
Journal of Intelligent Manufacturing, 16, 407–421, 2005
© 2005 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

Computational methods for determining
the latest starting times and floats of tasks
in interval-valued activity networks
DIDIER DUBOIS, HÉLÈNE FARGIER and JÉRÔME FORTIN

Irit/UPS, 118 route de narbonne, F-31062 Toulouse, France

Received Feburary 2004 and accepted November 2004

In project management, three quantities are often used by project managers: the earliest
starting date, the latest starting date and the float of tasks. These quantities are computed
by the Program Evaluation and Review Techniques/Critical Path Method (PERT/CPM)
algorithm. When task durations are ill known, as is often the case at the beginning of
a project, they can be modeled by means of intervals, representing the possible values
of these task durations. With such a representation, the earliest starting dates, the latest
starting dates and the floats are also intervals. The purpose of this paper is to give effi-
cient algorithms for their computation. After recalling the classical PERT/CPM problem,
we present several properties of the concerned quantities in the interval-valued case, show-
ing that the standard criticality analysis collapses. We propose an efficient algorithm based
on path enumeration to compute optimal intervals for latest starting times and floats in
the general case, and a simpler polynomial algorithm in the case of series-parallel activity
networks.

Keywords: PERT/CPM, earliest starting date, latest starting date, float, series-parallel graph

1. Introduction

In project or production management, an activ-
ity network is classically defined by a set of tasks
(or activities) and a set of precedence constraints
expressing which tasks cannot start before others
are completed. When there are no resource con-
straints, we can display the network as a directed
acyclic graph, where nodes represent tasks, and
arcs precedence constraints. With such a network,
the goal of a project manager is generally to min-
imize the makespan of the project. Three quanti-
ties are frequently calculated for each task of the
project. They allow to identify the critical tasks:
The earliest starting date esti of a task i is the
date before, which we cannot start a task with-
out violation of a precedence constraint. The lat-
est starting date lsti is the date after, which we

cannot start the task without delaying the end of
the project. The float fi is the difference between
the latest starting date and the earliest starting
date. A task is then critical if and only if its float
is null.

Critical Path Method (CPM) and Program
Evaluation and Review Techniques (PERT) are
methods developed in order to calculate the ear-
liest starting date, the latest starting date and the
float of the tasks of a project, under the hypothesis
that the tasks durations are well known (Bellman
et al., 1982). Those problems are traditionally
called PERT/CPM problems.

In fact the tasks durations are often ill known
at the time the project is designed. Scheduling
problems in which durations are modeled by
stochastic distributions have been studied since
the 1950s (Loostma, 1989; Brige and Dempster,

408 Dubois et al.

1996). But the computational problems encoun-
tered with this approach are still challenging and
are no yet fully mastered.

Another way to model uncertainty of the dura-
tions, based on a possibility-theoretic approach
has been considered since the early 1980’s, where
the tasks durations are represented by (crisp
or fuzzy) intervals (Prade, 1979; Dubois, 1983;
Buckley, 1989; Loostma, 1997). Several authors
have recently shown that calculating the float or
discussing the criticality of a task in this con-
text (something obvious in the classical problem)
become a less trivial issue (Chanas et al., 2002;
Dubois et al., 2003a,b. For instance, finding opti-
mal intervals containing the value of the floats is
a NP-hard problem (Chanas and Zielinski, 2003).
Polynomial algorithms have been recently found
for the calculation of the latest starting dates
(Zielinski, 2005), but they only find approximate
bounds of the floats.

The basic idea for computing optimal inter-
vals for starting times and floats is to look for
assignments of precise durations to activities, for
which the bounds of these intervals are attained.
Such complete assignments are called configura-
tions. The main goal of this paper is to present
the form of the optimal configurations, and new
algorithms that calculate exact intervals for lat-
est starting dates and floats in a network, where
tasks durations are modeled by crisp intervals.
Of course, these algorithms are not polynomial
in the general case, but they have been tested on
realistic scheduling problems for the experimental
validation of their efficiency. We will also propose
linear algorithms which compute the latest start-
ing date and the float of a task in the particular
case of series-parallel graphs.

2. The interval-valued scheduling problem

We define an interval-valued scheduling problem
by a network R =〈τ,C,T 〉, where τ is the set of
tasks, C is the set of precedence constraints, and
T a function that, to each task i ∈ τ , assigns a
set of possible durations Di , under the form of a
closed interval. Di = [d−

i , d+
i] means that the real

duration di of the task i is not precisely known,
but lies between d−

i and d+
i (di ∈ Di). In order

to relate the interval case to the deterministic

case of classical PERT/CPM problems, Buckley
has defined the notion of configuration as follows
(Buckley, 1989):

Definition 1. A configuration is a tuple � =
(d1, d2, ..., dn) of durations such that ∀i ∈τ, di ∈Di .

H denotes the set of all configurations: H =
×i∈[1,n]Di . The duration of task i in configu-
ration � is di(�). A configuration defines an
instance of deterministic scheduling problem (clas-
sical PERT/CPM problem), to which the PERT/
CPM method can be applied. Using configura-
tions, the possible values ESTi for the earliest
starting date esti , the possible values LSTi for the
latest starting date lsti and the possible values Fi

for the float fi are defined as follows (Dubois
et al., 2003b).

esti ∈ ESTi ={esti(�)|�∈H } (1)

lsti ∈ LSTi ={lsti(�)|�∈H } (2)

fi ∈ Fi ={fi(�)|�∈H }
={lsti(�)− esti(�)|�∈H } (3)

Functions that define the earliest starting times,
latest starting times and floats in terms of task
durations are obviously continuous, hence the
quantities ESTi , LSTi and Fi are closed intervals
(ESTi = [est−i , est+i], LSTi = [lst−i , lst+i] and Fi =
[f −

i , f +
i]). (Chanas et al., 2002) propose to define

criticality in interval-valued problems as follows:
a task i is possibly critical if there exists a config-
uration � ∈ H in which i is critical in the usual
sense. A task i is necessarily critical if i is critical
in the usual sense in all configurations �∈H . We
can state the following propositions:

Proposition 1. A task i is possibly critical if and
only if the lower bound of its float is null: f −

i =
inf (Fi)=0.

Proof. By definition, Fi = {fi(�),� ∈ H }. So inf

(Fi)=0 if and only if there exists a configuration
�∈H such that fi(�)=0, and that is the defini-
tion of a possibly critical task.

Proposition 2. A task i is necessarily critical if
and only if the upper bound of its float is null:
f +

i = sup(Fi)=0.

Interval-valued activity networks 409

1

2

3

[0,1]

[3,3]

[0,0]

[2,2]

[5,5]

[0,0][1,3]

4

6

5

7

Fig. 1. Network which invalidates the converse of Proposition 3.

Proof. Same sketch of proof as Proposition 1.

Proposition 3. If a task i is necessarily critical
then ESTi =LSTi .

Proof. Let i be a necessarily critical task and sup-
pose that ESTi �=LSTi , then there exists a config-
uration �′ ∈ τ such that esti(�

′) �= lsti(�
′) (oth-

erwise for all � ∈ H , esti(�
′) = lsti(�

′) and then
ESTi = LSTi). Thus fi(�

′) = lsti(�
′) − esti(�

′)
and then fi(�

′)>0 (without resource constraints,
lsti(�

′)≥ esti(�
′)), which implies Fi �= [0,0].

Remark. As shown in the graph in Fig. 1, the
converse of Proposition 3 is false: task 6 has for
earliest and latest starting date intervals EST6 =
LST6 = [3,4], but its float is F6 = [0,1].

In fact, when ESTi = LSTi , the task is only
possibly critical. The last proposition makes it
clear that the interval containing the float of
a task can not be calculated by means of the
intervals containing the earliest and latest start-
ing dates of this task. The float, from which the
criticality of the task can be assessed, must be
computed separately.

3. Critical path analysis and algorithms for the
interval case

Critical path analysis in an interval-valued activ-
ity network is actually quite different from deter-
ministic critical path analysis (Chanas et al., 2002).
Namely, there are many possibly critical paths.
But in the case where all task durations are mod-
eled by intervals (none of which is reduced to a

singleton), there is at most one necessarily criti-
cal path, if any. Then the necessarily critical tasks
are along this path. But most of the time, there is
no necessarily critical path, while there may exist
isolated critical tasks (obviously the first task and
the last task are necessarily critical, even when no
path is such). Finding these isolated critical tasks
is important at the practical level and difficult at
the computational level. One obvious way to do
it is to check for tasks whose floats reduce to
the singleton {0}, as shown above. We are going
to show several graph-topological properties of
interval-valued PERT/CPM problems, which lead
to a new algorithm to calculate latest starting
dates and floats. It is important to note that com-
puting earliest and latest starting dates can be
done in polynomial time (Zielinski, 2005), con-
trary to floats. It has been shown that asserting if
a task is possibly critical is a NP-complete prob-
lem (Chanas and Zielinski, 2003), so the calcula-
tion of its float is consequently NP-hard.

3.1. Notations

Let R =< τ,C,T > be a network, C represents
the precedence constraints: if i must be com-
pleted before j starts then (i, j) ∈ C. The set of
tasks τ = {1,2, . . . , n} is labeled in such a way
that i < j if i has to precede j ((i, j)∈C). With-
out losing any generality, the network is supposed
to have a single initial task, and a single final
task; if a project has more than one task with-
out predecessor (respectively, successor), we can
create a fictitious task with a null duration, pre-
ceding (respectively, following) all the tasks. The
initial task of R is the task 1 and ending task is
the task n. Pi,j denotes the set of paths from the
task i to the task j in R. When not ambiguous,
we shall denote by P the set of all paths from 1
to n (P =P1,n).

Let p be a path, Wp(�) is the length of p in
�:

Wp(�)=
∑

i∈p

di(�) (4)

If i is a task, pred(i) (respectively, succ(i)) is the
set of immediate predecessors (respectively, suc-
cessors) of i: pred(i)={j |(j, i)∈C}, and succ(i)=
{j |(i, j)∈C}.

410 Dubois et al.

PRED(i) (respectively, SUCC(i)) is the set of all
predecessors of i (respectively, successors), obtained
by transitivity.

3.2. Computing earliest starting dates

Classical PERT/CPM calculation is based on the
propagation from the initial task to the ending
task of the earliest starting date by a well-known
recursive formula:

esti =maxj∈pred(i)(estj +dj) (5)

Traditionally, we set the initial task earliest start-
ing date to zero (est1 = 0), and minimizing the
makespan comes down to letting the latest start-
ing date of n equal its earliest starting date. The
classical PERT/CPM algorithm which calculates
the earliest starting date, the latest starting date,
and the float of each task of a network has a
linear time complexity in O(n + m) where n is
the number of tasks of the network and m is the
number of precedence constraints.

In our problem, where task durations are des-
cribed by intervals, the earliest starting date can
still be computed by the following formula (Dubois
and Prade, 1980):

ESTi = m̃axj∈pred(i)(ESTj ⊕Dj) (6)

In this formula, m̃ax (respectively, ⊕) is the
operator maximum (respectively addition) defined
on intervals: m̃ax([a, b], [c, d]) = [max(a, c),

max(b, d)] and [a, b] ⊕ [c, d] = [a + c, b + d].
According to formula (6), the calculation of this
interval can be split in two parts: one for the great-
est lower bound (GLB), and the other for the low-
est upper bound (LUB) of the earliest starting date
interval:

Proposition 4. Let � and � be the two configu-
rations such that for all tasks i ∈ τ : di(�) = d−

i

and di(�) = d+
i . Then, configuration � minimizes

the earliest starting date of all the tasks i ∈ τ , and
configuration � maximizes their earliest starting
dates.

Proof. See Chanas and Kamburowski (1981).

In general, � is called the optimistic config-
uration, and � is called the pessimistic con-
figuration. This proposition yields an algorithm

which calculates the earliest starting date in a lin-
ear time complexity (O(n + m)), since it requires
two classical PERT/CPM computations, on two
extreme configurations.

3.3. A brute-force algorithm for calculating latest
starting dates and floats

In the classical PERT/CPM problem, the latest start-
ing dates and the floats are calculated as follows:

lsti =minj∈succ(i)(lstj −di) (7)

fi = lsti − esti (8)

In the case of interval data, one may be tempted
to calculate latest starting dates and floats by
means of Equations 7 and 8 extended to inter-
vals. Unfortunately we can only show the follow-
ing bracketing results:

LSTi ⊆ m̃inj∈succ(i)(LSTj
Dj) (9)

Fi ⊆LSTi
ESTi (10)

In these last formulas, m̃in (respectively,
) is
the operator minimum (respectively subtraction)
defined on intervals: m̃in([a, b], [c, d])= [min(a, c),

min(b, d)] and [a, b]
 [c, d]= [a −d, b− c]. Propo-
sition 4 already pointed out that it is not possible
to compute Fi from ESTi and LSTi . Equation 9
(as Equation 10) would be not valid if we replaced
⊆ by = because of the dependency of the vari-
ables LSTi and Dj (Dubois, 1983; Dubois et al.,
2003b). The trivial problem of Fig. 2 easily illus-
trates this dependency. Of course for task 2 it
holds that EST2 =LST2 = [1,2]. And if we calcu-
late the latest starting date of task 1 by the for-
mula (9) with the equality sign, we would obtain
LST1 =LST2
D1 = [−1,1].

So, the calculation of the latest starting dates
and the floats are then less simple than the calcu-
lation of the earliest starting date. A brute-force
method has been proposed by Dubois et al.,
(2003). This method is based on the notion of

[1,2]

1 2

0

Fig. 2. Illustration of Equation (9).

Interval-valued activity networks 411

Algorithm 1: Calculation of the latest starting dates and the floats of all the tasks of the network
Input: a network R =〈τ,C,T 〉;
Output: The latest starting dates and the floats of all the tasks of the network;
begin

foreach i ∈ τ do
lst−

i =+∞;
lst+

i =0;
f −

i =+∞;
f +

i =0;
di(�)=d−

i ;
end
instantiate(1);

end

Procedure instantiate (j)
begin

if j =n then
update(�);

else
instantiate(j +1);
dj (�)=d+

j ;
instantiate(j +1);
dj (�)=d−

j ;
end

Procedure update (�)
begin

Compute lsti (�) and fi(�) for all i ∈ τ by a classical PERT/CPM calculation;
if lsti (�)< lst−

i then lst−
i = lsti (�);

if lsti (�)> lst+
i then lst+

i = lsti (�);
if fi(�)<f −

i then f −
i =fi(�);

if fi(�)>f +
i then f +

i =fi(�);
end

extreme configurations which are configurations
where tasks durations are assigned to their mini-
mal or maximal possible values. Formally extreme
configurations are defined as following:

Definition 2. An extreme configuration is � ∈ H

such that ∀i ∈ τ, di(�)=d+
i ord−

i .

Hext denotes the set of all extreme configurations.
There are obviously |Hext| = 2n such configura-
tions. In Dubois et al., (2003), it is shown that the
maximum and the minimum of lsti(.) and fi(.) are
attained on specific extreme configurations.

This leads to Algorithm 1 which executes a
classical PERT/CPM calculation on each extreme
configuration. The instantiation of each con-
figuration is made by the recursive procedure

instantiate. The procedure update executes the
classical PERT/CPM algorithm and updates the
current values of the latest starting dates and floats
if needed. Of course, the complexity of Algorithm
1 is exponential, precisely in O((n+m)∗2n).

In Sections 4 and 5, we are going to prove sev-
eral results, which significantly decrease the num-
ber of configurations that need to be tested.

3.4. Optimal configurations for the latest starting
date intervals

In the PERT/CPM problem, the latest starting
date is calculated by the recursive formula (7).
But the basic definition of the latest starting date
is :

lstj = maxp∈P Wp −maxp∈Pj,n
Wp (11)

412 Dubois et al.

In this formulation, two paths are involved: the
longest path from 1 to n, maxp∈P Wp, which
allows to calculate the earliest ending time of
the project, and the longest path from j to n,
maxp∈Pj,n

Wp. With this formulation we easily can
deduce the next results:

Proposition 5. The maximum of lsti(.) is reached
on an extreme configuration � such that for all j /∈
SUCC(i)∪{i}, dj (�)=d+

j .
The minimum of lsti(.) is attained on an extreme

configuration � such that for all j /∈SUCC(i)∪{i},
dj (�)=d−

j .

Proof. See Dubois et al., (2003).
We are now going to show that there exists

an extreme configuration which minimizes lsti(.)

where all the task durations are assigned to their
minimum d−

i but the ones on a single path from
task i to the ending task n:

Lemma 1. Let i ∈τ be a task of R. There exists a
path p∗ ∈Pi,n such that an extreme configuration
� defined as dj (�)=d−

j ∀j /∈p∗ minimizes lsti(.).

Proof. See Appendix A.
Now, from the configuration � in the last

lemma, we are going to show that all the dura-
tions of tasks j in path p∗ can be set to their
maximal values d+

j . The obtained configuration
will still minimize the latest starting date of i.

Proposition 6. Let i ∈ τ be a task of R. There
exists a path p∗ ∈Pi,n such that the extreme con-
figuration � defined by:

dj (�)=
{

d+
j if j ∈p∗

d−
j otherwise

minimizes lsti(.).

Proof. See Appendix A.

Remark. It is not sufficient to find the longest
path pi,n from i to n in the pessimistic con-
figuration �, and then to calculate a classical
PERT/CPM on the configuration � defined by
di(�) = d+

i if i ∈ pi,n, and di(�) = d−
i otherwise.

This is illustrated by Fig. 3. In the pessimistic
configuration, the longest path from 2 to 6 is
p2,6 = (2,5,6). In configuration � where all the
durations are minimal but on p2,6 = (2,5,6), we
find lst2(�) = 1 for the latest starting date of

[0,0]

[1,1] [0,0]

[1,10]

[2,2]

[2,2]

1

2

3

4

5

6

Fig. 3. Counter-example network.

task 2. In fact lst−2 = 0 (with configuration � =
(0,1,2,2,1,0)).

The same kind of propositions, now applied to
the calculation of the LUB of the latest start-
ing date, can be proved. The first of the two
following propositions, is useful to find the lat-
est starting dates of all the tasks in the network.
The second one reduces the number of configura-
tions to be tested, but the set of configurations is
only useful for the calculation of the latest start-
ing date of a single given task.

Proposition 7. Let i ∈ τ be a task of R. There
exists a path p∗ ∈P such that the extreme configu-

ration � defined by dj (�)=
{

d+
j if j ∈p∗

d−
j otherwise

max-

imizes lsti(.).

Proof. See Appendix A.

Proposition 8. Let i ∈ τ be a task of R. There
exists a path p∗ ∈P such that the extreme config-
uration � defined by

dj (�)=






d+
j if j /∈SUCC(i)∪{i}

d+
j if j ∈p∗

d−
j otherwise

maximizes lsti(.).

Proof. See Appendix A.

Remark. We cannot say that the path p∗ in the
two last propositions has to be the longest path
in the pessimistic configuration �. Figure 4 is a
counter-example. In configuration � = (0,3,2,0)

Interval-valued activity networks 413

[1,2]

[0,3]

[0,0][0,0]

4

3

2

1

Fig. 4. Counter-example network.

the only critical path is p∗ = (1,2,4) but the max-
imum of the latest starting date of task 2 has to
be calculated in configuration �= (0,0,2,0).

3.5. Optimal configurations for float intervals

The same kind of approach can be followed for
computing the narrowest intervals containing the
floats. The basic definition of the float is :

lstj = maxp∈P Wp−maxp∈P1,j
Wp −maxp∈Pj,n

maxp∈Pj,n
Wp +dj (12)

It is the difference between the longest path of
the network and the longest path of the network
containing j .

The bounds of the floats are again attained
on particular extreme configurations, described
by the next propositions:

Proposition 9. Let i ∈ τ be a task of R. There
exists a path p∗ ∈ P containing i, such that the
extreme configuration � defined by

dj (�)=
{

d+
j if j ∈p∗

d−
j otherwise

minimizes fi(.).

Proposition 10. Let i ∈ τ be a task of R. There
exists a path p∗ ∈ P , such that the extreme con-

figuration � defined by dj (�) =
{

d+
j if j ∈p∗

d−
j otherwise

maximizes fi(.).

Proposition 11. Let i ∈ τ be a task of R. There
exists a path p∗ ∈P , such that the extreme config-
uration � defined by

dj (�)=






d+
j if j /∈PRED(i)∪{i}∪SUCC(i)

d+
j if j ∈p∗

d−
j otherwise

maximizes fi(.).

These propositions can be proved similary to the
ones concerning latest starting times. Their proofs
are omitted, for the sake of brevity.

3.6. An improved algorithm for computing optimal
intervals for latest starting times and floats

In Section 6, we obtained results where some par-
ticular extreme configurations were highlighted as
being potentially optimal ones. If Hi denotes the
set of configurations, where all durations are min-
imal but on a path from i to n, then the exe-
cution of a classical PERT/CPM calculation on
each configuration of Hi computes the GLB of
the latest starting date (Proposition 6). And the
execution of a PERT/CPM on H1 also yields
the LUB of the latest starting date(Proposition 7),
the GLB and the LUB of the float of each task
of i (Propositions 9 and 10).

The procedure instantiate of Algorithm 1 can
be changed into the two following procedures in
order to improve the algorithm.

Procedure instantiate(j)

begin
instantiate path(j);
if j �=n then instantiate(j +1);

end

Procedure instantiate path(j)

begin
if j =n then

update(�);
else

dj (�)=d+
j ;

foreach k ∈ succ(j) do

instantiate path(k);
dj (�)=d−

j ;
end

A call to instantiate path(j) from the proce-
dure instantiate constructs the set Hj . Algorithm
instantiate path(j) recursively assigns maximal
task durations to a path from the current task j

414 Dubois et al.

to n. With this modified procedure, Algorithm 1
instantiate is called the path-algorithm in the rest
of this paper.

Note that for each path p from a task i to n,
there exists at least one path from 1 to n in which
p is included. We can deduce that for all i ∈ τ ,
|H1| ≥ |Hi |, where |Hi | is the number of configu-
rations in Hi . We can now estimate the time com-
plexity of the algorithm as O((n + m) ∗ n ∗ |P |).
This complexity depends on the topology of the
network.

If we only want to compute GLB and LUB of
floats, we just have to compute a PERT/CPM on
the configurations on H1 instead of �∈H1 ∪H2 ∪
· · · ∪ Hn. The resulting time complexity is then
O((n+m)∗ |P |).

4. Experimental validation

The complexity of the path-algorithm presented
in Section 3.6 depends on the topology of the
activity network. That is why it should be tested
on realistic scheduling problems. For this reason,
we have tested our algorithm on some scheduling
problem libraries (PSPLIB: http://129.187.106.231/
psplib/).

Those instances of problems have been gener-
ated by the ProGen program, for activity network
generation (Kolisch et al., 1995; Kolisch and
Sprecher, 1996). They are supposed to be repre-
sentative of real scheduling problems. On those
problems, tasks durations are precisely defined.
For our test, we have added a relative uncer-
tainty range of 20% to obtain intervals (Di =
[di;di + 20%]). The choice of those intervals is
not important for the test due to the fact that
the path-algorithm complexity only depends on
the topology of the associated graph. The fol-
lowing table compares the performance of the
path-algorithm on libraries of scheduling prob-
lems with, respectively, 32, 62, 92 and 122 tasks
(on 480, 480, 480 and 600 instances of prob-
lems, respectively). Two quantities are measured,
the execution time (expressed in milliseconds) and
the number of PERT/CPM calculations invoked
by the algorithm. Results of the next table are
presented in Figs. 5 and 6.

These tests show the path-algorithm can com-
pute the latest starting dates and the floats of

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 20 40 60 80 100 120 140

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Number of tasks of the networks

Maximum execution time
Average execution time
Minimum execution time

Fig. 5. Execution times of the path-algorithm.

0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0 20 40 60 80 100 120 140N
um

be
r

of
 c

la
ss

ic
al

 P
E

R
T

/C
P

M
 c

al
cu

la
tio

ns

Number of tasks of the networks

Maximum number of PERT/CPM
Average number of PERT/CPM
Minimum number of PERT/CPM

Fig. 6. Number of classical PERT/CPM calculations for the
path-algorithm.

activities in big networks with acceptable execu-
tion times.

The next table presents the comparaison of aver-
age execution times (in millisecond) of the path-
algorithm and the recent algorithms by Zielinski
(2005), that compute latest starting dates in polyno-
mial time. This comparaison is made on the same
library of problem of 32, 62, 92 and 122 tasks.

The path-algorithm computes GLB and LUB of
latest starting dates and floats in the same pass. As
we see in the last table, the execution times of the
path-algorithm are approximately equal to the sum
of execution times of algorithms that polynomial-
ly compute the GLB and LUB of latest starting
dates, which means that the path-algorithm runs
very fast on realistic problems. However, polyno-
mial algorithms should eventually be the best for
really large problems.

Interval-valued activity networks 415

Nb of tasks 32 62 92 122
Nb of networks tested 480 480 480 600
Average execution time 3.7 19 57 120
Minimal execution time 0 0 10 20
Maximal execution time 11 80 250 450
Average nb of PERT/CPM 222 607 1173 1833
Minimal nb of PERT/CPM 76 169 284 408
Maximal nb of PERT/CPM 708 2396 4903 6559

Nb of tasks 32 62 92 122
Path-algorithm 3.7 19 57 120
Polynomial algorithm for the GLB 1.1 5 30 23
of the latest starting dates
Polynomial algorithm for the LUB 2.1 10 27 56
of the latest starting dates

5. The case of series-parallel graphs

We propose here a study of scheduling prob-
lems where the associated graph of the network
is series-parallel. A special case of series-paral-
lel graph problems has been studied by Dubois
et al., (2003b), with a restricted definition of a
series-parallel graph. For those networks, polyno-
mial algorithms were proposed, that calculate the
latest starting dates and the floats of the tasks.
Here their algorithms are shown to apply to a
more general notion of series-parallel graph.

Definition 3. A graph is said to be series-parallel if
and only if it is recursively defined in the following
way:

• A graph composed of two nodes related by an
arc is series-parallel.

• Given G1 and G2 two series-parallel graphs,
the result of one of the two following opera-
tions is a series parallel graph.

– Parallelization: Identifying the initial node
of G1 with the initial node of G2, and iden-
tifying the final node of G1 with the final
node of G2.

– Serialization: Identifying the initial node of
G1 with the final node of G2

There exist polynomial algorithms that recog-
nize series-parallel graphs (Eppstein, Bein, 1992).
We obviously note that a series-parallel graph has

a single starting task, and a single ending task.
Figure 7 is an example of series-parallel graph.

The algorithm proposed by Dubois et al.,
(2003b) was based on the following definition of
what we will call strongly series-parallel graphs. A
graph is strongly series-parallel if:

• It is made of a single node.
• Or it has only one task without a predeces-

sor (the initial task), it has only one task
without successor (the final task), and the
graph induced by the deletion of the ini-
tial and final tasks is made of disconnected
series-parallel graphs.

We can note that all the strongly series-paral-
lel graphs composed of at least two nodes are
series-parallel according to the general definition.
On the contrary, the graph of Fig. 7 is not

7

5

6

4

32

1

Fig. 7. Example of a series-parallel graph.

416 Dubois et al.

strongly series-parallel. We claim that the calcu-
lation of latest starting dates and floats proposed
for strongly series-parallel graphs is still valid for
general series-parallel graphs. The next lemma is
useful for proving the propositions which validate
the algorithm proposed by Dubois et al., (2003b),
but now for general series-parallel graphs:

Lemma 2. Let G be a series-parallel graph. Let
‖G‖g the sum of the number of nodes and arcs in
G (‖·‖g define a norm on the set of graphs), then:

• Either G contains only two nodes linked by an
arc, and then ‖G‖g =3.

• Or, G can be decomposed in two series-paral-
lel sub-graphs G1 and G2 such that G is the
result of the parallelization or the serialization
of G1 and G2, and then ‖G‖g > ‖G1‖g and
‖G‖g >‖G2‖g

Proof. By definition of the series-parallel graphs,
the first case considered is obvious, and implies
that for all series-parallel graph G, ‖G‖g ≥ 3. In
the second case, we just have to note that if G

comes from the serialization of two graphs G1
and G2, then ‖G‖g = ‖G1‖g + ‖G2‖g − 1, and if
G has been obtained by parallelization of G1 and
G2 then, ‖G‖g =‖G1‖g +‖G2‖g −2.

5.1. Calculation of the latest starting dates

When the activity network is series-parallel, (we
will speak about series-parallel networks) we can
construct two particular extreme configurations
which do maximize and minimize the latest start-
ing date of a given task:

Proposition 12. Let R be a series-parallel network,
i a task of R, �G

1 and �G
2 the two extreme config-

urations such that:

dj (�
G
1)=

{
d+
j ifj ∈SUCC(i)∪{i}

d−
j otherwise

dj (�
G
2)=

{
d−
j ifj ∈SUCC(i)∪{i}

d+
j otherwise

Then,

(i) �G
1 minimizes the latest starting date of i.

(ii) �G
2 maximizes the latest starting date of i.

Proof. See Appendix A.
This proposition validates Algorithm 2 pro-

posed by Dubois et al., (2003b) for the particu-
lar case of the strongly series-parallel graphs. It
computes the interval of possible latest starting
dates of a task i in a linear time. This algorithm
has a time complexity in O(n + m) as it com-
putes two classical PERT/CPM on two special
configurations.

5.2. Calculation of the floats

As for the latest starting dates, the float of a
task in a series-parallel network can be computed
from only two special configurations:

Proposition 13. Let R be a series-parallel network,
i a task of R, �G

1 and �G
2 two configurations such

that:

dj (�
G
1)=

{
d+
j ifj ∈PRED(i)∪SUCC(i)∪{i}

d−
j otherwise

dj (�
G
2)=

{
d−
j ifj ∈PRED(i)∪SUCC(i)∪{i}

d+
j otherwise

Then,

(i) �G
1 minimizes the float of i.

(ii) �G
2 maximizes the float of i.

Proof. The sketch of the proof is the same as in
Proposition 12 for the calculation of the latest
starting dates.

Proposition 13 permits to validate Algorithm 3
of Dubois et al., (2003b) and this time for general
series-parallel graphs. Its complexity is the same
as Algorithm 2, in O(n+m).

6. Conclusion

In this paper, some new methods for the calcula-
tion of latest starting dates and floats in interval-
valued PERT/CPM networks have been described.
Some linear complexity algorithms are also pre-
sented for series-parallel network. The proposed
algorithm, called path-algorithm as it relies on a
path enumeration technique has been tested on
general scheduling problems. Experimental results

Interval-valued activity networks 417

Algorithm 2: Calculation of the latest starting date of a given task
Input: A series-parallel network R =〈τ,C,T 〉;

A task i;
Output: LSTi = [lst−

i , lst+
i] the interval of the possible latest starting date of i;

begin

foreach j ∈ τ do
if j ∈SUCC(i)∪{i} then dj (�)=d+

j ;
else dj (�)=d−

j ;
end
Compute lsti (�) by a classical PERT/CPM;
lst−

i = lsti (�);
foreach j ∈ τ do

if j ∈SUCC(i)∪{i} then dj (�)=d−
j ;

else dj (�)=d+
j ;

end
Compute lsti (�) by a classical PERT/CPM;
lst+

i = lsti (�);
end

Algorithm 3: Calculation of the float of a given task
Input: A series-parallel network R =〈τ,C,T 〉;

A task i;
Output: Fi = [f −

i , f +
i] the interval of the possible floats of i;

begin

foreach j ∈ τ do
if j ∈SUCC(i)∪{i}∪PRED(i) then dj (�)=d+

j ;
else dj (�)=d−

j ;
end
Compute fi(�) by a classical PERT/CPM;
f −

i =fi(�);
foreach j ∈ τ do

if j ∈SUCC(i)∪{i}∪PRED(i) then dj (�)=d−
j ;

else dj (�)=d+
j ;

end
Compute fi(�) by a classical PERT/CPM;
f +

i = lsti (�);
end

prove the interest of the algorithm as it can com-
pute in a reasonable time latest starting dates and
floats for problems with more than one hundred
tasks. They have been compared with polynomials
algorithms which computes only LUB and GLB of
the latest starting dates, and the time execution is
quite similar, which confirms the practical interest
of the path-algorithm. Moreover, the principle of
the path algorithm is simpler than the polynomial
algorithms for latest starting times, and it copes
with the exponential nature of the float determina-
tion problem. It seems possible to further develop

some heuristics that find “good” configurations
faster by means of Branch&Bound algorithm.

Another research line is the generalization of
the path-algorithm algorithm to problems where
tasks durations are represented by fuzzy intervals
instead of clearcut ones.

Appendix A: proofs

Lemma 1
Proof. Let �∗ be a configuration which mini-

mizes lsti(.) it must be such such that:

418 Dubois et al.

dj (�
∗)=

{
d−
j or d+

j if j ∈SUCC(i)∪{i}
d−
j otherwise

According to Proposition 5, such a configuration
always exists. From equation 12 and by construc-
tion:

lsti(�
∗)=maxp∈P1,n

Wp(�∗)−maxp∈Pi,n
Wp(�∗)

Let p∗ be a path of Pi,n such that Wp∗(�∗) =
maxp∈Pi,n

Wp(�∗). We define the configuration �−

such that: dj (�
−)=

{
dj (�

∗) if j ∈p∗
d−
j otherwise

.

Since for all j ∈ τ , dj (�
−)≤ dj (�

∗) then for p ∈
P , Wp(�−) ≤ Wp(�∗), and maxp∈P1,n

Wp(�−) ≤
maxp∈P1,n

Wp(�∗). Now, maxp∈Pi,n
Wp(�−) =

Wp∗(�∗) = maxp∈Pi,n
Wp(�∗). Hence lsti(�

−) ≤
lsti(�

∗).
Since �∗ minimizes lsti(.), then lsti(�

−) =
lsti(�

∗), and we can deduce that � minimizes
lsti(.) too. And moreover in �−, all tasks j out-
side p∗ have a task duration assigned to d−

j .
So, any configuration �∗minimizing lsti can be
changed into one of the form prescribed in the
lemma. Only such kinds of configuration need to
be explored.

Proposition 6.
Proof: Let �− be a configuration which mini-
mizes lsti(.) and path p∗ ∈Pi,n such that: dj (�

−)=
d−
j ∀ j /∈p∗, p∗ is such that Wp∗(�−)=maxp∈Pi,n

Wp(�−). From Lemma 1, such a configuration
always exists.
We can now define the configuration �p∗ such
that:

dj (�p∗)=
{

d+
j if j ∈p∗

d−
j otherwise

We know that:
lsti(�

−) = maxp∈P1,n
Wp(�−)−maxp∈Pi,n

Wp(�−)

= maxp∈P1,n
Wp(�−)−Wp∗(�−)

So let p be a path from P1,n. We denote p∩p∗ =
{i ∈τ |i ∈p and i ∈p∗}, and p \p∗ ={i ∈τ |i ∈p and
i /∈p∗}. Now, we can write:

Wp(�−)−Wp∗(�−) = ∑
j∈p dj (�

−)−∑
j∈p∗dj(�

−)

= ∑
j∈p\p∗ dj (�

−)

+∑
j∈p∩p∗ dj (�

−)

−∑
j∈p∗\p dj (�

−)

−∑
j∈p∗∩p dj (�

−)

= ∑
j∈p\p∗ dj (�

−)

−∑
j∈p∗\p dj (�

−)

And of course, in the same way, we calculate:
Wp(�p∗)−Wp∗(�p∗)=∑

j∈p\p∗ dj (�p∗)
−∑

j∈p∗\p
dj (�p∗)

And because for all j ∈ p \ p∗, dj (�p∗) =
d−
j = dj (�

−), we know that
∑

j∈p\p∗ dj (�
−) =∑

j∈p\p∗ dj (�p∗).
And for all j ∈ p∗ \ p, dj (�p∗) ≥ dj (�

−) then∑
j∈p∗\p dj (�p∗) ≥ ∑

j∈p∗\p dj (�
−) (because j ∈

p∗), we deduce that:
Wp(�−) − Wp∗(�−) ≥ Wp(�p∗) − Wp∗(�p∗) And
then, because this last equation holds for all the
paths p ∈ P1,n, we can deduce that lsti(�

−) ≥
lsti(�p∗). Since �− minimizes lsti(.), we can con-
clude that lsti(�

−)= lsti(�p∗) and then that �p∗
minimizes lsti(.).

Proposition 7.
Proof: Let �∗ be a configuration which maxi-
mizes lsti(.). It is such that:

dj (�
∗)=

{
d−
j or d+

j if j ∈SUCC(i)∪{i}
d+
j otherwise

.

Such a configuration always exist (see Proposition
5). By construction:
lsti(�

∗)=maxp∈P1,n
Wp(�∗)−maxp∈Pi,n

Wp(�∗)
Let p∗ ∈ P be a path such that Wp∗(�∗) =
maxp∈P1,n

Wp(�∗). Therefore, we know that:
lsti(�

∗) = maxp∈P1,n
Wp(�∗)−maxp∈Pi,n

Wp(�∗)
= Wp∗(�∗)−maxp∈Pi,n

Wp(�∗)
Then define the configuration �+ such that:

dj (�
+)=

{
d+
j if j ∈p∗

d−
j otherwise

Then, we can write:
lsti(�

+) = maxp∈P1,n
Wp(�+)−maxp∈Pi,n

Wp(�+)

≥ Wp∗(�+)−maxp∈Pi,n
Wp(�+)

So let p be a path from Pi,n. We can write:
Wp∗(�∗)−Wp(�∗) = ∑

j∈p∗ dj (�
∗)−∑

j∈p dj (�
∗)

= ∑
j∈p∗\p dj (�

∗)
+∑

j∈p∗∩p dj (�
∗)

−∑
j∈p\p∗ dj (�

∗)
−∑

j∈p∩p∗ dj (�
∗)

= ∑
j∈p∗\p dj (�

∗)
−∑

j∈p\p∗ dj (�
∗)

And also: Wp∗(�+)−Wp(�+)=∑
j∈p∗\p dj (�

+)−∑
j∈p\p∗ dj (�

+).
For all j ∈ p∗, dj (�

+) = d+
j ≥ dj (�

∗), then∑
j∈p∗\p dj (�

+)≥∑
j∈p∗\p dj (�

∗).
And for all j ∈p \p∗, j /∈p∗ then dj (�

+)=d−
j ≤

Interval-valued activity networks 419

dj (�
∗), and so,

∑
j∈p\p∗ dj (�

∗)≤∑
j∈p\p∗ dj (�

+).
We can conclude that: Wp∗(�∗) − Wp(�∗) ≤ Wp∗
(�+)−Wp(�+)

Now, this last inequality for all paths p ∈ Pi,n,
hence lsti(�

∗) ≤ lsti(�
+). Since �∗ maximizes

lsti(.), we can conclude that lsti(�
∗) = lsti(�

+)

and then that �+ maximizes lsti(.).

Proposition 8.
Proof: Let �+ and p∗ be the configuration and
the path of the Proposition 7.

Let �p∗
be the configuration such that:

dj (�
p∗

)=






d+
j if j /∈SUCC(i)∪{i}

d+
j if j ∈p∗

d−
j otherwise.

Then we can write lsti(�
p∗

)=maxp∈P1,n
Wp(�p∗

)−
maxp∈Pi,n

Wp(�p∗
). By construction of �p∗

, for all
p ∈P ,
Wp (�p∗

) ≥ Wp (�+) then maxp∈P1,n
Wp(�p∗

) ≥
maxp∈P1,n

Wp(�+).
And for all p ∈ Pi,n, Wp(�p∗

) = Wp(�+), hence
maxp∈Pi,n

Wp(�p∗
)=maxp∈Pi,n

Wp(�+).
Then lsti(�

p∗
) ≥ lsti(�

+), hence �p∗
maximizes

lsti(.).

Proposition 12.
Proof: By recursion on the size of R.

When the graph G of R contains only two
nodes (‖G‖g = 3), Propositions (i) and (ii) are
obviously true. Now suppose that Propositions
(i) and (ii) are true for all networks such that
the associated graph G′ verifies ‖G′‖g ≤k (k >2).
Then let us show that they are also true for every
network in which the associated graph G verifies
‖G‖g =k +1.

In the following, α(G) will denote the initial
node of G, ω(G) the final node, P G

k,l (or Pk,l if
there is no ambiguity) the set of all paths from
node k to node l in the graph G, and lstGk (�) the
latest starting date of k for configuration � in the
graph G.

Let us remember that Equation (12) computes
the latest starting date with the help of the paths:

• If i is the initial task of G, then the latest
starting date of i is null for all the configura-
tions then this date is minimized by �G

1 , and
maximized by �G

2 defined in the proposition.

lsti(�)=maxp∈Pα(G),ω(G)
Wp(�)

−maxp∈ Pi,ω(G)
Wp(�)

• If i is the final task of G, then according to
the previous equation, we deduce:
lsti(�)=maxp∈Pα(G),ω(G)

Wp(�)−dω(G)(�)

Now Wp(�) = ∑
j∈p dj and moreover

for all p ∈ Pα(G),ω(G), we know that
ω(G) ∈ P so we obtained lstω(G)(�) =
maxp∈Pα(G),ω(G)

∑
j∈p\{ω(G)} dj and we can

conclude that �G
1 minimizes the latest start-

ing date of ω(G), and �G
2 maximizes this

latest starting date.
• If i is neither the initial task, nor the final

one of G, as G is series-parallel and G has
more than two nodes, according to Lemma
2, G can be decomposed into two sub-graphs
G1 and G2 such that G comes from the par-
allelization or the serialization of G1 and G2
with ‖G1‖g ≤k and ‖G2‖g ≤k.

◦ First case: parallelization
We can suppose without loss of gener-
ality that i is in G1. By definition of
parallelization, α(G) = α(G1) = α(G2) and
ω(G) = ω(G1) = ω(G2), then i is neither the
initial task, nor the final one of G1. Then
we can write the following equations:
lstGi (�) = maxp∈Pα(G),ω(G)

Wp(�)

−maxp∈Pi,ω(G)
Wp(�)

= max
(
max

p∈P
G1
α(G1),ω(G1)

Wp(�),

max
p∈P

G2
α(G2),ω(G2)

Wp(�)
)

−max
p∈P

G1
i,ω(G1)

Wp(�)

• If max
p∈P

G1
α(G1),ω(G1)

Wp(�)≥
max

p∈P
G2
α(G2),ω(G2)

Wp(�) then

lstGi (�)= lst
G1
i (�), and by recursion hypoth-

esis, �
G1
1 minimizes this latest starting date.

Now, for all nodes k of the graph G1,
dk(�

G1
1) = dk(�

G
1). Then �G

1 minimizes the
latest starting date of i in G. In the same
way, �G

2 maximizes this latest starting date.
• If max

p∈P
G1
α(G1),ω(G1)

Wp(�)≤
max

p∈P
G2
α(G2),ω(G2)

Wp(�) then

lstGi (�)=max
p∈P

G2
α(G2),ω(G2)

Wp(�)

−max
p∈P

G1
i,ω(G1)

Wp(�)

420 Dubois et al.

Now ω(G) is the only task which is part
of a path of P

G2
α(G2),ω(G2)

and of P
G1
i,ω(G1)

Moreover, ω(G) is part of all those paths,
and so we can write:
lstGi (�)= max

p∈P
G2
α(G2),ω(G2)

∑
j∈p\{ω(G)} dj (�)

−max
p∈P

G1
i,ω(G1)

∑
j∈p\{ω(G)} dj (�)

Now, for all j ∈ p\{ω(G)} such that p ∈
P

G2
α(G),ω(G), we know that j /∈ SUCC(i) ∪ {i},

and more, for all j ∈ p\{ω(G)} such that
p ∈P

G1
i,ω(G), we know that j ∈SUCC(i)∪{i},

then, �G
1 minimizes

max
p∈P

G2
α(G2),ω(G2)

∑
j∈p\{ω(G)} dj (�),

and maximizes
max

p∈P
G1
i,ω(G1)

∑
j∈p\{ω(G)} dj (�).

Then �G
1 minimizes lstGi (�), and in the

same way, �G
2 maximizes lstGi (�).

◦ Second case: serialization
If G can be decomposed in two sub-
graphs by serialization, then we know
that α(G) = α(G2), ω(G2) = α(G1) and
ω(G) = ω(G1). Let us note that if a path p

begins in G2 and finishes in G1, then p can
be decomposed into two paths p1 and p2
such that p1 is a path of G2, p2 is a path of
G1, and the initial node of p2 is α(G1) and
the final node of p1 is ω(G2). So we can
write Wp(�)=Wp1(�)+Wp2(�)−dα(G1). We
have to subtract dα(G1) to not count it twice.

• If i is part of G1 and only G1 then:

lstGi (�) = max
p∈P

G2
α(G),ω(G2)

Wp(�)

+max
p∈P

G1
α(G1),ω(G)

Wp(�)

−dα(G1)(�)−max
p∈P

G1
i,ω(G)

Wp(�)

SolstGi (�)=max
p∈P

G2
α(G),ω(G2)

Wp(�)

−dα(G1)(�)+ lst
G1
i (�)

Now �
G2
1 minimizes maxp∈Pα(G),ω(G2)

Wp(�)−
dα(G1)(�) and by recursion hypothesis �

G1
1

minimizes lst
G1
i (�). So �G

1 minimizes
lstGi (�) (because for all nodes l of G1,
dl(�

G1
1) = dl(�

G
1))) and �G

2 maximizes
lstGi (�).

• If i is in G2, then
lstGi (�) = max

p∈P
G2
α(G),ω(G2)

Wp(�)

+max
p∈P

G1
α(G1),ω(G)

Wp(�)−dα(G1)(�)

−max
p∈P

G1
α(G1),ω(G)

Wp(�)

−max
p∈P

G2
i,ω(G2)

Wp(�)+dα(G1)(�)

If we simplify, we have:
lstGi (�)=max

p∈P
G2
α(G),ω(G2)

Wp(�)

−max
p∈P

G2
i,ω(G2)

Wp(�)

And then lstGi (�) = lst
G2
i (�), and accord-

ing to the recurrsion hypothesis, we can
conclude that �

G2
1 minimizes lst

G2
i (�)

and that �
G2
2 maximizes lst

G2
i (�). Finally,

�G
1 minimizes lstGi (�) and �G

2 maximizes
lstGi (�).

In all cases, we have shown that configura-
tion �G

1 (respectively, �G
2) minimizes (respectively

maximizes) the latest starting date of i, for any
network G such that ‖G‖g =k+1, then the Prop-
ositions (i) and (ii) are proved by recursion for
all sizes of graphs.

References

Bein, W. W., Kamburowski, J. and Stallmann,
M. F. M. (1992) Optimal reductions of two-
terminal directed acyclic graphs. SIAM Journal of
Computation, 21(6), 1112–1129.

Bellman, R., Esogbue, A. and Nabeshima, I. (1982)
Mathematical Aspects of Scheduling and Applica-
tions, Pergamon Press, Oxford, UK.

Brige, J. and Dempster, M. (1996) Stochastic program-
ming approaches to stochastic scheduling. Global
Optimisation, 9, 383–409.

Buckley, J. (1989) Fuzzy PERT in Applications of Fuzzy
set Methodologies in Industrial Engineering, G. W.
Evans, W. Karwowski and M. R. Wilhelm (eds),
Elsevier, Amsterdam, pp. 103–114.

Chanas, S., Dubois, D. and Zielinski, P. (2002) On the
sure criticality of tasks in activity networks with
imprecise durations. IEEE Transactions on Systems,
Man, and Cybernetics, 34, 393–407.

Chanas, S. and Kamburowski, J. (1981) The use of fuzzy
variables in PERT. Fuzzy Set and Systems, 5, 1–19.

Chanas, S. and Zielinski, P. (2003) On the hardness of
evaluating criticality of activities in planar network
with duration intervals. Operations Research Let-
ters, 31, 53–59.

Interval-valued activity networks 421

Dubois, D. (1983) Modèles mathématiques de l’imprécis
et de l’incertain en vue d’applications aux tech-
niques d’aide à la décision Thèse d’État, Université
Scientifique et Médicale de Grenoble, France.

Dubois, D., Fargier, H. and Fortemps, P. (2003a) Fuzzy
scheduling: modeling flexible constraints vs. cop-
ing with incomplete knowledge. European Journal
of Operational Research, 147, 231–252.

Dubois, D., Fargier, H. and Galvagnon, V. (2003b)
On latest starting times and floats in activity net-
works with ill-known durations. European Journal
of Operational Research, 147, 266–280.

Dubois, D. and Prade, H. (1980) Fuzzy models for
operations research. Fuzzy Sets and Systems, The-
ory and Applications, Academic Press, chapter III-
4, pp. 242–251.

Eppstein, D. (1992) Parallel recognition of series-paral-
lel graphs. Information and Computation, 98, 41–55.

Kolisch, R. and Sprecher, A. (1996) Psplib – a project
scheduling library. European Journal of Operational
Research, 96, 205–216.

Kolisch, R., Sprecher, A. and Drexl, A. (1995) Char-
acterization and generation of a general class of
resource-constrained project scheduling problems.
Management Science, 41, 1693–1703.

Loostma, F. (1989) Stochastic and fuzzy PERT. Euro-
pean Journal of Operational Research, 43, 174–183.

Loostma, F. (1997) Fuzzy Logic for Planning and
Decision-Making, Kluwer Academic Publisher,
Dordrecht.

Prade, H. (1979) Using fuzzy set theory in a scheduling
problem: a case study. Fuzzy Sets and Systems, 2,
153–165.

Zielinski, P. (2005) On computing latest starting times
and floats of activities in networks with imprecise
durations. Fuzzy Sets and Systems, 150, 53–76.

