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Abstract. This paper surveys various areas in information engineering
where an explicit handling of positive and negative sides of information is
appropriate. Three forms of bipolarity are laid bare. They can be instru-
mental in logical representations of incompleteness, rule representation
and extraction, argumentation, and decision analysis.

1 Introduction

Bipolarity refers to the propensity of the human mind to reason and make de-
cisions on the basis of positive and negative affects. It expresses the fact that
beyond ranking pieces of information or acts in terms of plausibility, utility and
so on, the human mind also relies on absolute landmarks with positive and
negative flavor, plus a third landmark expressing neutrality or indifference, cor-
responding to the boundary between positive and negative zones. For instance
people make choices by checking the good sides and the bad sides of alternatives
separately. Then they choose according to whether the good or the bad sides
are stronger. Results in cognitive psychology have pointed out the importance of
bipolar reasoning in human cognitive activities [19] [6] [22]. It even seems that
positive and negative affects are not processed in the same area of the brain.

The presence of absolute landmarks in the way humans apprehend infor-
mation creates limitations in some well-established theories of knowledge repre-
sentation and reasoning. For instance, probability theory handles certainty and
impossibility in a very rigid manner, leaving no room for the state of ignorance.
Classical (Von-Neumann-Savage) utility theory builds interval scales for utilities
regardless of positive and negative values, since a utility function is invariant
with respect to increasing affine transformations. More generally ranking alter-
natives in a purely ordinal way cannot account for bipolarity in a straightforward
manner. In decision theory, the first formal account of bipolarity is Cumulative
Prospect Theory [23]. In quite a different matter, the fact that material impli-
cation does not provide a good model of if-then rules can be explained in terms
of neglecting the bipolar nature of such rules, which have both examples and
counter-examples.

The aim of this paper is to briefly survey some areas where bipolarity seems
to be present and play a major role. The first section lays bare three forms
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of bipolarity. The subsequent sections are devoted to various cognitive tasks
that naturally involve bipolar ingredients: uncertainty representations, conjointly
exploiting knowledge and data, learning, expressing conditional information, and
finally decision-making.

2 A Typology of Bipolarity

There are several forms of bipolarity according to the strength of the link between
the positive and the negative aspects; in the most constrained form, the positive
is just the mirror image of the negative and they are mutually exclusive. A
looser form of bipolarity considers a possible coexistence between positive and
negative evaluations, while a duality relation between them is maintained. In the
loosest form, the positive and the negative sides express pieces of information of
a different nature.

2.1 Bipolar scales

A bipolar scale (L, >) is a totally ordered set with a prescribed interior element
0 called neutral, separating the positive evaluations A > 0 from the negative
ones A < 0. Mathematically, if the scale is equipped with a binary operation
(an aggregation operator), 0 is an idempotent element for x, possibly acting as
an identity.

Examples :

— The most obvious quantitative bipolar scale is the (completed) real line
equipped with the standard addition, where 0 is the neutral level. Isomor-
phic to it is the unit interval equipped with an associative uninorm like
m. Then the neutral point is 0.5, 0 plays the same role as —co

and 1 as +oo in the real line. Also the interval [—1,1] is often used as a

bipolar scale;

— The simplest qualitative bipolar scale contains three elements: {—, 0, +}.

In such a bipolar scale, the negative side of the scale is the inverse mirror of
the positive one. An object is evaluated on such a bipolar scale as being either
positive or negative or neutral. It cannot be positive and negative at the same
time. This is called a univariate bipolar framework.

Another type of bipolar framework uses two distinct totally ordered scales
LT and L~ for separately evaluating the positive and the negative information.
This is the bivariate unipolar framework. Here each scale is unipolar in the sense
that the neutral level is at one end of the scale. In a positive scale the bottom
element is neutral. In a negative scale the top element is neutral. A bipolar
scale can be viewed as the union of a positive and a negative scale L™ U L™
extending the ordering relations on each scale so VAT € LT A~ € L7, AT > \™.
The symmetrisation of finite unipolar scales is incompatible with associative
operations [14] : only infinite bipolar scales seem to support such operations!
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2.2 Symmetric, Dual and Loose Variants of Bipolarity

Three forms of bipolarity can be found at work in the literature, we call types
I, II, III for simplicity.

— Type I : Symmetric bipolarity. It relies on the use of bipolar scales.
Generally, positive and negative evaluations are comparable and sometimes
can even add. Of course, the two truth-values true and false of classical logic
offer a basic view of bipolarity. However, the neutral value only appears in
three-valued logics. Note that the neutral truth value must be interpreted as
half-true, and not as modalities such as unknown or possible. Probability the-
ory exhibits a type I bipolarity as the probability of an event is clearly living
on a bipolar scale [0, 1] whose top means totally sure and bottom impossible
(not to be confused with ¢rue and false). The neutral value is 0.5 and refers
to the total uncertainty about whether an event or its contrary occurs (not
to be confused with half-true). In decision theory, utility theory does not
exhibit bipolarity as utility functions only encode an ordering relation be-
tween decisions. On the contrary, Tverski-Kahneman’s Cumulative Prospect
Theory uses the real line as a bipolar scale. It is numerical, additive, and
bipolar. It measures the importance of positive affects and negative affects
separately, by two monotonic set functions o™, ¢~ and finally computes a
net predisposition N = o7 — o™

— Type II : Homogeneous bivariate bipolarity. It works with two sepa-
rate positive and negative scales related via a duality relation. Here, an item
is judged according to two independent evaluations : a positive one (in favor
of the item), a negative one (in disfavor of the item). However positive and
negative strengths are computed similarly on the basis of the same data. The
point is here that the positive and the negative sides do not exhaust all pos-
sibilities. Part of the data may neither favor nor disfavor the evaluated item.
Well-known examples of such a bipolarity can be found in formal frameworks
for argumentation where reasons for asserting a proposition and reasons for
refuting it are collected. In decision theory, one may compare decisions using
pairs of positive and negative evaluations according to several criteria.
Apart from the positive evaluation, a weak positive evaluation, gathering
data not in disfavor of the item can be used. For instance, working with
intervals on a (type I) bipolar univariate scale (in the case of an ill-known
evaluation) comes down to a type II bipolarity. There is a duality relation
relating the weak evaluation and the strong positive evaluation, if each item
has a “contrary” : the weak evaluation of an item is the complement of the
positive evaluation of the “contrary” item when the latter makes sense. This
is typical of uncertainty theories leaving room for incomplete information.
Namely, the confidence in some event A is evaluated by two set functions
C(A) and IT(A) reflecting their certainty and plausibility respectively. They
are related by the inequality C(A) < IT(A), so that the certainty of A is
expressed by C(A) = II(A) = 1, the impossibility of A by C(A) = II(A) =0
while the neutral state of ignorance is when C'(A4) = 0;I1(A) = 1. Clearly,
C(A) lives on a positive scale, while IT(A) lives on a negative one. The duality
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relation expresses that C'(4) = 1 — II(A°) where A° is the complement
of A. A good example of certainty/plausibility pairs displaying this kind
of bipolarity are belief and plausibility functions of Shafer. In the case of
possibility /necessity measures, type II bipolarity is also present in the sense
that necessity degrees live on a positive scale while possibility degrees live on
a negative scale. However, the two scales are tightly related by the constraint
stating that positive necessity degree implies a maximal possibility degree
for a given event. So in this case the bivariate setting is degenerated and the
pair (C(A),II(A)) can be mapped in a one-to-one way to a symmetric type
I bipolar scale.

Type III : Heterogeneous bipolarity. In this form of bipolarity, the neg-
ative part of the information does not refer to the same kind of source as
as the positive part. So positive and negative information are of a different
nature, while in type II bipolarity only the polarity is different. Especially, in
the case of information merging, negative and positive pieces of information
will not be aggregated using the same principles. The positive side is not a
mirror image of the negative side either. Nevertheless, positive and negative
information cannot be completely unrelated. They must obey minimal con-
sistency requirements. In uncertainty modeling or knowledge representation
heterogeneous bipolarity corresponds to the pair (knowledge, data). Knowl-
edge is negative information in the sense that it expresses constraints on
how the world behaves, by ruling out impossible or unlikely relations: laws
of physics, common sense background knowledge (claims like “birds fly”).
On the contrary, data represent positive information because it represents
examples, actual observations on the world. A not yet observed event is not
judged impossible; observing it is a positive token of support. Accumulating
negative information leads to ruling out more possible states of the world
(the more constraints, the less possible worlds). Accumulating positive in-
formation enlarges the set of possibilities as being guaranteed by empirical
observation. In decision making, heterogeneous bipolarity concerns the oppo-
sition between constraints (possibly flexible ones) that state which solutions
to a problem are unfeasible, and goals or criteria, that state which solutions
are preferred.

3 Bipolarity in Logical Representations of Belief

As said above, bipolarity appears in logic in two forms, one pertaining to the
truth or the falsity of propositions, and the other pertaining to a (sincere) agent’s
capability to assert a proposition or its contrary. It is important to notice the
existence of two scales: one that measures truth, one that measures belief. A
truth- scale is type I bipolar and, when many-valued, it enables propositional
variables and propositions whose truth is a matter of degree to be modelled. The
neutral point in the scale is half-true. Working with Boolean or non-Boolean
propositions is a matter of modelling convention, not a matter of how much
knowledge is available. So [0, 1]-valued membership functions of fuzzy sets are
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type I bipolar (non-membership 0 being negative, 0.5 being neutral). In the
Boolean case, the truth-scale is reduced to the pair {0, 1}.

Another issue is the belief scale. It is positive unipolar in the sense that while
believing p is a positive piece of information, not believing p is non-committal,
because it differs from believing —p, the negation of p. There is a companion neg-
ative unipolar plausibility scale whose bottom expresses impossibility and whose
top has a neutral value for expressing non-committal statements of the form p is
possible. In classical logic, beliefs are represented by propositions assumed true
and forming a belief base K. Belief is Boolean : either p is believed (when K F p)
or not. Moreover p is believed if and only if —p is impossible, indicating that this
is type II bipolarity. Clearly in the case of incomplete belief bases, the epistemic
state of a proposition is ternary in classical logic even if truth is 2-valued: one
may either believe p, believe —p, or believe neither due to ignorance.

There are temptations to use belief states or belief values as truth values (a
set of the form {True, Unknown, False}) and build a 3-valued logic on it. This
is basically what the so-called “partial logic” [5] does. Its truth-tables use an
implicit order whereby Unknown is less true than True, more true than False.
But this approach runs into paradoxes related to the excluded-middle law [11].
Adopting truth-tables for conjunction and disjunction, one must assign a truth-
value to pV q when p and q are both unknown, which clearly depends on whether
p and ¢ are logically independent or not. The point is that ultimately, in the
Boolean framework p is true or false, so that pV —p must be a tautology, even if
the truth-value of p is not known. So Unknown is not a truth-value in the usual
sense: it does not prevent 0 and 1 from being exhaustive and mutually exclusive
as truth-values. Unknown lives on the belief /plausibility bivariate scale. Just like
Unknown, True and False, understood as above, are not truth-values, they are
epistemic states because they stand for certainly 1, and certainly 0, respectively.
They can be modelled as disjunctive subsets of the truth scale: Unknown =
{0,1}, True = {1}, False = {0}. Belnap so-called “4-valued logic” [3] supposedly
adds a fourth “truth-value” expressing the contradiction to {True, Unknown,
False}. However it is subject to the same criticism as above, as to what this
4-valued logic means, regardless of the fact that a multivalued logic based on
such a kind of truth-set (a bilattice) can be devised and enjoys nice properties.

One reason for this confusion between truth and certainty of truth is that the
language of classical logic does not support the expression of unknown propo-
sitions: only believed propositions can be written in the knowledge base. It be-
comes clearer when prefixing each believed proposition in K with a necessity-like
belief modality C'. Then a possibility-like modality I, such that ITp may stand
for =C—p. It can be shown that the proper logic here is the KD45 modal logic.
Then True can be interpreted, in some sense, as a truth-value of Cp, not of p.
Unknown is encoded as IIp A IT—p. It applies when Cp V C—p is false, as clearly
C'p is not the negation of C—p. So, the presence of the epistemic state Unknown
does not question the excluded middle law at all. Casting propositional logic
into an epistemic modal logic lays bare the type II bipolarity of reasoning in
classical logic. In fact it can be proved [8] that, denoting CK = {Cp,p € K},
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K F p in classical logic if and only if CK F Cp in KD45. Note that this kind of
embedding is not the usual one of propositional logic into modal logic: it says
that the fragment of KD45 made of classical propositions prefixed by C' behaves
like classical logic, which justifies the name “belief base” for a set of classical
propositions.

Rough set theory [20] also displays a form of type II (symbolic) homoge-
neous bipolarity, since a set is approximated by a pair of subsets, respectively
containing elements surely belonging to it (lower approximation), and elements
surely not belonging to it. The so-called upper approximation of the set is again
the complement of the lower approximation of its complement. This can be
represented using ordered pairs of truth-values from {0,1}, viewed as an ele-
mentary unipolar scale, assigning (1, 1) to elements surely belonging to A, (0,0)
to elements surely belonging to A€, and (0,1) to elements whose membership is
unknown. However, it does not lead to a truth-functional three-valued logic on
a (type I) bipolar scale, since the lower (resp. upper) approximation of a union
(resp. intersection) of sets is not the union (resp. intersection) of their lower
(resp. upper) approximations. Yet, links between three-valued logics and rough
sets have been explored in the literature (e.g. Banerjee [2]).

4 Heterogeneous Bipolar Information: Knowledge vs.
Data, and Learning

In the previous section, bipolarity in knowledge representation was due to incom-
plete information. There is a very different kind of bipolarity, this time heteroge-
neous, opposing background knowledge and empirical data. Background knowl-
edge takes the form of generic statements, integrity constraints, laws, necessary
conditions, and point out what cannot be possibly observed. On the contrary,
data is made of observed cases that are positive pieces of information. Beware
that positive knowledge may not just mirror what is not impossible. Indeed what
is not impossible, not forbidden, does not coincide with what is explicitly pos-
sible or permitted. So, a situation that is not impossible (i.e., possible) is not
necessarily guaranteed possible (i.e., positive) if it is not explicitly permitted,
observed or given as an example.

Possibility theory is a suitable framework for modelling and reasoning about
this kind of bipolar information[12][8]. Negative and positive information is rep-
resented by two separate possibility distributions, denoted by 7 and 4, yielding
possibility and guaranteed possibility measures respectively. A possibility distri-
bution 7 encodes a total pre-order on a set S of interpretations or possible states.
It associates to each interpretation s a real number 7(s) € [0, 1], which represents
the compatibility of the interpretation s with the available knowledge on the real
world (in case of uncertain knowledge), or equivalently to what extent s is not
impossible. The less 7(s), the more impossible s is. The second possibility dis-
tribution § should be understood differently. The degree d(s) € [0, 1] estimates
to what extent the presence of s is supported by evidence, and d(s) = 0 just
means that s has not been observed yet. In the crisp case, the set I of impossi-
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ble situations is I = {s € S,m(s) = 0}, and the set GP of guaranteed possible
situations is GP = {s € S,4(s) = 1}.

A characteristic property of heterogeneous bipolarity is the fact that the sets
of guaranteed possible (the support GP of §) and impossible (I) situations should
be disjoint and generally do not cover all the referential. This is expressed by
the coherence condition GP C I€. This condition means that what is guaranteed
possible should be not impossible. When uncertainty is graded, this coherence
condition now reads: § < 7.

Example : Assume for instance one has some information about the opening
hours and prices of a museum M. We may know that museum M is open from
2 pm to 4 pm, and certainly closed at night (from 9 pm to 9 am). Note that
nothing forbids museum M to be open in the morning although there is no
positive evidence supporting it. Its ticket fare is neither less than 2 euros nor
more than 8 euros (following legal regulations), prices between 4 and 5 euros are
guaranteed to be possible (they are prices actually proposed by the museum).

Since observations accumulate, while increasing background knowledge elim-
inate new possible worlds, positive information aggregate disjunctively, and neg-
ative information aggregate conjunctively. This can be understood in our setting
in the following way. A constraint like the value of X is restricted by A; is en-
coded by a possibility distribution 7 s. t. @ < pa4,. Several such constraints
are thus equivalent to 7 < min; p4,. By the principle of minimal commitment
(anything not declared impossible is possible), it leads to choose the greatest
possibility distribution 7 = min; pt4, compatible with the constraints. Hence a
conjunctive combination. In the case of positive information X is A; is equivalent
to § > pa,, since it reflects empirical support. Then several such observations
are equivalent to 0 > max; pa,. By closed world assumption (anything not ob-
served as actually possible is not considered), one gets 6 = max; p14,. Hence a
disjunctive combination.

Given a pair of possibility distributions (7, d), we can define: the possibility
degree of an event A, IT(A) = max{n(s) : s € A}, the dual necessity degree
N(A) =1—1II(A°) and the guaranteed possibility degree A(A) = min{d(s) : s €
A} (let alone the dual degree of potential necessity 1 — A(A°)). Note that set
function IT underlies an existential quantifier since IT(A) is high as soon as some
s € A is plausible enough. It agrees with the negative nature of information,
since A is impossible, i. e. [I(A) = 0 <= N(A°) = 1, corresponds to the
non-existence of an interpretation s € A having a non-zero degree of possibility
7(s). In contrast, A underlies a universal quantifier since A(A) is high as soon
as all s € A be supported by evidence. It agrees with the positive nature of
information encoded by 4, since A(A) = 1 requires that all states where A
occurs be maximally supported by evidence. The duality between N and A
(A(A) = N¢(A°) where N°€ is the necessity measure based on 7¢ = 1 — ¢) is
different from the one (characteristic of type II bipolarity) between N and IT.

Merging bipolar information [12], by disjunctive (resp. conjunctive) combi-
nation of positive (resp. negative) information, may create inconsistency when
the upper and lower possibility distributions, which represent the negative part
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and the positive part of the information respectively, fail to satisfy the consis-
tency condition m > §. Then, since empirical observations are generally regarded
as more solid information than prior knowledge, the latter must be revised for
instance as © = max(,d), so as to account for unexpected evidence.

Learning processes turn data into knowledge, hence positive into negative
information in the sense of type III bipolarity: situations that are often observed
are eventually considered as normal and those never observed are considered as
impossible. Recently [21], it has been shown that Mitchell’s version space con-
cept learning, based on an explicit set of examples and counterexamples, can be
reformulated in the language of possibility theory under heterogeneous bipolar-
ity. Distributions 7 (induced by counterexamples) and § (induced by examples)
respectively become the most general and the most specific hypotheses explain-
ing the data. The theory also explains how these hypotheses are progressed as
new data come in.

5 Bipolarity and If-then Rules

An if-then rule is not a two-valued entity, it is a three valued one. To see it,
consider a database containing descriptions of items in a set S. If a rule if A
then B is to be evaluated in the face of this database, it clearly creates a 3-
partition of S, namely:

1. the set of examples of the rule: AN B,
2. its set of counter-examples: A N B¢,
3. the set of irrelevant items for the rule: A€.

Each situation should be encoded by means of a different truth-value. This view
of arule is at odds with the logical tradition, for which it is a material implication.
The two first situations corresponding to the usual truth-values 1 (true) and 0
(false) respectively. The third case corresponds to a third truth-value that must
be be interpreted as irrelevant as the rule does not apply. This idea of a rule
as a tri-event actually goes back to De Finetti in the 1930’s. This framework
for modelling a rule produces a precise bipolar mathematical model: a rule is
modeled as a pair of disjoint sets representing the examples and the counter-
examples of a rule, namely (AN B, AN B°).

This definition has several consequences. First, it justifies the claim made
by De Finetti that a conditional probability P(B | A) is the probability of a
particular entity denoted by B | A that can be called a conditional event. Indeed
it is obvious to see that the probability P(B | A) is entirely defined by P(A N
B) and P(A N B°¢). Moreover it precisely shows that material implication only
partially captures the intended meaning of an if-then rule. It is obvious that the
set of items where the material implication A°UB is true is the complement of the
set of counter-examples of a rule. Hence the usual logical view only emphasizes
the negative side of the rule. It does not single out its examples. This is clearly
in agreement with the fact that propositions in classical logic represent negative
information. On the other hand, the set of examples of a rule is A N B and
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clearly represents positive information. Thus, the three-valued representation
of an if-then rule also strongly suggests that a rule contains both positive and
negative information. Note that in data mining, the merit of an association rule
A = B extracted from a database is evaluated by two indices: the support and
the confidence degrees, respectively corresponding to the probability P(A N B)
and the conditional probability P(B | A) = %. This proposal
may sound ad hoc. However the deep reason why two indices are necessary to
evaluate the quality of a rule is because the rule generates a 3-partition of the
database, and two evaluations are needed to picture their relative importance.
In fact the primitive quality indices of an association rule are the proportion of
its examples and the proportion of its counter-examples. All other indices derive
from these basic evaluations.

It is intuitively satisfying to consider that a rule R1 = “if A then B” entails
a rule R2 = “f C then D”, if R2 has more examples and less counterexamples
than R1 (in the sense of inclusion). R2 is safer than R1. This entailment relation
(denoted |=) can be formally written as

B|AED|Cifandonlyif ANBCCNDand CND°C AN B°.

It is non-monotonic. Indeed, it has been shown [10] that the three-valued seman-
tics of rules provide a representation for the calculus of conditional assertions
of Kraus, Lehmann and Magidor [17], which is the main principled approach to
nonmonotonic reasoning.

Lastly, the bipolar view has been also applied to fuzzy rules “if A then B”
(when A and/or B are fuzzy sets). It is clear that the usual modeling of fuzzy
rules in fuzzy control, based on the fuzzy conjunction of A and B corresponds to
the positive information contained in rules, while the less usual approach based
on many-valued implications views rules as constraints and better fits classical
logic. The bipolar view can be exploited for building a typology of fuzzy if-
then rules, based on multivalued implications or conjunctions, where each type
of fuzzy rules serves a specific purpose [13]. It emphasizes the advantages of
using conjointly implicative rules (encoding negative information) and conjunc-
tive rules (encoding positive information) in the same rule-based system. Finally
the bipolar view is instrumental in rigourously extending the support and the
confidence degrees to fuzzy association rules [9].

6 Bipolarity and Decision

Decision processes are pervaded with bipolar notions. All types of bipolarity are
involved. Type I bipolar decision-making stems from evaluating decision on a
bipolar scale, thus providing an explicit account of whether a decision is good
or bad. An automatic procedure ranking decisions from the best to the worst
does not prevent the best ranked decision from being bad (the other ones being
worse), nor, for another case, the worst decision from still being reasonably good.
It is useful to propose absolute evaluations, at least a qualitative advice about
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what is good and what is bad. Using a bipolar scale is clearly instrumental, due
to the presence of the neutral point separating good grades from bad ones. This
type of bipolarity is especially used in Cumulative Prospect Theory and more
recently by Grabisch and Labreuche [18].

Type II bipolarity occurs when faced with several criteria, and evaluating
separately the criteria where the ratings of a decision are good and the criteria
where the ratings are bad. Each criterion can be evaluated on a type I bipolar
scale and the global evaluation on a bivariate unipolar scale, hence pairs (how
good, how bad) of evaluations are compared. Or, in a more complex and more
expressive setting, each criterion can be itself rated on a bivariate unipolar scale,
as done by Greco et al. [16].

In the bipolar setting the importance of criteria cannot be assessed as usual
using set functions g like capacities, g(C') evaluating the importance of the group
C of criteria. So-called bicapacities [15] are of the form g(C*,C~) where C'*
(resp. C7) is a set of criteria where the decision performance is good (resp.
bad). If criteria are rated individually on a bipolar scale, C* N C~ = . The
overall evaluation is performed using a variant of Choquet integral adapted to
bicapacities. In the more expressive model, criteria importance is evaluated by
so-called bipolar capacities[16]. The idea is to use two measures, a measure of
positiveness (that increases with the addition of positive arguments and the
deletion of negative arguments) and a measure of negativeness (that increases
with the addition of negative arguments and the deletion of positive arguments),
without combining them.

A purely ordinal setting for bipolar decision-making was recently proposed
by Dubois and Fargier [7]. Each criterion is rated on the basic qualitative bipolar
scale {—,0,+}. The set C of criteria is mapped on a unipolar positive scale, for
instance [0, 1], where 0 indicates no importance. Let m(c) be the importance of
criterion c¢. The weight of a subset C' of criteria is supposed to be IT(A), using
a possibility measure; the idea is to focus on the most important affect when
making a choice. For a decision a, the evaluation of criterion c is either positive
or negative or zero. Let AT = {c,c(a) = +}, and A~ = {c¢,c(a) = —} be the
positive reasons for a and the negative reasons against a, respectively. Comparing
decisions a and b in the type II bipolar framework is based on evaluations IT(A™),
II(A'"), II(B™), and II(B*). Several decision rules can be proposed. The first
one is a Pareto-based comparison of pairs (N((A™)¢), II(A1)) and (N ((B™)°),
II(B™")). It is a transitive partial ordering. It is perhaps too partial: for instance,
when IT(A™) > II(A"), it concludes that a is incomparable with b where BT =
B~ = (). In this case, one would rather say that a is worse than an indifferent
b. Another drawback is observed when IT(A*) > II(B*) and II(A~) = II(B™):
this enforces preference of a over b, even if IT(A™) is very weak w.r.t the order
of magnitude of the negative arguments — in the latter case, a rational decider
would examine the negative arguments in details before concluding.

The other decision rule is a complete preorder that assumes commensurability

between positive and negative evaluations, counting a reason against b as a reason
for a:
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a =BiPoss b o max(I(A), II(B™)) > max(II(B*), I[1(A7))

Only the strict part of the generated ordering is transitive. This rule focuses
on the most salient affects pertaining to a and b. a =% b implies a >=5P°53 p,
It is also clear that =5°ss is a bipolar generalisation of a possibility measure.
However, =5°55 and Pareto are very rough rules that may be not decisive
enough. Lexicographic refinements of =555 offer more decisive and actually
realistic decision rules. One such rule checks how many reasons for a and for b
there are at each importance level and decides on the basis of the most important
such discriminating level. It can be simulated by Cumulative Prospect Theory.
This kind of qualitative bipolar setting can be useful in formal argumentation
for the evaluation and comparison of arguments[1].

Quite another form of bipolarity in decision refers to the (in some sense
more classical) opposition between constraints and goals. It is a form of het-
erogeneous bipolarity. A decision problem on a solution space is then modelled
by two possibility-like distributions 7 and ¢ [4]. However, now m(s) evaluates
to what extent a solution s is feasible, not rejected. It is a matter of degree in
the face of soft constraints. On the contrary ¢ is an objective function and J(s)
evaluates the extent to which s is fully satisfactory. All formal considerations
pertaining to type III bipolarity apply here, especially the consistency condi-
tion between 7 and 4. Distribution 7 is generally the conjunctive aggregation
of local soft constraints. Distribution J is generally the disjunctive or additive
aggregation of several objective functions. This approach can be expressed in
possibilistic logic using a constraint base (containing negative information as
in classical logic) and a goal base (containing positive information and behav-
ing like in a data-driven logic [8]). Several strategies for defining best solutions
can be devised. The most natural scheme is to first check consistency between
constraints and goals, possibly modifying goals if necessary, then define a set
of feasible solutions that achieves a compromise between soft constraints, and
finally finding the best feasible solutions according to § inside this set.

7 Conclusion

This paper suggests that bipolarity is naturally present in cognitive and decision
processes. Bipolarity lays bare the presence of absolute landmarks in evaluation
scales, having positive or negative flavor, thus revealing a cognitive limitation
of purely ordinal representations. Modelling bipolarity in an explicit manner
is useful in many areas of information engineering such as knowledge repre-
sentation, learning, decision analysis, inconsistency handling, argumentation,
question-answering systems.
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