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Abstract The notion of a fuzzy set stems from considering1

sets where, in the words of Zadeh, the “transition from non-2

membership to membership is gradual rather than abrupt”.3

This paper introduces a new concept in fuzzy set theory, that4

of a gradual element. It embodies the idea of fuzziness only,5

thus contributing to the distinction between fuzziness and6

imprecision. A gradual element is to an element of a set what7

a fuzzy set is to a set. A gradual element is as precise as an8

element, but the former is flexible while the latter is fixed.9

The gradual nature of an element may express the idea that10

the choice of this element depends on a parameter expressing11

some relevance or describing some concept. Applications of12

this notion to fuzzy cardinality, fuzzy interval analysis, fuzzy13

optimization, and defuzzification principles are outlined.14

Keywords Fuzzy set · Alpha-cuts · Fuzzy numbers15

1 Introduction16

Originally, Zadeh used the word “fuzzy” as referring specifi-17

cally to the introduction of shades or grades in all-or-nothing18

concepts. A fuzzy set Zadeh (1965) is a generalization of19

subset (at least in the naive sense); it is a subset with boun-20

daries that are “gradual rather than abrupt”. It is defined by a21

membership function from a basic set to the unit interval (or22

a suitable lattice) and its cuts are sets. In fuzzy set theory, the23

D. Dubois (B) · H. Prade
Institut de Recherche en Informatique de Toulouse,
Toulouse, France
e-mail: dubois@irit.fr

term “fuzzy” explicitly refers to the idea of gradual transi- 24

tion, as opposed to the term “vague”, which refers to lexical 25

imprecision at large. 26

However, there is a recurrent confusion in the literature 27

between the word “fuzzy” and other words or phrases like 28

“imprecise”, “inexact”, “incompletely specified”, “vague” 29

that rather refer to a lack of sufficient information. For ins- 30

tance, what is often called a fuzzy number is understood as 31

a generalized interval, not as a generalized number. The cal- 32

culus of fuzzy numbers is basically an extension of interval 33

arithmetics. Especially, fuzzy numbers in this sense, being 34

fuzzy subsets of the real line, cannot be equipped with a 35

group structure for the addition. Similarly, in engineering 36

papers, defuzzification is generally understood as turning a 37

fuzzy set of numbers (obtained from some fuzzy inference 38

engine) into a number. Yet, since defuzzifying literally means 39

sharpening, removing graduality, then defuzzifying a fuzzy 40

set should yield a set, not a point. For instance, the notion of 41

mean value of a fuzzy interval was proposed as a natural way 42

of extracting an interval from a fuzzy interval (Dubois and 43

Prade 1987, where the phrase “fuzzy number” was used in 44

the sense of a unimodal fuzzy interval). On interval defuzzi- 45

fication, see also recent works by Roventa and Spircu (2003) 46

and Ralescu (2002). 47

To be more credible, the defuzzification process as used in 48

the engineering area should be split into two steps: removing 49

fuzziness (thus getting an interval), and removing impreci- 50

sion (by selecting a number in the interval). Suppose we 51

perform defuzzification by swapping these two steps: given 52

a fuzzy set of numbers, suppose we first remove impreci- 53

sion. Then, we get what we could call a “fuzzy real number” 54

or a “gradual number” that one may defuzzify eventually. 55

Such a gradual number would then express fuzziness only, 56

WITHOUT imprecision. To get a good intuition of a gra- 57

dual number, one may view a fuzzy interval as a pair of such 58
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gradual numbers, just as an interval is an ordered pair of59

numbers.60

More generally, this discussion leads to introduce the61

notion of fuzzy or gradual element of a (fuzzy) set, a concept62

that was apparently missing in fuzzy set theory. Topologists63

tried to introduce ideas of fuzzy points in the past (attaching64

a membership value to a single element of a set), but this65

notion has often been controversial, and sterile in its appli-66

cations. In fact they were meant to be fuzzy singletons, not67

really fuzzy elements. The aim of this paper is to introduce68

a natural notion of gradual element and gradual (integer or69

real) number, to outline elementary formal definitions rela-70

ted to this notion and discuss its potential at shedding light71

on some yet ill-understood aspects of fuzzy set theory and72

its applications. A full-fledged mathematical development is73

left for further research.74

2 Basic definitions75

Let S be a set. Consider a complete distributive lattice L with76

top 1 and bottom 0. In practice, L is often totally ordered (the77

unit interval, typically). Elements of L are often interpreted78

as degrees of membership (for fuzzy sets), degrees of possibi-79

lity, of preference, of truth, etc. In this paper, they correspond80

to a set of more or less relevant contexts [an idea coined by81

Gebhardt and Kruse (1993) in a different scope]. As a conse-82

quence, L will be called a relevance scale. Let L+ = L \ {0}83

denote the set L where the bottom element has been removed.84

Definition 1 A fuzzy (or gradual) element e in S is defined85

by its assignment function, a mapping Ae from L+ to S.86

Example 1 Assume S = {s1, s2, s3}, L = {0, 0.25, 0.5,87

0.75, 1}. Consider the assignment function defined by:88

Ae(1) = s1;Ae(0.25) = s1;Ae(0.5) = s2;Ae(0.25) = s1.89

In the following we shall use the term gradual element so as90

to avoid confusion, when such an element is a number, with91

what is usually meant by a fuzzy number in the literature.92

Several remarks are in order. First, the mapping we consider93

goes from the relevance scale to the referential (contrary to94

a fuzzy set). Given a degree of relevance λ > 0, Ae(λ) = s95

is the element of S representative of e at level λ. It is the96

element that is suitable in the corresponding context.97

A crisp element s ∈ S has its own assignment function As ,98

which is a constant mapping defined by ∀λ > 0,As(λ) = s.99

On the other hand, As(0) is not defined because there is no100

counterpart to the empty set for elements of a set.101

Remark The domain of Ae could be defined as any proper102

subset of L containing 1 and excluding 0. However, the fact103

that the domain of an assignment function may vary from one104

gradual element to the other would create difficulties when105

combining gradual elements. It is then always possible to 106

augment the domain of Ae by building a mapping A∗
e from 107

L+ to S, such that ∀λ ∈ Dom(Ae),A∗
e(λ) = Ae(λ), by 108

letting: 109

∀λ > 0,A∗
e(λ) = Ae(λ

∗), 110

where λ∗ = inf{α > λ, α ∈ Dom(Ae)}. The idea is that 111

if an element s is representative of the gradual element e to 112

a certain extent, it is also representative to a lesser extent, 113

unless otherwise specified. 114

One might also require an injective assignment function, 115

in order to ensure that each s ∈ S is attached a single degree 116

of relevance, but there is no clear reason to do so, simply 117

because as seen later, extending operations equipping S to 118

gradual elements may fail to preserve this property. And 119

note that it would exclude crisp elements, as their assign- 120

ment function is not injective. But the lack of injectivity of 121

assignment functions implies that they cannot always be rein- 122

terpreted as (inverses of) membership functions of fuzzy sets. 123

For instance in Example 1, the membership grade of s1 is not 124

uniquely defined. 125

The idea of a gradual element, in contrast with the notion 126

of a fuzzy set, can also be easily illustrated by the follo- 127

wing important example of a gradual number. Consider a 128

convex fuzzy set of the real line, i.e. a fuzzy interval M . 129

Let mα be the middle-point of the α-level cut of M . The 130

set of pairs m(M) = {(α, mα) | α ∈ (0, 1]} defines a gra- 131

dual element of the real line, which can be called the fuzzy 132

middle-point of M . If the membership function of M is sym- 133

metrical, then m(M) reduces to an ordinary real number 134

that is the common abscissa of the middle-points of all the 135

α-cuts of M . For a non-symmetrical trapezoidal fuzzy inter- 136

val, one obtains a straight-line segment from the mid-point 137

of the core (c(M) = {r, µM (r) = 1}) to the mid-point of 138

the support (supp(M) = {r, µM (r) > 0}). It is a particular 139

gradual element, actually a gradual real number (or gradual 140

number for short). In the general case, mα is not a monotonic 141

function of α, and the gradual number m(M) may take shapes 142

that can no longer be reinterpreted as a membership function, 143

i.e., as a mapping from the real line into [0, 1]. Using the for- 144

mal definition of a gradual element introduced in this paper, 145

it is possible to extend, to fuzzy intervals, results like for ins- 146

tance: the middle-point of the sum of two intervals is equal 147

to the sum of the middle-points of the intervals, as seen later. 148

Note that there is no uncertainty in a gradual element since 149

the assignment function reflects the idea of representative- 150

ness only. A gradual element is a “flexible” element, not so 151

much an uncertain element: we still have the right of choice 152

when picking a suitable representative for it. One can see a 153

gradual element as an element depending on the relevance 154

value λ, with the idea to postpone the choice of λ later in 155

some decision process, for instance by selecting the proper 156

context. 157

123

Journal: 500 MS: 187 Article No.: 0187 TYPESET DISK LE CP Disp.:2007/5/8 Pages: 11



un
co

rr
ec

te
d 

pr
oo

f

Gradual Elements in a Fuzzy Set

2.1 Fuzzy sets as gradual elements of the power set158

In order to check if the definition of a gradual element is mea-159

ningful, we must prove that a fuzzy subset of S can be defined160

as a gradual element of the power set 2S . The natural assign-161

ment function of a fuzzy set F is its associated cut-mapping,162

which assigns to any λ ∈ L+ its λ-cut Fλ = {s, µF (s) ≥ λ}.163

Define the assignment function of F as:164

A≥
F (λ) = Fλ, ∀λ ∈ L+.165

This mapping has been especially studied by Negoita and166

Ralescu (1975). In the general case, this mapping may not167

be injective. Let L F = µF (S) \ {0} be the set of non-zero168

membership grades of F . L F can be a finite set and then169

the range of AF consists of |L F | distinct nested subsets.170

Alternatively, one may try to represent F by an assignment171

function that map on disjoint subsets (λ-sections):172

A=
F (λ) = {s, µF (s) = λ}, ∀λ ∈ L F .173

But the problem is that generally, A=
F will not be a mapping174

since its domain L F may be a proper subset of L+.175

However, Definition 1 is in agreement with a more general176

view of fuzzy sets whose crisp representatives are neither177

nested nor disjoint.178

Definition 2 A gradual subset G of S is defined by an assi-179

gnment function AG from L+ to 2S .180

Example 2 Consider the gradual subset G of the set S:181

AG(1) = {s1, s2};AG(0.75) = {s1};182

AG(0.5) = {s2, s3};AG(0.25) = {s1, s2}.183

The images of the assignment function are not nested.184

A fuzzy set is then a special kind of gradual set. The assi-185

gnment function of a crisp set is constant. A single gradual186

element e yields a gradual singleton E by letting AE (λ) =187

{Ae(λ)}, ∀λ ∈ L+. More generally, a set of gradual ele-188

ments forms a gradual set of S:189

Definition 3 The gradual set G induced by the family of190

gradual elements e1, . . . , ek in S with assignment functions191

A1, . . . ,Ak , has its assignment function AG defined by192

AG(λ) = {A1(λ), . . . ,Ak(λ)}, ∀λ ∈ L+.193

Example 3 The fuzzy element e in Example 1 induces a194

gradual singleton {e} : A{e}(1) = {s1}; A{e}(0.25) = {s1};195

A{e}(0.5) = {s2}; A{e}(0.25) = {s1}.196

It is possible to define a regular fuzzy set from a gradual197

subset defined via its assignment function AG(·). One natural198

approach is as follows:199

Definition 4 The membership function of the fuzzy set F(G) 200

induced by the gradual set with assignment function AG is 201

µF(G)(s) = sup{λ, s ∈ AG(λ)} 202

= 0 if � ∃λ, s ∈ AG(λ). 203

Example 4 The gradual set G in Example 2 induces the fuzzy 204

set F : µF(G)(s1) = µF(G)(s2) = 1; µF(G)(s3) = 0.5. 205

The supremum is motivated by the idea that a set is the 206

union of the singletons it contains. It is also in agreement 207

with the representations of fuzzy sets in terms of its λ-cuts. 208

A fuzzy set F clearly may correspond to several gradual 209

sets, that form an equivalence class, even if we may consider 210

the λ-cut representation as the canonical (nested) gradual set 211

representative of F . 212

2.2 Fuzzy sets induced by gradual elements 213

Using Definitions 3 and 4, the fuzzy set induced from a set 214

of gradual elements e1, . . . , ek is F such that 215

µF (s) = max
i=1,... ,k

sup{λi , s = Ai (λi )}. (1) 216

The set of gradual elements is said to generate the fuzzy set 217

F . For instance, a single gradual element e having an injec- 218

tive assignment function yields a fuzzy set F(e) by letting 219

µF(e)(s) = λ if and only if Ae(λ) = s, i.e., µF(e) is the 220

inverse of the assignment function Ae. In the non-injective 221

case, we get µF(e)(s) = sup{λ, s = Ae(λ)}, so as to account 222

for the best representativeness level of s w.r.t e. If e is a crisp 223

element s, then F(e) is the singleton{s}. But it is not clear 224

that, in general, a fuzzy set F induced by a single gradual 225

element can be called a fuzzy singleton. Indeed, the cuts of 226

F(e) will generally not only contain a single element. 227

Example 5 The gradual element G in Example 1 induces the 228

fuzzy set F(e) :µF(e)(s1) = 1;µF(e)(s2) = 0.5;µF(e)(s3) = 229

0. 230

Nevertheless, if F is the fuzzy set induced by the family 231

of gradual elements e1, . . . , ek in S, then Eq. (1) reads F = 232

F(e1)∪ F(e2)∪ · · · ∪ F(en) (in the sense of the maximum). 233

So, in some sense, despite the dubious singleton status of 234

fuzzy sets generated by single gradual elements, a fuzzy set 235

is still viewed as the collection of gradual elements that gene- 236

rates it. But as seen later a fuzzy set may contain many more 237

gradual elements than those that generated it. The notion of 238

fuzzy singleton is difficult to define without a convenient 239

notion of gradual element, when S is only equipped with the 240

usual equality relation, as singletons are basically construed 241

as the quotient set S/ = (see Hoehle 1998), hence are crisp. 242

In the literature (especially in fuzzy topology) a fuzzy sin- 243

gleton is viewed as a fuzzy set whose support is a singleton 244

and the member of this singleton has a membership grade 245
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that can be less than 1. Let alone the fact that it is most of the246

time an anomalous fuzzy set (since empty to some extent),247

it cannot be defined as some quotient set w.r.t an equality248

relation. In contrast, the notion of gradual singleton is clear249

(a mapping from L+ to the set of singletons of S). Gradual250

singletons are singletons trivially induced by the set of gra-251

dual elements of S equipped by the equality relation defined252

by e = e′ if and only if Ae = A′
e.253

2.3 Picking elements in a fuzzy set254

An interesting question is how to pick an element in a fuzzy255

set. This is not so easy if the notion of gradual element is256

absent. Indeed, then only crisp elements can be picked. Either257

we pick an element in the core of F , but then one may argue258

that the fuzzy feature of the set is never accounted for; or259

we pick an element in the support. But, then one may argue260

that picking an element outside the core is not legitimate,261

since these elements are not totally representative of the fuzzy262

set. And picking an element with the associated membership263

grade is hard to interpret.264

Now, looking at a gradual set G, it is clear that the idea of265

picking an element in a set is naturally generalized by picking266

an element in each set AG(λ). So, gradual sets contain gra-267

dual elements. So, a gradual element in a fuzzy set F is268

naturally defined as one obtained by picking an element in269

each cut of F .270

Definition 5 A gradual element e is said to belong to a fuzzy271

set F if and only if ∀λ ∈ L+,Ae(λ) = sλ ∈ Fλ.272

For instance, the fuzzy element e of Example 1 belongs to273

the fuzzy set F(G) of Example 4. Mathematically, a gradual274

element in F is a selection function from the multivalued275

mapping α −→ Fα defining the cuts of F . In other words,276

a gradual element e belongs to a fuzzy set F if and only if277

∀s ∈ S, if ∃λ ∈ L+,Ae(λ) = s, then µF (s) ≥ λ. In some278

sense F collects all gradual elements e such that279

µF (Ae(λ)) ≥ λ, ∀λ ∈ L+. (2)280

Namely, µF (Ae(λ)) ≥ λ if and only if Ae(λ) ∈ Fλ. The fol-281

lowing simple condition is characteristic of the membership282

of a gradual element in a fuzzy set:283

Proposition 1 A gradual element e belongs to F if and only284

if F(e) ⊆ F (that is, µF(e) ≤ µF ).285

Proof Since e belongs to F means Eq. (2) holds, it also reads286

∀s, if s = Ae(λ), then µF (s) ≥ λ. So µF (s) ≥ sup{λ, s =287

Ae(λ)}. �
288

We can write, using the idempotent fuzzy set union, F =289

∪e∈F F(e). In particular the only crisp elements in F are290

those in its core. Each gradual element e in a gradual set G291

belongs to the fuzzy set F(G) induced by G. Namely : ∀s, 292

if Ae(λ) = s, then s ∈ AG(λ) hence µF(G)(s) ≥ λ. So if 293

F is generated by a collection of gradual elements, each of 294

these gradual elements belongs to F . Of course, the family 295

of generators of F is clearly not unique. The set of gradual 296

elements of F is the maximal family generating F . 297

An interesting question is to find minimal families of 298

gradual elements generating a fuzzy set F . One idea is to 299

start from sections of F . A gradual element e of F can be 300

built as follows: ∀λi ∈ L F , pick an element si ∈ A=
F (λi ), 301

the λi -section. Define Ae(λi ) = si . Then ∀λ �∈ L F , let 302

Ae(λ) = Ae(λi ), where λi = inf{α > λ, α ∈ L F }. If 303

the cardinality of A=
F (λi ) is ni , the number of such gene- 304

rating gradual elements is
∏

λi ∈L F
ni . This set G of gradual 305

elements clearly generates F . 306

A minimal set Gmin of gradual elements generating F can 307

be built as follows: It contains maxi ni elements ei ∈ Gmin
308

such that ∀λ �= 1 ∈ L F , i �= j,Aei (λ) �= Ae j (λ). It consists 309

in emptying recursively the sections of F by picking an ele- 310

ment in each λi -section of F , building the corresponding 311

gradual element of G and doing it again until all sections are 312

empty. When a section other than the core becomes empty, 313

it is no longer picked from. When only one element remains 314

in the core, it is kept and used repeatingly for building sub- 315

sequent gradual elements until all other sections get empty. 316

Example 6 Consider a fuzzy set F such that µF (s1) = 317

µF (s2) = 1, µF (s3) = 0.7, µF (s4) = µF (s5) = µF (s6) = 318

0.3. First build e1, picking s1, s3, s4. Then Ae1(λ) = s1 if 319

λ ∈ (0.7, 1], s3 if λ ∈ (0.3, 0.7], s4 if λ ∈ (0, 0.3]. Then 320

the 0.7-section is empty. Next, build e2, picking s2, s5. Then 321

Ae2(λ) = s2 if λ ∈ (0.3, 1], s5 if λ ∈ (0, 0.3]. Then the 322

core is empty, so we keep s2. Build e3, picking s2, s6. Then 323

Ae3(λ) = s2 if λ ∈ (0.3, 1], s6 if λ ∈ (0, 0.3]. 324

By construction, if µF (s) = λi �= 1, there is a unique 325

gradual element e j ∈ Gmin such that Ae j (λi ) = s. For all 326

other ek ∈ Gmin, there is no λ ∈ L F such that Aek (λ) = s. 327

Hence, if F− j denotes the fuzzy set generated by Gmin \{e j }, 328

it is clear that µF− j (s) = 0. If µF (s) = 1, then either there is 329

a singleton e j = {s} ∈ Gmin, so µF− j (s) = 0, or Ae j (1) = s 330

for a non-crisp gradual element e j , and µF− j (s′) = 0 for 331

some other element s′ of the support of F . Hence Gmin is a 332

minimal set of gradual elements generating F . 333

2.4 The degree of membership of a gradual element 334

in a fuzzy set 335

Let e be a gradual element of S and F be a fuzzy subset of 336

S, such that F(e) �⊂ F . We may try to compute the degree 337

of membership of this gradual element in the fuzzy set F . 338

Naturally, this degree will be a gradual element of L . 339
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Definition 6 The degree of membership of a gradual element340

e in a fuzzy set F is a gradual element µ(e) of L defined by341

its assignment function Ae∈F such that342

Ae∈F (λ) = µF (Ae(λ)), ∀λ ∈ L+.343

The lattice element Ae∈F (λ) ∈ L is a representative value344

of the membership grade of e in F to degree λ. Note that345

the obtained fuzzy degree of membership does not express346

imprecision. It just reflects the gradual nature of the fuzzy347

set and of the gradual element. Suppose e = s is a regular348

element. Then, Ae∈F (λ) = µF (s), ∀λ ∈ L+.349

Suppose e belongs to F in the sense of Definition 5.350

Then, by construction Ae∈F ≥ I dL the identity function351

of L . If F is not fuzzy, say a subset A, then Ae∈A(λ) = 1352

if Ae(λ) ∈ A, and 0 otherwise. In other words, e belongs353

to A or does not belong to A according to its representa-354

tive, indexed by λ. Then e fully belongs to A provided that355

Ae∈F (λ) = 1, ∀λ > 0. We can consider sup{λ,Ae(λ) ∈356

A} as the degree of membership of e in A, but this must be357

properly understood as the extent to which a gradual ele-358

ment belongs to a crisp set (the gradual nature of mem-359

bership is not due to the set A). Alternatively, this degree360

could be defined as inf{λ,Ae(λ) ∈ A}. However the whole361

range {λ,Ae(λ) ∈ A} is more representative of this evalua-362

tion. More generally, one might compute a scalar degree of363

membership of e in F by considering the measure of the364

set {λ,Ae(λ) ∈ Fλ} (it may be the Lebesgue measure if365

L = [0, 1], which is 1 when e ∈ F).366

Note that defining a probability measure on L+ changes367

a gradual set into a random set and a gradual element into a368

probability distribution. The latter fact emphasises the idea369

that a gradual element is not imprecise. If L is the unit inter-370

val, and L F = {1 = λ1 > · · · > λk}, a canonical way of371

changing a fuzzy set into a random set is to assign proba-372

bility mass λi − λi+1 to the cut Fλi , ∀i = 1 . . . k. This373

idea goes back to Yager (1982), Goodman (1982), Dubois374

and Prade (1982). A similar procedure can be adopted for375

turning a gradual element e into a probability distribution,376

assigning probability λi −λi+1 to element si = Ae(λi ). The377

meaning of this probability can be the degree of “stability”378

of representative element si for e. The gap between λi and379

λi+1 then measures the reluctance to give up si for si+1 as the380

proper representative of the gradual element e. For instance,381

this gap is of size 1 for a crisp element, indicating maximal382

stability. Then λi − λi+1 is the probability of picking si , in383

the sense that the more stable a crisp representative, the more384

likely it will be picked.385

2.5 Fuzzy connectives and gradual sets386

The next step is to show that connectives of fuzzy set theory387

are consistent with the notion of gradual element and gra-388

dual set. The union and intersection of gradual sets G1 and389

G2 can be defined by the classical union and intersection of 390

representatives to the same degree1: 391

AG1∪G2(λ) = AG1(λ) ∪ AG2(λ); 392

AG1∩G2(λ) = AG1(λ) ∩ AG2(λ). 393

By construction, this definition is consistent with the usual 394

idempotent fuzzy set connectives, namely if F(G) is the 395

fuzzy set induced by G, then: 396

µF(G1∪G2)(s) = max(µF(G1)(s), µF(G2)(s)); 397

µF(G1∩G2)(s) = min(µF(G1)(s), µF(G2)(s)). 398

However one may also consider other connectives for gradual 399

sets where unions 400

AG1∪G2(λ, ν) = AG1(λ) ∪ AG2(ν), 401

for all λ ∈ Dom(AG1), ν ∈ Dom(AG2), are computed, using 402

L × L as a new relevance scale. Ultimately, the definition of 403

a connective might depend on the design of a “correlation 404

map” between the two gradual sets indicating which pairs of 405

realizations of the gradual sets go together, the former defi- 406

nition pairing sets with equal representativeness, the latter 407

accepting all pairs. This is the path to follow if other connec- 408

tives than the idempotent ones are to be retrieved. 409

The complement Gc of a gradual set G can be defined 410

levelwise as AGc (λ) = AG(λ)c, but this definition is not in 411

agreement with fuzzy set complementation since the λ-cut 412

of the fuzzy set Fc is not the complement of the λ-cut of F . 413

In order to preserve consistency with the usual fuzzy com- 414

plement, one must assume that the correspondence between 415

representatives of G and of Gc is a negative correlation, and 416

presuppose the existence of an order-reversing map neg on L 417

exchanging 0 and 1. If AGc (λ) is defined as AG(v)c, where 418

ν = inf{α > neg(λ)}, then consistency with fuzzy set com- 419

plementation can be restored. It comes down to a special case 420

of permutation of cuts introduced by Ralescu (1992). 421

3 Examples and applications 422

There are many situations where gradual elements naturally 423

appear. The first general situation is when extending scalar 424

evaluation of sets by means of some index, like cardinality, 425

measure, distance, and so on, to fuzzy sets. To this end, some 426

try to evaluate an average over the cuts of the fuzzy set (using 427

a Choquet integral for instance). Another path is to preserve 428

a genuinely fuzzy index. More often than not, it has been 429

assumed that if a set has a precise evaluation, a fuzzy set 430

should have a fuzzy-valued evaluation interpreted as being 431

1 However if assignment functions are partially defined and
Dom(AG1 ) �= Dom(AG2 ), we must consider the extensions A∗

G1
and

A∗
G2

restricted to Dom(AG1 ) ∪ Dom(AG2 ).
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imprecise. However, the above discussion does not suggest it:432

since a scalar evaluation of a set yields a precise number, the433

scalar evaluation of a fuzzy set should be a fuzzy (gradual but434

not imprecise) element in the range of the index. The same435

idea applies when extending the concept of optimum of a436

function on a domain to the optimum on a fuzzy domain.437

Finally, gradual numbers shed light on the nature of fuzzy438

intervals, and on the concept of defuzzification.439

3.1 Fuzzy cardinality440

Fuzzy-valued cardinality CARD(F) of a fuzzy set F on a441

finite set S was defined by Zadeh (1979) as a fuzzy subset of442

integers having membership function443

µCARD(F)(n)=sup{α, CARD(Fα) ≥ n}, ∀n = 0, 1, 2, . . ..444

The fuzzy cardinality of fuzzy sets has been a topic of debate445

and many proposals appeared in the 1980s. See the mono-446

graph of Wygralak (1996) for a survey of various proposals.447

It is clear that the fuzzy-valued cardinality of a fuzzy set has448

been more often than not envisaged as another fuzzy set of449

integers representing various possible values of the actual450

cardinality of the fuzzy set (hence involving some impreci-451

sion, see for instance Dubois and Prade (1985) who interpret452

a fuzzy cardinality as a possibility distribution). However453

such a fuzzy set of integers has an extremely particular shape454

(strictly decreasing membership function on its support), and455

interpreting it as expressing a lack of knowledge about the456

cardinality of F is debatable, insofar as F is interpreted as a457

set having gradual boundaries (and not as an ill-known set).458

On the contrary, CARD(F) is quite a refined description459

of the cardinality of F where the gradual nature of the set460

is reflected on the integer scale. In fact, fuzzy cardinality461

is naturally described by the following injective assignment462

function:463

ACARD(F)(α) = CARD(Fα), ∀α ∈ L F .464

Integers are defined as cardinalities of (finite) sets. Hence we465

may claim that the fuzzy cardinality of a fuzzy set is precisely466

a gradual integer in the sense of a gradual element in the set467

of integers. For instance, the number of “young” employees468

in a firm is a gradual integer, if the fuzzy set “young” has a469

well-defined membership, which expresses a flexible (rather470

than ill-defined) query to a database. Delgado et al. (2002)471

consider the cardinality of a fuzzy set is a probability dis-472

tribution on the set of natural integers where the probabi-473

lity of CARD(F) = i is of the form λ j − λ j+1 where the474

ACARD(F)(λ j ) = i . This is also in the spirit of this paper, if475

we assume F is actually a consonant random set, so that its476

cardinality is a random integer.477

Fuzzy relative cardinality CARD(F | C) can be treated478

likewise as a gradual number assigning to each membership479

value α the relative cardinality CARD(Fα∩Cα)
CARD(Cα)

, the proposal by480

Delgado et al. (2002) being similar, but assuming a uniform 481

probability distribution on [0, 1]. 482

In the same vein, the fuzzy probability of a fuzzy event F is 483

a gradual element P(F) of the unit interval with assignment 484

function: 485

AP(F)(α) = P(Fα), ∀α ∈ L F , 486

rather than an imprecise (fuzzy interval-valued) probability. 487

The fuzzy Hausdorff distance between two fuzzy sets F 488

and G generalises the Hausdorff distance d between sets: it 489

can be viewed as the gradual number d(F, G) with assign- 490

ment function (Dubois and Prade 1984): 491

Ad(F,G)(λ) = d(Fλ, Gλ), 492

rather than an imprecise distance. It is clear this assignment 493

function has no special regularity. It is also true for the one 494

of relative cardinality, contrary to fuzzy absolute cardinality. 495

Such assignment functions can hardly be understood as fuzzy 496

sets. 497

3.2 Gradual real numbers and fuzzy optimization 498

What is often called a fuzzy number is a fuzzy set of num- 499

bers whose cuts are intervals. Such fuzzy numbers account 500

for both imprecision and fuzziness (regardless of whether 501

their cores are reduced to a point or not). Their addition 502

does not collapse to the regular addition on the real line 503

when fuzziness is removed. It yields interval addition. Hence, 504

the name “fuzzy number”, used by many authors (including 505

the authors of this paper) is debatable (even when its core 506

reduces to a single number). This issue was a topic of (unre- 507

solved) debates in early Linz Seminars on Fuzzy sets bet- 508

ween pure mathematicians and applied ones (see Klement 509

1979, pp. 139–140). In contrast, we here take it for granted 510

that a “fuzzy real number” should be a gradual element of 511

the real line, which should be a number for each relevance 512

level. To avoid confusion we call it a gradual (real) number. 513

Mathematically, a gradual real number r̃ can be modeled by a 514

function Ar̃ from the unit interval to the real line (and not the 515

converse). Note that we do not require monotonicity of the 516

function so that some gradual numbers cannot be interpreted 517

as membership functions (a number would then sometimes 518

have more than one membership degree…). 519

A monotonic and continuous gradual number is called a 520

fuzzy threshold Dubois (1987). The idea is to model a fuzzy 521

boundary between two regions of the real line. This fuzzy 522

boundary is not an ill-known precise boundary, only a gra- 523

dual one, i.e. it indicates only a gradual transition between 524

two regions. Fuzzy thresholds are instrumental in fuzzy linear 525

programming, for the definition of fuzzy linear constraints 526

(Zimmermann 1976). Namely, linear constraints of the form 527
∑n

i=1 ai xi ≤ b become fuzzy by turning coefficient b into a 528
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fuzzy threshold. Note that this methodology does not intro-529

duce uncertainty in linear programming, only flexibility, by530

means of some gradual relaxation of the crisp constraint. The531

set of feasible solutions then becomes a fuzzy set, but the gra-532

dual boundary obtained by fuzzifying b is not a fuzzy set: it533

is a gradual number.534

The notions of gradual number and gradual set actually535

shed some light on the ill-understood problem of maximi-536

zing a numerical function f over a fuzzy domain D of the537

real line, a topic at the heart of fuzzy mathematical program-538

ming. In their 1980 book (p. 102), Dubois and Prade (1980)539

notice that there are two approaches to this problem: the first540

approach stems from Bellman and Zadeh (1970); it consists541

in first turning the function f into a so-called maximizing542

set M , which is a fuzzy set obtained by rescaling the func-543

tion f within the unit interval; then an optimal solution x∗ of544

the fuzzy optimization problem is defined as one that maxi-545

mizes min(µD(x), µM (x)). This approach may be questio-546

ned because the optimal solution crucially depends on the547

scaling method that enables the comparison of the degree548

of attainment of the goal, expressed by f , by a solution,549

and the degrees of feasibility of this solution. Yet, this is550

the methodology followed by the majority of researchers in551

fuzzy optimisation, starting with Tanaka et al. (1974), and552

Zimmermann (1976).553

Quite in the same years, Orlovsky (1977) suggested quite554

a different approach. The idea was to define the optimum of555

f over D as a fuzzy set. Namely, for each λ ∈ (0, 1], consi-556

der a supposedly unique solution x∗
λ maximizing f over the557

crisp domain (D)λ. It is clear that, varying λ, a fuzzy optimal558

solution is obtained under the form of a gradual element x∗
559

of D such that Ax∗(λ) = xλ. The set of fuzzy optimal solu-560

tions forms a gradual set, with assignment function AX∗ that561

assigns to each feasibility level λ the set X∗
λ of optimal solu-562

tions of f over the crisp domain (D)λ. Note the sets X∗
λ are563

generally NOT nested. Orlovsky (1977) defines the fuzzy set564

of maximizing solutions precisely as the fuzzy set N induced565

by the gradual set X∗ using Definition 4. The fuzzy optimum566

attained is then f (N ) defined using the extension principle.567

However it is clear that one could define this fuzzy maximum568

as the gradual set defined by f (X∗
λ),∀λ ∈ (0, 1]. This view569

is also very close to the parametric programming approach to570

fuzzy linear programming first proposed by Chanas (1983).571

3.3 The arithmetics of gradual numbers572

Algebraic structures of numbers (like groups) should be pre-573

served for the most part when moving from real numbers574

to gradual real numbers (while fuzzy intervals just preserve575

algebraic properties of intervals). Indeed, let r̃1 and r̃2 be576

two gradual numbers with assignment functions A1 and A2577

(mappings from (0, 1] to the reals). Any operation ∗ between578

reals can be extended to gradual numbers as follows: r̃1 ∗ r̃2579

has assignment function A1∗2 such that 580

∀λ ∈ (0, 1],A1∗2(λ) = A1(λ) ∗ A2(λ). 581

Under this definition, it is obvious that, for instance, the 582

set of gradual numbers forms an Abelian group for the addi- 583

tion, and that regular inverses exist (A−r̃ (λ) = −Ar̃ (λ)). 584

However it is clear that extended operations performed on 585

(monotonic) fuzzy thresholds are not closed: if r̃1 and r̃2 are 586

monotonically increasing, r̃1 − r̃2 may not be so (hence the 587

necessity not to restrict to monotonic gradual numbers). 588

Note that arithmetic operations extended to gradual 589

integers can solve the following paradox: the set difference 590

A\ A is the empty set, as is the fuzzy set difference F \ F 591

computed for instance as F ∩Fc using Lukasiewicz conjunc- 592

tions. The cardinality of A\A is CARD(A)−CARD(A) = 0. 593

So should be CARD(F)−CARD(F). It is clear that conside- 594

ring the fuzzy cardinality CARD(F) as a fuzzy set of integers 595

and applying the extension principle to compute CARD(F)− 596

CARD(F) yields a symmetric fuzzy set of integers around 597

0, which is counterintuitive. But viewed as an operation bet- 598

ween gradual integers, CARD(F)− CARD(F) = 0. In fact, 599

we can retrieve the additivity property for fuzzy cardinality 600

i.e. 601

CARD(F1) + CARD(F2) = CARD(F1 ∪ F2) 602

+CARD(F1 ∩ F2), 603

and this is still equivalent to 604

CARD(F1) + CARD(F2) − CARD(F1 ∪ F2) 605

−CARD(F1 ∩ F2) = 0. 606

Moreover, if we consider (in the spirit of Rocacher and 607

Bosc 2003) the set of “natural gradual integers” as all gra- 608

dual elements on the set of integers of the form CARD(F) 609

for some finite fuzzy set F (hence assignment functions are 610

decreasing), the set of gradual elements of the relative inte- 611

gers (gradual relative integers for short) can be obtained as 612

CARD(F) − CARD(G) for some finite fuzzy sets F and G. 613

To see it, it is enough to consider a gradual relative integer 614

z as a sequence of (usual) relative integers k1, . . . , kn , such 615

that Az(ki ) = λi and to notice the following result: 616

Proposition 2 Let k1, . . . , kn be any finite sequence of rela- 617

tive integers. There exist two increasing sequences x1, . . . , xn 618

and y1, . . . , yn of non-negative integers, such that ∀i = 619

1 . . . n, ki = xi − yi . 620

Proof Define x1 = max(k1, 0) and y1 = max(−k1, 0) and, 621

for i > 1, 622

yi = yi−1 + 1 + max(0, ki−1 − ki ), 623

and of course xi = yi + ki . Clearly, y1 ≥ 0, yi > yi−1,∀i > 624

1 as well. For xi , a simple recursion will do. Clearly, 625
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x2 > x1 ≥ 0. Assume xk > 0 for k = 2, . . . i − 1. Then626

xi = xi−1 − ki−1 + ki + 1 + max(0, ki−1 − ki ).627

If ki−1 − ki < 0 then xi = xi−1 − ki−1 + ki + 1 > xi−1.628

If ki−1 − ki ≥ 0 then xi = xi−1 + 1 > xi−1. �
629

For any fuzzy relative integer z̃, the sequences x1, . . . , xn630

and y1, . . . , yn define gradual natural integers x̃ and ỹ such631

that z̃ = x̃− ỹ. In this sense, the set of gradual natural integers632

(understood as cardinalities of finite fuzzy sets) generates all633

gradual relative integers, via a canonical subtraction.634

3.4 Fuzzy intervals as crisp intervals of gradual numbers635

A fuzzy interval M is a normalized fuzzy set of reals with636

membership function µM such that637

– its core (the 1-cut of M) is a closed interval [m−, m+];638

– its support {x |µM (x) > 0} is an open interval;639

– it has a non-decreasing part, denotedµM− , on (−∞, m−];640

– it has a non-increasing part, denoted µM+ , on [m+,+∞).641

The notion of gradual element enables a fuzzy interval to be642

defined as a pair of fuzzy thresholds having opposite mono-643

tonicities, and bounding gradual numbers, just as an interval644

is modeled by an ordered pair of numbers that are its bounds.645

In Dubois et al. (2004), such fuzzy thresholds are called pro-646

files, which we consider here as genuine gradual numbers.647

Viewing a fuzzy interval as a fuzzy set of reals limited by two648

gradual numbers, enables classical interval analysis Moore649

(1979) to be directly applied to fuzzy intervals.650

As [a, b] stands for the set {r : a ≤ r ≤ b}, a fuzzy651

interval M can be defined by an ordered pair of (monotonic)652

gradual numbers (m̃−, m̃+), with653

Am̃− = (µM−)−1, Am̃+ = (µM+)−1
654

M is viewed as the crisp interval [m̃−, m̃+] in a space of655

functions, and stands for a crisp interval of gradual numbers656

{r̃ : (µM−)−1 ≤ Ar̃ ≤ (µM+)−1}.657

In standard interval analysis, the problem is to find the658

lower and the upper bounds of a function ϕ(x, y, z, . . .) when659

x, y, z, . . . range over intervals I, J, K , . . .. The tuples of660

values called extreme configurations (the vertices of the661

hyper-rectangle I × J × K × . . .) play a decisive role as can-662

didates for being tuples of values for which the optima of the663

function f are reached, when the function is locally monoto-664

nic (all functions obtained from ϕ by fixing all variables but665

one are monotonic). For instance consider product of (not666

necessarily positive) intervals667

[a, b] · [c, d] = {(x · y) : x ∈ [a, b], y ∈ [c, d]}668

The properties of product imply that we can restrict the com-669

putation of x · y to four extreme configurations (a, c), (b, c),670

(a, d), (b, d): 671

[a, b] · [c, d] = [min(a · c, b · c, a · d, b · d), 672

max(a · c, b · c, a · d, b · d)]. 673

The product A · B of two fuzzy intervals A and B is 674

defined by the extension principle of Zadeh (ϕ = product): 675

µA·B(z) = 676

{
sup(x,y):z=x ·y min(µA(x), µB(y)) if ∃(x, y) : z = x · y

0 otherwise

}

677

The usual method of fuzzy interval analysis is to perform 678

regular interval analysis onα-cuts. Applying interval analysis 679

to fuzzy intervals viewed as intervals of gradual numbers can 680

now be envisaged: [ã−, ã+] · [b̃−, b̃+] = 681

{(r̃ · s̃) : (µA−)−1 ≤ Ar̃ ≤ (µA+)−1, (µB−)−1 ≤ As̃ 682

≤ (µB+)−1}, (3) 683

where r̃ ·s̃ has an assignment function Ar̃ ·As̃ . It it is clear that 684

the right hand side of Eq. (3) comes down to performing clas- 685

sical interval analysis at each level λ ∈ (0, 1]. From Nguyen 686

(1978) theorem, under weak assumptions (A · B)λ = Aλ · Bλ. 687

Hence A · B exactly coincides with [ã−, ã+]·[b̃−, b̃+], in the 688

sense of classical interval analysis. More generally, finding 689

f (A, B) requires optimization over a set of gradual numbers 690

so as to find their fuzzy boundaries. For locally monotonic 691

functions, it is possible to restrict computations to the fuzzy 692

boundaries of fuzzy interval arguments (extreme fuzzy confi- 693

gurations). For product: 694

– Compute Aã− · Ab̃− , Aã− · Ab̃+ , Aã+ · Ab̃− , Aã+ · Ab̃+ . 695

– A · B is the fuzzy hull of these gradual numbers, obtained 696

by applying the expression providing the optimal bounds 697

in the interval case, replacing numbers by gradual num- 698

bers obtained above. 699

Some partial results may fail to be monotonic Dubois 700

et al. (2004), even if when putting all partial results toge- 701

ther, a genuine fuzzy interval is obtained in the end, due to 702

the equivalence between the interval analysis approach and 703

the extension principle. 704

Even if non-monotonic profiles appear as intermediary 705

results in the computation, the above approach still avoids the 706

pitfall of ending up with anomalous membership functions 707

(like the anti-fuzzy numbers of Goetschel 1997) due to a 708

definition of subtraction such that M + N = Q if and only 709

if M = Q − N , between fuzzy intervals. For instance, the 710

fuzzy interval bounded by the pair (a, r̃) where a is a real 711

number and Ar̃ (λ) = a + (1 − λ)b (with b > 0), should not 712

be confused with the gradual number r̃ itself, when it comes 713

to performing subtraction. Indeed, while r̃ − r̃ = 0, interval 714

analysis yields: 715

[a, r̃ ] − [a, r̃ ] = [a − r̃ , r̃ − a], 716
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which is an imprecise zero, but not zero. This is because717

[a, r̃ ] is actually the fuzzy interval generated by the gradual718

real number r̃ , as per Definition 4.719

3.5 Defuzzification720

A gradual number r̃ can be defuzzified and it yields a regular721

number that “summarizes” it. The most obvious candidate722

defuzzification method is the Riemann integral723

r =
1∫

0

Ar̃ (α)dα.724

It comes down to using the Lebesgue measure on the unit725

interval. For instance, defuzzifying the fuzzy cardinality726

CARD(F) of a finite fuzzy set F yields its usual scalar car-727

dinality, namely:728

1∫

0

ACARD(F)(α)dα =
∑

s∈S

µF (s).729

Now, we can reconsider the problem of “defuzzifying” a730

fuzzy set of real numbers, understood as selecting a repre-731

sentative number for it. This vocabulary is not appropriate732

as explained earlier. The notion of mean interval of a fuzzy733

interval M was defined as follows (Dubois and Prade 1987):734

consider M as a pair of distribution functions (F∗, F∗)735

where736

F∗(x) = µM (x) for x ≤ inf c(M)737

(c(M) is the core of M with membership value 1), and738

F∗(x) = 1 − µM (x) for x ≥ sup c(M).739

The mean interval is E(M) = [E∗(M), E∗(M)] where740

E∗(M) (resp. E∗(M)) is the expectation of the probability741

function with cumulative distribution F∗ (resp. F∗). This742

definition is justified from different points of view, as produ-743

cing the upper and lower expectations of the set of probability744

functions dominated by the possibility measure induced by745

M Dubois and Prade (1987), but also as the mean α-cut obtai-746

ned via an Aumann integral of the set-valued map associated747

to M (to each α ∈ (0, 1] assign the α-cut Mα , i.e., a gradual748

set; see Ralescu 2002). This set-valued average is linear with749

the fuzzy addition and scalar multiplication. It corresponds750

to stripping M from its fuzziness, not of its imprecision. It751

is, literally, a defuzzification. The next step is to select a752

number in E(M) (for instance the mid-point, by symme-753

try; seeer Yager 1981). It provides a method for choosing754

a number representing a fuzzy set that is more natural than755

the center of area and the like. Using the notion of gradual756

number, one can exchange the steps of (genuine) defuzzifi-757

cation and selection. We can strip M from its imprecision,758

by selecting a gradual number r̃(M) in M , and then we can759

defuzzify r̃(M). A natural selection, in agreement with the 760

symmetry argument is to pick the mid-point mα of all α-cuts 761

of M , and it defines a gradual number m̃(M). Its (generally 762

not monotonic) assignment function is Am̃(M)(α) = mα . 763

Now, we can defuzzify it, using the Riemann integral as sug- 764

gested above. It is obvious that the obtained value m(M) 765

is also the mid-point of the mean interval (or average cut), 766

i.e. 767

m(M) = (E∗(M) + E ∗ (M))/2. 768

It follows that in terms of gradual numbers, 769

m̃(M + N ) = m̃(M) + m̃(N ). 770

Besides, the defuzzified m(M) is also equal to the mean value 771

of the probability distribution obtained by randomizing the 772

fuzzy number (in the style of Chanas and Nowakowski 1988): 773

picking an element α at random in (0, 1] and then a number 774

at random in [m−
α , m+

α ]: the obtained probability is the center 775

of mass of the polyhedron restricting the set of probability 776

functions induced by M . It is the random number obtained 777

via the gradual number m(M) when equipping the unit inter- 778

val with a uniform probability distribution (also the Shapley 779

value Shapley (1953) of the “unanimity game” generated by 780

M). 781

4 Related works 782

Mathematicians of fuzzy sets in the past have introduced the 783

notion of a “fuzzy real number”, starting with Hutton (1975). 784

Often, it takes the form of a decreasing mapping from the 785

reals to the unit interval or a suitable lattice (Gantner et al. 786

1978), or a probability distribution function (Lowen 1996). 787

Arithmetic operations on fuzzy reals were studied by 788

Rodabaugh (1982), and contrast with fuzzy arithmetics based 789

on the extension principle. Hoehle (1987) especially empha- 790

sized the role of fuzzy real numbers as modeling a fuzzy 791

threshold softening the notion of Dedekind cut. 792

Recently, Rocacher and Bosc (2003) suggested to define 793

what they call fuzzy natural integers as fuzzy cardinalities 794

of fuzzy sets, defined as proposed by Zadeh, but interpre- 795

ted differently. Their fuzzy natural integer is then modeled 796

by a (monotonically decreasing) membership function from 797

the natural integers to the unit interval. In order to make it 798

clear that no uncertainty is involved, these authors suggest 799

viewing such natural fuzzy integers as conjunctive sets (as 800

opposed to possibility distributions, which are disjunctive 801

sets whose elements are mutually exclusive, thus expres- 802

sing a lack of knowledge). However fuzzy conjunctive sets 803

are used to model fuzzy multivalued attributes Dubois and 804

Prade (1988). We suggest that fuzzy cardinalities could as 805

well be viewed as gradual integers, and are no sets at all. 806
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These authors then define fuzzy relative integers Rocacher807

and Bosc (2003) as equivalence classes of pairs of fuzzy808

integers (ñ1, ñ2) such that ñ1 + z̃ = ñ2. Fuzzy relative inte-809

gers are no longer monotonic, nor membership functions,810

generally. In their paper, Rocacher and Bosc (2005) Roca-811

cher and Bosc also build (what he calls) fuzzy rational num-812

bers from fuzzy relative numbers in a similar way. This view813

is totally along the line discussed above. The idea of gra-814

dual set proposed here is just an extension of the definition815

of fuzzy sets in terms of α-cuts, dropping the nestedness816

condition. This view was first systematically explored by817

Negoita and Ralescu (1975) quite early (see Ralescu 1992818

for more advanced considerations), and gradual sets were819

proposed by Goetschel (1997), under the name “fuzzy level820

sets”.821

The idea that a fuzzy interval is a pair of fuzzy thresholds822

or profiles is akin to the so-called graded numbers of Herencia823

and Lamata (1999) and the fuzzy darts of Goetschel (1997).824

These authors also consider mappings from the unit interval825

to the real line, instead of the usual mapping from the reals to826

the unit interval. A fuzzy interval is then viewed as a pair of827

such mappings. However, our gradual reals are more gene-828

ral because they are not necessarily monotonic. In fact, the829

very technique for deriving closed-form formulas for fuzzy830

arithmetic operations on L–R fuzzy intervals (see Dubois831

and Prade 1978, 1980) does rely on the separate treatment832

of left and right-hand sides of fuzzy intervals, applying the833

operations on the corresponding fuzzy thresholds. This tech-834

nique is generalized to fuzzy interval analysis in Dubois et al.835

(2004).836

This view of fuzzy numbers as pairs of functions from the837

unit intervals to the real line, is also the basics of the recent838

proposal by Kolesnik et al. (2004) and Kosinski et al. (2005).839

However, these authors propose a calculus that moves away840

from the extension principle and interval analysis. Especially841

these authors consider it natural that the Abelian group struc-842

ture be preserved for addition and multiplication of fuzzy843

intervals. Demanding that [a, b] − [a, b] = 0 leads to define844

subtraction as [a, b] − [c, d] = [a − c, b − d], with the ano-845

maly that sometimes a − c > b − d. However, these authors846

argue that such entities make sense. Actually the extension of847

intervals to entities called generalized intervals [a, b] where848

a > b was proposed in the literature by Kaucher (1980), and849

they play some role in the solution of interval equations. In850

this vein, Kolesnik et al. (2004) and Kosinski et al. (2005)851

consider so-called “ordered fuzzy numbers” that are fuzzy852

intervals plus an orientation along the membership function853

from one end of the support to the other. They are viewed854

as pairs of oriented assignment functions. The calculations855

on ordered fuzzy numbers proposed by the Kosinski group856

combine assignment functions having the same orientation857

and provide results than can no longer be interpreted as fuzzy858

sets.859

5 Conclusion 860

This paper introduces a new concept in fuzzy set theory, 861

namely that of a gradual element. It seems that such a concept 862

was missing in the theory. More exactly, this notion per- 863

vades parts of the fuzzy set literature without being given 864

a proper name, as shown by the many examples provided 865

above. Although of an abstract nature, we think that gradual 866

elements are a crucial concept for understanding the nature 867

of fuzziness introduced by Zadeh as concepts being a mat- 868

ter of degree, what can be named “graduality”, (and called 869

“membership gradience” by Lakoff (1987)), thus giving up 870

Booleanity, as opposed to the idea of partial or incomplete 871

information. Since sets are used for representing incomplete 872

knowledge, fuzzy sets often capture both ideas of graduality 873

and partial information at the same time (as in possibility 874

theory). This has created confusion between fuzziness and 875

uncertainty, sometimes leading to debatable developments 876

in the theory or the applications of fuzzy sets. The merit of 877

gradual elements is that they only embody the idea of being 878

a matter of degree. Some applications of this concept have 879

been surveyed, especially the notion of fuzzy real number that 880

can be instrumental for developing a genuine fuzzy interval 881

analysis as well as sound defuzzification procedures. Other 882

applications of the new concept to fuzzy cardinality are rele- 883

vant for a better handling of quantifiers in fuzzy queries to 884

databases. 885
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