the epistemic rank for B. Gärdenfors
[37] captured this view to some extent, assuming that A is a reason for B
if B is not retained in the contraction of A. Williams et al. [38] could ac-
count for the Spohnian view in a more refined way using kappa-rankings and
transmutations, distinguishing between weak and strong explanations. As our
framework can easily be given a possibilistic semantics [28], it could properly
account for this line of thought, although our distinction between perceived
causation and epistemic justification is not the topic of the above works.

In our model this distinction is very clear. Faced with facts C, ¬Bt, At, Bt+k,
an agent believing that C 6|∼ ¬B, C 6|∼ B and A∧C |∼ B may doubt that the
change from ¬Bt to Bt+k is really due to At, although the latter is indeed the
very reason for the lack of surprise at having Bt+k reported. Indeed, situation
¬Bt at time t appears to the agent to be contingent, since it is neither a
normal nor an abnormal course of things in context C. This clearly departs
from the situation where C |∼ ¬B and A ∧ C |∼ B, wherein the agent will
judge that C : A ⇒ca B. In a nutshell, the case whereby C 6|∼ ¬B, C 6|∼ B and
A ∧ C |∼ B cannot be interpreted as the recognition of a causal phenomenon
by an agent: All that can be said is that reporting A caused the agent to start
believing B, and that it should not be surprised of having Bt+k reported.

6 CONCLUDING REMARKS

We have presented a simple qualitative model of the causal ascriptions an
agent will make from its background default knowledge, when faced with a
series of events. The model assumes that the agent’s beliefs are represented in
the setting of nonmonotonic reasoning, and more precisely in System P. A new
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notion, less committing than perceived causality, has also been laid bare. It
naturally appears in the formal model, provided that the Rational Monotony
axiom is added—furthermore, this notion is proved to be cognitively relevant
via a set of experimental tests.

The model we have presented is certainly just a first step towards a fully satis-
factory account of causal ascription. In a provocatively titled paper (‘Causality
is undefinable’), Zadeh [39] illustrated the difficulty of causal ascriptions by
means of the following example:

Example 18 (From Zadeh [39]) I am called by a friend. He needs my help
and asks me to rush to his home. I jump into my car and drive as fast as I
can. At an intersection, I am hit by another car. I am killed. Who caused my
death? My friend; I; or the driver of the car that hits me. Note that in such
a scenario, it seems possible to expand the list of candidate causes very easily,
in an almost endless manner, as here, e.g., “my emotionality that limits my
capacities to avoid accidents,” “in my hurry, I had not fasten my seat belt,”
or even “the fact that the phone was working and I was there for receiving the
call.”

While we do not claim that our model can entirely take care of such an exam-
ple, we note that it might well handle some of its crucial aspects. For instance,
not fastening the seat belt would likely count as a facilitation, rather than as a
cause of death. Picking up the phone would likely not be considered a cause of
death, because of the restricted transitivity of causal ascriptions in our model.
Suppose that picking up the phone caused listening to the friend’s story, which
caused the fast driving, which caused the accident, which caused the death.
Did picking up the phone caused the death? In our model, for such a con-
clusion to hold, one would need to accept that traffic accidents are usually
diagnostic of fast driving, that fast driving is usually diagnostic of having lis-
tened to a friend’s call for help, and that having listened to a friend’s call for
help is usually diagnostic of having picked up the phone. At least the second
link in that chain is very doubtful.

Future developments of our model should include the formal properties of fa-
cilitation in the formal approach, and study the potential of the notion of in-
tervention in the model. In addition to supplementing this model with a do(•)
operator, we intend to extend our present work in three main directions. First,
we should be able to equip our framework with possibilistic qualitative coun-
terparts to Bayesian networks [40], since System P augmented with Rational
Monotony can be represented in possibilistic logic [28]. 7 Second, we should be
able to derive postulates for causality and facilitation from the independence

7 This raises the more general question of the possibility of reading causality and fa-
cilitation ascriptions (in the sense used in this article) from a Bayesian net structure,
or building such a probabilistic or possibilistic net from such ascriptions.
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postulates presented in [12]. Finally, in parallel to further theoretical elabora-
tion, we will maintain a systematic experimental program that will test the
psychological plausibility of our definitions, properties, and postulates.
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