Interval analysis in scheduling

Jérome Fortin®, Pawel Zieliniski?, Didier Dubois!, and Hélene Fargier!

! TRIT/UPS 118 route de Narbonne, 31062, Toulouse, cedex 4, France,
{fortin, dubois, fargier}@irit.fr
% Institute of Mathematics, Wroctaw University of Technology, Wybrzeze
Wyspianskiego 27, 50-370 Wroctaw, Poland,
pziel@im.pwr.wroc.pl

Abstract. This paper reconsiders the most basic scheduling problem,
that of minimizing the makespan of a partially ordered set of activities, in
the context of incomplete knowledge. While this problem is very easy in
the deterministic case, its counterpart when durations are interval-valued
is much trickier, as standard results and algorithms no longer apply.
After positioning this paper in the scope of temporal networks under
uncertainty, we provide a complete solution to the problem of finding the
latest starting times and floats of activities, and of locating surely critical
ones, as they are often isolated. The minimal float problem is NP-hard
while the maximal float problem is polynomial. New complexity results
and efficient algorithms are provided for the interval-valued makespan
minimization problem.

1 Introduction and Motivation

Temporal Constraint Networks (TCN) represent relations between dates of events
and also allow to express constraints on the possible durations of activities from
intervals of values [1]. To ensure a solution to the assignment problem, it is
sufficient to check the well-known consistency properties of the network.

TCN have been extended to take into account uncertainty of durations of
some tasks in realistic applications. A distinction is made between so-called
contingent constraints (for example, when the duration of a task cannot be
known before the execution of the task) and controllable ones (for example a
time interval to be chosen between starting times of two tasks). The resulting
network (called Simple Temporal Network with Uncertainty or STPU) becomes
a decision-making problem under uncertainty, and notions of consistency must
be refined so as to ensure controllability, that is, ensured consistency despite
uncertainty [2-5]. As far as we know, the TCN community has extensively worked
on the controllability of a network, but the question of optimizing the total
duration of set of tasks described by a STPU has not been studied. Nevertheless,
not all solutions to an STPU are equally valuable, and solutions minimizing the
makespan are of obvious practical interest.

Given a set of tasks and a set of precedence constraints between them, the
most elementary scheduling problem is to find the time window for the starting

time of each task in order to ensure a minimal overall duration or makespan.
When all task durations are precise, the well-known PERT/CPM (Critical Path
Method) algorithm provides such time-windows for all tasks in polynomial time
(see [6]). In particular, a subset of tasks is found to be critical (their starting
time-windows reduce to a singleton), and they form a set of critical paths. When
the duration of tasks is ill-known and modeled by intervals, this problem can
be viewed as a special kind of STPU where all tasks are modeled by contingent
constraints, and controllable constraints only describe precedence between tasks.
Of course, the resulting network is always controllable if the graph of precedence
constraints is acyclic. However, the problem of minimizing the makespan in the
interval-valued setting is much more difficult. It seems to have received atten-
tion only recently [7]. This concern actually derives from the literature on fuzzy
PERT, a topic existing since the early eighties (see [8] for a survey). Especially
Buckley [9] was the first to propose a rigorous formulation for this problem.
Recent results show that in the presence of uncertainty the usual backward
recursion algorithm for finding latest starting times of tasks are no longer appli-
cable and the usual critical path analysis totally fails [10]. Yet, in the scope of
selecting solutions to STPU which minimize the makespan, it is a basic problem
to be solved in a first step.

Instead of being critical or not, tasks now form three groups: those that are
for sure critical despite uncertainty (necessarily critical tasks), those that are for
sure not critical, and tasks whose criticality is unknown, called possibly critical
tasks (see [11]). Necessarily critical paths may fail to exist while necessarily crit-
ical tasks may be isolated. Finding the 3-partition of tasks in an interval-valued
network turns out to be a NP-hard problem. Preliminary complexity results have
recently appeared in [7], but some problems like the complexity of proving the
necessary criticality of a task remained open. This paper provides a full picture of
the complexity of the makespan minimization problem under the representation
of interval-based uncertainty, and a set of efficient algorithms for determining
the criticality of tasks, the optimal intervals containing their least ending times
and their floats. It is shown that the only NP-hard problem is the one of finding
the greatest lower bound of the float, which is closely related to asserting the
possible criticality of a task. All other problems turn out to be polynomial. The
fact that the two problems of asserting if an arc is necessarily critical or possibly
critical do not have the same complexity is rather unexpected.

2 Preliminaries

An activity network is classically defined as a set of activities (or tasks) with
given duration times, related to each other by means of precedence constraints.
When there are no resource constraints, it can be represented by a directed,
connected and acyclic graph. Of major concern, is to minimize the ending time
of the last task, also called the makespan of the network. For each task, three
quantities have practical importance for the management of the activity network:
The earliest starting time est;; of an activity (i, j) is the date before which the

activity cannot be started without violation of a precedence constraint. The
latest starting time lst;; of an activity (i, j) is the date after which the activity
cannot be started without delaying the end of the project. The float f;; of
an activity (¢,j) is the difference between the latest starting time Ist;; and the
earliest starting time est;;. An activity is critical if and only if its float is equal to
zero. Under the assumption of minimal makespan, critical tasks must be started
and completed at prescribed time-points.

3 The interval-valued scheduling problem

A directed, connected and acyclic graph G =< V, A >, represents an activity
network. We use the activity-on-arc convention. V' is the set of nodes (events),
|[V| = n, and A is the set of arcs (activities), |A| = m.

The set V = {1,2,...,n} is labeled in such a way that i < j for each activity
(i,j) € A. Activity durations (weights of the arcs) (i,j) € A are only known
to belong to time intervals D;; = [di_j,d;;], d;; 2 0. Two nodes 1 and n are
distinguished as the initial and final node, respectively.

We introduce some additional notations.

— A configuration is a precise instantiation of the duration of all tasks (¢,5) €
A. 2 denotes a configuration, while d;;(£2) € D;; denotes the duration of
activity (¢,7) in configuration (2.

Let B C A be a subset of activities. The configuration QE such that
dis (2F) = d{j if (z,]).e B
d;; otherwise

— € is the set of possible configurations of activity durations, € = x; j)ye4Dij-

— P(u,v) is the set of all paths p(u,v) in G from node u to node v, we denote
by P the set of all paths p in G from node 1 to node n.

~ 1,(2) denotes the length of a path p € P(u,v) in £2,1,(2) = 3, i, dij (12)-

— Succ(i) (resp. Pred(i)) refers to the set of nodes that immediately follow
(resp. precede) node i € V.

- SUCC(i,j) (resp. PRED(i,7)) denotes the set of all arcs that come after
(resp. before) (i,75) € A.

— SUCC(i) (resp. PRED(3)) stands for the set of all nodes that come after
(resp. before) i € V.

— G(i,j) is the subgraph of G composed of nodes succeeding ¢ and preceding j.

— G(D;; = d) is the graph where duration of task (i, j) is replaced by d.

is called an extreme configuration induced by B.

Computing earliest starting dates is not a difficult issue. Here we solve four
problems , originally stated in [11,12].

The first one is that of determining the widest intervals LSTy; (bounds) of
possible values of the latest starting times Isty; of a given activity (k,l) € A, i.e.
the interval LSTy; = [lst,;l,lst,jl] defined by Ist;; = ming Isty(2) and lst;c'rl =
maxg Istg(£2). Isty(£2) is the float of activity (k,l) in configuration (2. The
problem of computing the greatest lower (resp. least upper) bound of the latest

starting times is denoted GLBLST (resp. LUBLST). The second problem is that
of determining the widest intervals Fy; of possible values of floats (total floats)
fu of a given activity (k,I) € A, i.e. the interval Fi = [fy, f3;] bounded by
fr = ming fr(2) and f; = maxq fri(2). fu(92) is the float of activity (k,1)
in configuration (2. The problem of computing the greatest lower (resp. least
upper) bound of the floats is denoted GLBF (resp. LUBF). In both problems
minimization and maximization are taken over all possible configurations €.

The next two problems are closely related to the ones defined previously.
That is the problem of deciding the possible criticality of an activity and the
problem of deciding the necessary criticality of an activity. An activity (k,l) € A
is possibly critical in G if and only if there exists a configuration 2 € € such
that (k,1) is critical in G in 2. An activity (k,l) € A is necessarily critical in G
if and only if for every configuration 2 € €, (k,1) is critical in G.

There are obvious connections between the notions of criticality and the
bounds on the float of an activity.

Proposition 1 An activity (k,1) € A is possibly (resp. necessarily) critical in
G if and only if fr; =0 (resp. fif =0).

The solutions to problems GLBLST, LUBLST, LUBF and GLBF come down
to finding an extreme configuration [11] where such bounds are attained. As there
are 2" extreme configurations, it explains the potentially exponential nature of
the problem. GLBLST, LUBLST and GLBF have recently been solved in [7,13],
and only GLBF is NP-hard. In this paper, we recall the solutions of these three
problems, and present the solution to the last one LUBF, thus providing a full
picture of the makespan minimization problem under incomplete information.

4 Computational methods for evaluating criticality

This section presents a new method which can decide if a given task (k,1) is
necessarily critical. First, under the assumption that the durations of the prede-
cessors of task (k,l) are precisely known, we recall algorithms that respectively
assert if (k,l) is possibly and necessarily critical. They constitute the basis for
computing the LUB and GLB of the latest starting dates in polynomial time in
[13]. We extend these results and give a general algorithm which asserts if (k,1) is
necessarily critical in a network G in polynomial time without any consideration
of the durations of tasks preceding (k,). This result will lead in the next section
to a polynomial algorithm which computes the LUB of the float of an activity.

Let us recall characteristic conditions of the non-necessary criticality of tasks.

Lemma 1 ([8]) An activity (k,1) € A is not necessarily critical in G if and
only if there exists a path p € P such that (k,1) & p, p is critical in configuration
QF and no critical path in F includes (k,1).

Observation 1 An activity (k,l) € A is not necessarily critical in G if and only
if (k,1) is not critical in an extreme configuration in which the duration of (k,1) is
at its lower bound and all activities from set AA\SUCC (k,|))\PRED(k,[)\{(k,1)}
have durations at their upper bounds.

Now under the assumption that activities preceding (k,!) have precise dura-
tions, we can set the durations of tasks succeeding (k,[) at precise values while
maintaining the status of (k,l) in terms of necessary criticality. It yields a con-
figuration where (k,l) is critical if and only if it is necessarily critical in the
interval-valued network. These durations are given by Propositions 2 and 3.

Proposition 2 Let (k,l) € A be a distinguished activity, and (i, j) be an activity
such that (i,7) € SUCC(k,l). Assume that every activity (u,v) € PRED(i,j)
has precise duration. If (k,1) is critical in G(1,1), then the following conditions
are equivalent:

(1) (k,1) is necessarily critical in G,

(i) (k,1) is mecessarily critical in G(D;; = d;).

Proof. (i) = (43) Obvious.

(7) <= (i7) We use a proof by contraposition. We need to prove that if (k,1) is critical
in G(1,¢) and (k, 1) is not necessarily critical in G, then (k,) is not necessarily critical
in G(D;; = d;;). By assumption, (k,!) is not necessarily critical in G. From Lemma 1,
it follows that there exists a path p € P such that (k,l) & p, p is critical in configuration
2 and no critical path in £2; includes (k,1). Since (k,1) is critical in G(1,4), (,5) € p
in £2;. Observe that d;; (£2;7) = d;;. From this and the fact that (k,1) is not critical in
2, we conclude that (k,1) is not necessarily critical in G(Di; = d;;). O

Proposition 3 Let (k,1) € A be a distinguished activity, and (i,j) be an activity
such that (i,j) € SUCC(k,l). Assume that every activity (u,v) € PRED(i,j)
has precise duration. If (k,1) is not critical in G(1,1), then the following condi-
tions are equivalent:

(7) (k,l) is necessarily critical in G,

(#) (k,1) is necessarily critical in G(D;; = dj;)

Proof. (i) = (i1) Straightforward.

(¢) <= (4t) To prove that (k,l) is necessarily critical in G, we only need to show that
(k,1) is necessarily critical in G(D;; = d;;). By assumption, (k,) is necessarily critical
in G(D;; = d;‘;) From this, it follows that for every configuration in which the duration
of (4,) is at its upper bound, there exists a critical path traversing (k,!). Moreover, this
path does not use (4, 7), since (k, 1) is not critical in G(1, 7). Thus the criticality of (k,)
does not depend on the duration of (7, j). Hence, (k, 1) is critical for each configuration in
which the duration of (4, j) is at its lower bound and consequently (k,!) is necessarily
critical in G(Di; = d;;). The necessary criticality of (k,l) in G(D;; = d;;) and in
G(Dsj = dj;) implies the necessary criticality of (k,!) in G. O

Propositions 2 and 3, together with Observation 1, lead us to Algorithm 1
for asserting the necessary criticality of a given activity (k,l) in a network in
which all activities that precede (k,!) have precise durations. Testing if (k,[) is
critical in G(1,%) can be done in constant time because we already know if (k,1)
is critical in G(1,j) for all j € Pred(i), and so Algorithm 1 runs in O(m).

We now present an algorithm for evaluating the necessary criticality of a fixed
activity (k,l) € A in network G with interval durations, without any restriction.
The key to the algorithm lies in Propositions 4 and 5 that enable a network with
interval durations to be replaced by another network with precise durations for

Algorithm 1:

Input: A network G, activity (k,l), interval durations Dy, (u,v) € A and for
every task in PRED(k,l) the duration is precisely given.
Output: true if (k,!) is necessarily critical in G; and false otherwise.
foreach (u,v) ¢ SUCC(k,l) do Dy, < di,; Dyt < dy;
for i < | to n —1 such that ¢ € SUCC(l) U{l} do
if (k,1) is critical in G(1,i) then foreach j € Succ(i) do Di; «+ d;;;
else foreach j € Succ(i) do D;; + d?};
end
if (k,1) is critical in G(1,n) then return true;
else return false;

activities preceding a fixed (k, 1), in such a way that (k,!) is necessarily critical
in the former if and only if it is necessarily critical in the latter.

Proposition 4 Let (k,1) € A be a distinguished activity, and (i,j) be an activity
such that (i,7) € PRED(k,1). If (k,1) is necessarily critical in G(j,n), then the
following conditions are equivalent:

(1) (k,l) is necessarily critical in G,

(i) (k,1) is mecessarily critical in G(D;; = d;).

Proof. The proof goes in the similar manner to the one of Proposition 2. O

Proposition 5 Let (k,l) € A be a distinguished activity, and (i, j) be an activity
such that (i,7) € PRED(k,1). If (k,1) is not necessarily critical in G(j,n), then
the following conditions are equivalent:

(1) (k,l) is necessarily critical in G,

(#) (k,1) is necessarily critical in G(D;; = d;)

Proof. (i) = (4¢) The proof is immediate.

(7) <= (%) We need to show that if (k,!) is not necessarily critical in G(j,n) and (k, 1)
is necessarily critical in G(D;; = dj;-), then (k, 1) is necessarily critical in G. To prove
this, assume on the contrary that (k,!) is not necessarily critical in G. From Lemma 1,
it follows that there exists a path p € P such that (k,!) & p, p is critical in configuration
2 and no critical path in £2; includes (k,1) or equivalently (k,1) is not critical in £2;f.
We will show that for each such configuration, where (k,l) is not critical, the other
assumptions lead to construct a critical path that traverses (k,1), which results in a
contradictions. By assumption, (k,!) is not necessarily critical in G(j,n). Then there
exists a path p € P(j,n) such that (k,I) € p, p is critical in configuration _Q;' and no
critical path of G(j,n) traverses (k,!) in .Q;' (see Lemma 1).

Consider the extreme configuration induced by pUpU{(¢,)} and denote it by £2*.
Note that (k,!) is critical in 2, since (k,) is necessarily critical in G(D;; = dj]') Thus
there exists a critical path p* € P using (k,!) in £2*. We define r to be the common node
of p*(1, k) and p such that r = arg max{v|v € V,v € p*(1,k),v € p} and define to be
the common node of p*(1, k) and p such that # = arg max{v|v € V,v € p*(1,k),v € p}.

We claim that if node 7 exists, then ¥ = r or node # lies on p* before node r.
Suppose, contrary to our claim, that # lies on p* after r (see Figure 1a). Then subpath

Fig. 1. (a) Configuration 2* — 7 on p* after r (b) Configuration 2 (activities with the
maximal durations are in bold)

p*(#,n), p*(#,n) = p*(#,k) Up~(k,n), is at least as long as subpath (7, n) in config-
uration £2*. Notice that p*(#, k) is one of longest paths from # to k in 2*. We may
now decrease some activity durations to their lower bounds in configuration 2* in the
df, i (uv) €,
following way (see Figure 1b) duv(.Q’) =<dt, if (u,v) = (i,5), (u,v)€ A. Duration
d,, otherwise,
di; ()= d;';, and, by assumption, (k,1) is necessarily critical in G(D;; = d;';) Conse-
quently (k,1) is critical in this new configuration 2'. Hence, there exists a critical path
p € P traversing (k, 1). Since node 7 lies on p* after node r, Lpw 7,1y (£27) = lp*(;,k)((l’).
Therefore path p* (7, k) U pl(k, n) is at least as long as subpath p(#,n) in configuration
Q. Decreasing di]‘(gl) to its lower bound gives configuration Q;' Observe that the
lengths of paths p*(#, k) Up (k,m) and p(#, n) remain unchanged. Hence, there exists the
path in G(j,n) composed of two subpaths p(j, #) and p* (7, k) Up'(k, n) that is at least
as long as p, which is impossible because we have assumed that no critical path goes
through (k,!) in G(j,n) in configuration Qg' . We can now return to the main proof.

Fig. 2. (a) Configuration £2* — # on p* before r (b) Configuration £

Consider configuration §2*. The claim shows that if node 7 exists, then # = r or node
7 lies on p* before node r (see Figure 2a). In the case when 7 does not exist, the proof
proceeds in the same manner. From the above and the criticality of p* in 27, it follows
that subpath p*(r,n), p*(r,n) = p*(r, k) Up*(k, n), is at least as long as subpath p(r, n)
in this configuration. Notice that p*(r, k) is one of longest paths from 7 to k in 2.
Decreasing some of durations in 2* to their lower bounds, we obtain configuration Q"

dtv if (u, U) €p,
in the following form (see Figure 2b) du,(2") = { df, if (u,v) = (5,4), (u,v) € A.
d,, otherwise,

Duration dij(.Q”) = di*;, by assumption, (k,l) is necessarily crit,ilcal in G(D;; = d?;),
which implies the criticality of (k,!) in this new configuration (2 . Hence, there exists
a critical path p € P using (k,1). By the claim, Iy« () (£2%) = lp*(rik)(h()”). It follows
that path p*(r, k) up (k,m) is at least as long as subpath p(r,n) in configuration Q"
If (¢, §) ¢ p, we may decrease duration dij(.Q”) to its lower bound. Again by the claim,
the lengths of subpaths p*(r, k) U p” (k,m) and p(r,n) remain unchanged in this new
configuration and so p*(r,k) U p”(k',n) is still at least as long as p(r,n). It is easily
seen that this new configuration is equal to 2. If (4,) € p, configurations Q;JI and
(2]'}' are equal. Consequently, path p(1,r) U p*(r,k) U p” (k,m) is at least as long as p
and moreover p(1,7) Up*(r,k) U P (k,m) uses (k,1). This contradicts our assumption
that no critical path in £, includes (k,). O

We are now in a position to give an algorithm (Algorithm 2) for asserting
necessary criticality of a fixed activity in a general network. At each step of the
algorithm, tasks between j and k have precise durations (so Algorithm 1 can
be invoked), and Algorithm 2 assigns precise durations to tasks preceding j,
while preserving the criticality of task (k,!). Since Algorithm 1 runs in O(m),
Algorithm 2 requires O(mn) time.

Algorithm 2:

Input: A network G =< V, A >, activity (k,1), interval durations Dy,
(u,v) € A.
Output: true if (k,!) is necessarily critical in G; and false otherwise.
for j < k downto 2 such that j € PRED(k)U {k} do
NC <« Algorithm 1 with G(j,n) and durations D,,;
if NC =true then foreach i € Pred(j) do D;; < d;;;
else foreach i € Pred(j) do D;j + d;;;
end
NC < Algorithm 1 with G(1,n),(k,1) and durations D,;
if NC =true then return true;
else return false;

Remark: Lemma 1, Propositions 2 and 3 have counterparts for asserting possible
criticality. So the reasoning which leads to the first algorithm can be applied
for possible criticality [13]. This leads to an algorithm similar to Algorithm 1
swapping durations d, and df,, for asserting the possible criticality of tasks
whose predecessors have deterministic durations. Unfortunately, Propositions 4
and 5 can not be adapted to the study of possible criticality, and asserting if
a task is possibly critical in the general case is provably NP-Complete [7]. So,
while the results of this section are instrumental for solving problem LUBF, the
same approach cannot be applied to compute the GLB of the floats.

5 Computing intervals for the latest starting times

5.1 Computing the Greatest Lower Bound on the Latest Starting
Times

There already exists an algorithm that computes the GLB of latest starting
times [13] in polynomial time whose basis is recalled below. This section presents
a new polynomial method (more efficient than the already known one as shown
in Section 7) derived from a path enumeration algorithm [8].

The Incremental Approach Let us recall the following simple but important
result that allows to reduce the set of configurations € for the GLBLST problem.

Proposition 6 ([11]) The greatest lower bound on the latest starting times lst;
of activity (k,1) in G is attained on an extreme configuration in which the du-
ration of (k,l) is at its upper bound and all activities that do not belong to set
SUCC(k,l) have durations at their lower bounds.

The idea of the algorithm for computing /st is based on Lemma, 2. It consists
in finding the minimal nonnegative real number f;; that added to the upper
bound of the duration interval of a specified (k,!) makes it possibly critical.

Lemma 2 ([13]) Let f;; be the minimal nonnegative real such that (k,1) is
possibly critical with a duration dj; + fi,. Then lst,, = est,, + fr.

The sketch of the algorithm is simple: we begin to set the durations of tasks
preceding (k,l) to their minimal value then we run the algorithm asserting the
possible criticality of (k,). If (k,I) is possibly critical then its minimal latest
starting date equals the minimal earliest starting date. Otherwise for each task
(i,j) € PRED(k,!) for which (k,1) is possibly critical in G(j,n) and not in
G(i,n) we compute the minimal duration to add to (k,[) to make this task
possibly critical in G(i,n) (this value is easy to compute). Then we add the
smallest computed value to the duration of (k,1) and reiterate the test of possible
criticality of (k,l) in G. Contrary to the next one, this algorithm computes the
latest starting date of only one task.

The Path Enumeration Approach First let us state a result which describes
the form of configurations where the GLB of the latest starting date of a task
(k,1) in a network G is attained, given in [8]. Let Py (u,v) be the set of all paths
from node u to node v going through task (k,1).

Proposition 7 Let (k,1) € A be a task of G. There exists a path py; € Py (k,n)
such that the extreme configuration (2} ~minimizes Isty(.).

Note that path pg; is one of the longest paths from k to n including [in
configuration !2;; .- We can recursively construct the path py; € Py(k,n) of

Proposition 7 corresponding to the optimal configuration. Suppose that for each
node u € Succ(l), we know a path py,, € Py (I, n) for which the configuration 2}
minimizes the latest starting date of (I,u). Then we can construct an optimal
path pg; from paths py, for u € Suce(l).

Proposition 8 Let (k,l) be a task of G, and Vu € Succ(l), let pi, € Pru(l,n) be
a path such that Ist;, = Isty,(£2y,,). Then Isty; = minyegyeery Istrr (24 (k1) upr) -

From Proposition 8, we can deduce a polynomial algorithm to compute the GLB
of the latest starting dates of all tasks: we recursively find a path pg; for which
the configuration 2 ~minimizes Isty(.) from the paths pj, for u € Succ(l),
starting from the nodes in Pred(n). Algorithm 3 runs in O(m(n + m)) for the
computation of all the GLBs of the latest starting dates. Note that it is similar
to the backwards recursion technique used in the classical CPM method.

Algorithm 3:
Input: A network G, interval durations D, (u,v) € A;
Output: The GLB of latest starting dates of all the tasks in network;
foreach (k,1) € A do lIst}; + +oo;
VeVu{n+1l} A<~ AUu{(n,n+ 1)}
Dynt1 05 pant1 = (n,n + 1);
foreach (k,!) such that k< n—1 downto 0 do
foreach u € Succ(l) do
P (k1) Upi;
Compute Istr;(£2,) by the classical CPM;
if Istri(2,0) < lsty; then Isty, < lstei(2y); P < D'
end
end

5.2 Computing the Least Upper Bound on the Latest Starting
Times

Only a counterpart to the incremental method is known for computing the GLB
on the latest starting times of an activity. There exists an exponential path
enumeration algorithm [8], but it has not (yet) been adapted to compute the
LUB of the latest starting dates in polynomial time (contrary to the GLB of the
latest starting dates). Again a result of Dubois et al. [11], allows to reduce the
set of configurations €.

Proposition 9 ([11]) The least upper bound on the latest starting times lst,,
of activity (k,1) in G is attained on an extreme configuration in which the du-
ration of (k,1) is at its lower bound and all activities that do not belong to set
SUCC(k,l) have durations at their upper bounds.

The main idea of the algorithm for determining Ist}; of a given activity (k,1) € A
is based on Lemma 3. It consists in determining the minimal nonnegative real
number fz; that added to the lower bound of the duration interval of a specified
activity (k,l) makes it necessarily critical.

Lemma 3 ([13]) Let f;; be the minimal nonnegative real number such that
(k,1) is necessarily critical with a duration dy; + fr,. Then lst{; = esti; + fi.

6 Computational methods for floats

6.1 Computing the Least Upper Bound on Floats

To compute the LUB of the floats of an activity (k,[), we first set the durations
of the tasks neither preceding nor succeeding (k,!) according to the following
Lemma 4. The maximal float of (k,!) after this partial instantiation is the same
as in the original network G.

Lemma 4 ([11]) The least upper bound on float f;; of activity (k1) in G is
attained on an extreme configuration in which the duration of (k,l) is at its
lower bound and all activities from set A\ SUCC(k,l)\ PRED(k,l)\ {(k,1)}
have durations at their upper bounds.

Algorithm 2 is a polynomial algorithm which can already assert if the task
(k,1) is necessarily critical. To compute the LUB of the floats, we are going to
increase step by step the duration of (k,l) from Dy; = d; until (k,I) becomes
necessarily critical. Lemmas 5 and 7 give the hint to find the increment of Dy
at each step of the algorithm. According to Proposition 10, this incremental
technique eventually yields f;}.

Lemma 5 Let activities (i,j) € PRED(k,l) have precise durations in G. Then
(k,1) is necessarily critical in G if and only if there exists a path p € P(1,k)
such that for every node j € p, (k,1) is necessarily critical in G(j,n).

Proof. (=) Let us denote by p a longest path from 1 to k. Note that activities
(i,j) € PRED(k,l) have precise durations. From the necessary criticality of (k,1)
in G, it follows that p is part of a longest path from 1 to n and this path denoted by
p uses (k,1) for each configuration. Thus for every node j € p, the subpath p(j,n) is
critical path in G(j,n). Since this is true for each configuration, (k,l) is necessarily
critical in G(j, n).
(<=) Just take j = 1. G(1,n) = G and so (k,[) is necessarily critical in G. O
If we assume that activities (i,j) € PRED(k,!) have precise durations, then
there is a connection between the least upper bound on latest starting times
Ist{; and the least upper bound on floats f}; of activity (k,).

Lemma 6 ([13]) Let activities (i,j) € PRED(k,l) have precise durations in
G. Then f,j; = lstk+l — est}i‘l.

Accordingly, under the assumption that activities (i,j) € PRED(k,l) have
precise durations, the least upper bound on floats f,j; can be computed by means
of algorithms for determining lstk+l presented in Section 5. At each iteration of
the while loop of Algorithm 4, (k,l) become necessarily critical in at least one
new subnetwork G(j,n). Thus the loop is executed at most n times, and so
Algorithm 4 takes O(n®*m) time.

Lemma 7 Let A = min{f}}(j,n)|(k,1) is not necessarily critical in G(j,n)}
where f;(j,n) is the least upper bound on floats in G(j,n), j € PRED(k). Then
for all e < A, activity (k,1) is not necessarily critical in G(j,n), j € PRED(k),
with duration Dy = d; + €. Moreover there exists j* € PRED(k) such that
(k,1) is not necessarily critical in G(5*,n) and (k,l) is necessarily critical in
G(j*,n) with duration Dy = d;; + A.

Proof. By Observation 1, one can assume that activity (k,l) has the duration of the
form Dy = [dl:lﬂd;l]

Consider a node j such that (k,[) is not necessarily critical in G(j,n). Let {2 be an
extreme configuration where the float of (k,1) attains its maximal value f;};(j,n) > 0
in G(j,n), and e < A < f,(j,n) (dri(2) = di,). p’ denotes the longest path in G(j,n)
in £2, while p" stands for the longest path in G(j,n) in 2 using (k,[). Therefore,
f]ji(]a n) =1y (2) =l (£2) > e
Now let us define the configuration 2" such that dy,(§2’) = dute i (v, U)_ = (k1) .

dyy(£2) otherwise,
p’ remains a longest path in 2’ with same length, and p” is still a longest path traversing
(K, 1) with lenght L, (£2") = 1,1/ (£2)+e¢. Since the float of (k, 1) in £2" is 1, (2') =1, (£2') >
0, (k,1) is not necessarily critical in G(j,n), j € PRED(k), with duration Dy; = dj;+e.

Consider a node j* such that (k,) is not necessarily critical in G(j5*,n), and set
A = fi1(4*,n). Then for all configurations, the difference between the longest path in
G(5*,n) and the longest path using (k,l) is less or equal than A. If we increase the
duration of (k,1) to di; + A, the longest path, in this new configuration, will traverse
(k,1) and thus (k, 1) will be necessarily critical in G(j*,n) with duration Dy = d;; + A.

O
At the end of the incremental process, the least upper bound of the float of (k,1)
is attained:

Proposition 10 Let f;; be the minimal nonnegative real number such that (k,1)
is necessarily critical in G(Dy = dig + f)- Then flj; = fu-

Proof. Consider any configuration f2. Let pl be a longest path in 2 and p” be a
longest path including (k,1) in £2. Note that fr(£2) = 1, (2) — 1 (£2). Let us now
modify configuration {2 and denote it by §2°. Configuration 2% is defined as follows
oo (27) = duo(2) + 2z if (u, v)' = (k,1)
duw(£2) otherwise,

number. It is clear that I (£2) =1 » (£2) +z and p" remains a longest path including
(k,1) in new configuration £2°. Consider the following two cases.

Case: © < fri(£2). Then 1 (£2°) < 1,(£2), and so p s still a critical path in 2% and
has the same length as in 2. This gives fi(2%) = fr(2) — z.

Case: © > fri(§2). Then p” becomes a critical path and so fr:(£2*) = 0. Thus, for all

(u,v) € A,where z is a nonnegative real

2 and z equation fr;(2°) = max(fr:(£2) — z,0) holds. In particular, for = f;; and
configuration {2 = 2* such that 2" maximizes the float of task (k,!) in G. From the
definition of f; we get fiu(£27%1) =0, hence fr;(2*) — fi; <0, and finally £ < f.
Suppose that f;; < fi. Set y = (fi; + fi;)/2. Then, for every 2, f;(2¥) =
max(fr(§2) — y,0) = 0. Note that y is nonnegative real number, smaller than fg;,
such that (k,!) is necessarily critical in G(Dy; = dj; + y), which contradicts with the
definition of f;,. Hence, we conclude that f;; = fr,. O

Algorithm 4:

Input: A network G, activity (k,1), interval durations Dy, (u,v) € A.
Output: The least upper bound on floats f,;';.
NC < Algorithm 2; /*Set task durations preceding (k,!) according Prop. 4,5 */
for 05 dut = di;
while NC =false do
A« min{f;(j,n) | i € PRED(k), f{(j,n) #0}; /*f(j,n) in G(j,n) is
computed according to Lemma 6 */
f& e fl+ 45 du +— di + 4
NC « Algorithm 2; /*Update precise durations of tasks preceding (k,1) */
end

return fljl ;

6.2 Computing the greatest lower bound on floats

Computing GLB on floats is NP-Hard in the general case. The reader should refer
to [8,13] for some special tractable cases. However, an efficient algorithm has
been proposed in [8]. The idea is to compute a PERT/CPM on each configuration
{2, such that p is a path of G from 1 to n. The number of tested configuration
is of course potentially exponential, but in practice the algorithm runs very fast
on realistic problems.

7 Complexity and Experimental Results

First, we summarize in Table 1 the complexity levels of the different problems
of the PERT/CPM on intervals. Moreover, in Table 1, we give the complexity
of the best known algorithm which computes the quantity of interest. In partic-
ular, the path algorithm which computes the GLB and LUB of floats and latest
starting dates has a complexity in O((n + m)|P|), where |P| is the number of
path of the graph G. This complexity depends of the topology of the network.
We now present some computational results in order to evaluate the perfor-
mance of all these algorithms on scheduling problems library of 600 networks of
120 tasks (PSPLIB: http://halfrunt.bwl.uni-kiel.de/bwlinstitute/Prod/psplib/).
Those instances of problems have been generated by the ProGen program, for
activity network generation [14]. In Table 2, we give the minimal, maximal and

Table 1. The complexity of the interval problems and the best known algorithms
running times

Earliest starting date (all tasks) GLB P O(n + m)
LUB P O(n +m)
Latest starting date (one task) GLB P O(mn)
LUB p O(mn)
Latest starting date (all tasks) LUB P O(m(m + n))
Float (all tasks) GLB NP-Hard O((n+ m)|P|)
Float (one task) LUB P O(n*m)

average execution times (in second) of five algorithms on those 600 problems.
GLBLST and LUBLST are the polynomial algorithms which compute the latest
starting dates given in [13]. As it can be seen from the experimental results, the

Table 2. The minimal, maximal and average execution times (in second) of five algo-
rithms on 600 problems

Min Max Average

Path algorithm [8] LUBLST, GLBLST, LUBF, GLBF 0.02 0.45 0.12
Polynomial path algorithm (Algorithm 3) LUBLST 0.01 0.03 0.017

GLBLST [13] 0.01 0.05 0.023
LUBLST [13] 0.02 0.12 0.056
LUBF (Algorithm 4) 057 82 3.12

path algorithm (potentially exponential) is very efficient in practice to compute
at the same time the latest starting dates and the floats. On the contrary, the
polynomial algorithm which computes the LUB of the floats is not efficient in
practice for realistic scheduling problems. However, its performance should be
better for larger instances.

8 Conclusion

This paper has proposed a complete solution to the criticality analysis of a net-
work of activities when durations of tasks are ill-known. It is shown that moving
from precise to imprecise durations radically changes the complexity of the prob-
lem, ruining the traditional critical path method. Part of the problem, pertaining
to the GLB of the float, becomes NP-hard, the other questions remaining poly-
nomial, although not straightforwardly so. These complexity results shed light
on reasons why the more familiar stochastic counterparts to this basic scheduling
problem are so difficult to handle, part of the difficulty being already present

in the interval analysis. The proposed algorithms can be of obvious relevance
to practical predictive project scheduling problems where durations of tasks are
not known in advance. Clearly, due to the basic nature of the addressed prob-
lem, several lines of research can be envisaged for future research. For instance
one may assume that part of the tasks durations are controllable and additional
constraints relating durations and starting or ending times may be available.
Then one obtains a makespan minimization problem in the more general set-
ting of STPU’s. Another interesting question is to relate the above results to
robust scheduling when several scenarios are available. In the latter case scenar-
ios embody dependencies between task durations while our approach makes no
dependence assumptions. Robust scheduling becomes more and more difficult as
the number of scenarios increases. In this case our approach may provide a good
approximation if duration intervals are derived from a large number of scenar-
ios. Alternatively robust and interval scheduling can be hybridized considering a
small set of imprecise (interval-valued) scenarios derived from the large scenario
set by means of a clustering method.

References

1. Dechter, R., Meiri, 1., Pearl, J.: Temporal constraint networks. Artificial intelli-
gence 49 (1991) 61-95

2. Morris, P.;, Muscettola, N., Vidal, T.: Dynamic control of plans with temporal
uncertainty. In: IJCAI (2001) 494-502

3. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from
consistency to controllabilities. JETATI 11 (1999) 23-45

4. Morris, P.H., Muscettola, N.: Managing temporal uncertainty through waypoint
controllability. In: IJCAL (1999) 1253-1258

5. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal constraint reasoning with
preferences. In: IJCAIL (2001) 322-327

6. Kelley, J., Walker, M.: Critical path planning and scheduling. In: Proc. of the
Eastern Joint Comp. Conf. (1959) 160-172

7. Chanas, S., Zieliniski, P.: The computational complexity of the criticality problems
in a network with interval activity times. EJOR, 136 (2002) 541-550

8. Dubois, D., Fargier, H., Fortin, J.: Computational methods for determining the
latest starting times and floats of tasks in interval-valued activity networks. J. of
Intelligent Manufacturing (2005) To appear.

9. Buckley, J.: Fuzzy PERT. In: Applications of fuzzy set methodologies in industrial
engineering. Elsevier (1989) 103-114

10. Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: modeling flexible con-
straints vs. coping with incomplete knowledge. EJOR 147 (2003) 231-252

11. Dubois, D., Fargier, H., Galvagnon, V.: On latest starting times and floats in
activity networks with ill-known durations. EJOR 147 (2003) 266-280

12. Chanas, S., Dubois, D., Zieliiski, P.: On the sure criticality of tasks in activity
networks with imprecise durations. IEEE Transactions on Systems, Man, and
Cybernetics 34 (2002) 393-407

13. Zieliniski, P.: On computing the latest starting times and floats of activities in a
network with imprecise durations. Fuzzy Sets and Systems 150 (2005) 53-76

14. Kolisch, R., Sprecher, A.: Psplib - a project scheduling library. EJOR 96 (1996)
205216

