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Abstract

Decisions can be evaluated by sets of positive and nega-
tive arguments — the problem is then to compare these
sets. Studies in psychology have shown that in this case
the scale of evaluation of decisions is generally bipolar.
Moreover decisions are often made on the basis of an or-
dinal ranking of the arguments rather than on a genuine
numerical evaluation of their degrees of attractiveness
or rejection, hence the qualitative nature of the decision
process in practice. In this paper, assuming bipolarity
of evaluations and qualitative ratings, we present and
axiomatically characterise two decision rules based on
possibilistic order of magnitude reasoning that are ca-
pable of handling positive and negative affects. They
are extensions of the maximin and maximax criteria to
the bipolar case. A bipolar extension of possibility the-
ory is thus obtained. In order to overcome the lack of
discrimination power of the decision rules, refinements
are also proposed, capturing both the efficiency princi-
ple and the idea of order of magnitude reasoning.

Introduction
It is shown from many experiements in psychology that
our way of evaluating alternatives , objects and making de-
cision is guided by bipolar scales of evaluation (?; ?; ?;
?), i.e. considers simultaneously the positive and negative
character of the alternatives. Decisions are moreover often
made on the basis of an ordinal ranking of the strength of the
arguments rather than on a numerical evaluation, hence the
qualitative nature of the decision process (?).

The present work is a first temptative of formalization
and axiomatic characterization of bipolar qualitative deci-
sion rules. We consider the simple situation where each pos-
sible decisiond is assessed by a finite subset of arguments
C(d) ⊆ X. X is the set of all possible arguments: an ar-
gument is typically a criterion satisfied byd, a risk run by
choosingd, a good, or a bad, consequence ofd. Under this
view, comparing decisions amounts to comparing sets of ar-
guments, i.e. subsetsA, B of 2X . The point is that some
arguments are positive, and thus attractive for the decision
maker, while others are negative and should be avoided. For
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instance, when choosing a house, having a garden is a pos-
itive argumentg+, missing a house is a negative argument
g−. Being close to an airport is a negative argumenta−–
but being far is not necessarily positive, and being to far is
definitly negative – hence a second argumenta′−. So, com-
paring a house with a garden but close to the airport with
one without garden and very far from the airport amount at
comparing{g+, a−} and{g−, a′−}. The final decision ob-
viously depend on the strenght of the different elements of
decision.

As said previously we focus in this paper onqualitative
bipolar decision making, i.e. on models that rank decisions
on the basis of an ordinal rather than on a numerical eval-
uation of their pros and cons. Among other motivations is
the fact that the elicitation of the information required by a
quantitative decision model is often not an easy task in prac-
tice. Another motivation is the genuine qualitativeness of
human reasoning.

The handling of qualitative information in decision mak-
ing is not a new question. The most famous decision rule
of this kind is the maximin rule of Wald (?). It only pre-
supposes that the arguments inX can be ranked in terms
of merits by means of some utility functionu mapping on
any ordinal scale. Decisions are then ranked according to
the merit of their worst arguments, following a pessimistic
attitude. This approach captures the handling of negative
affects. Purely positive decisions are sometimes separately
handled in a symmetric way, namely on the basis of their
best arguments. The case of ordinal ranking procedures us-
ing bipolar (both positive and negative) information has re-
tained less attention. To the best of our knowledge, the only
past work on this topic is in (?). They propose to merge all
positive affects into a degree of satisfaction (using the max
rule). If high, this degree does not play any role and the
decision is made on the basis of the negative affects (using
Wald’s principle). If low, it is understood as a negative affect
and merged with the other ones.

In the present paper, we follow a more systematic di-
rection of research, characterising a set of procedures that
are simultaneously ordinal and bipolar. Unsurprisingly, the
reader will see that the corresponding decision rules are
strongly related to possibility theory. This paper pursues an
investigation started in (?) and proposes an improved deci-
sion rule and new representation theorems. Section will in-



deed present two basic qualitative and bipolar rules. We will
see in Section how the basic properties of bipolar reason-
ing can be expressed axiomatically and going further, which
axioms can capture the principle of qualitative bipolar rea-
soning. Efficient rules are studied in Section that are more
decisive that the basic ones without going outside the qual-
itative requirement. The Section 2 is devoted to the back-
ground on monotonic set comparison.

Background
Comparing sets of more or less important elements is an old
issue in uncertain reasoning, logics, measurement theory,
etc. Let us first recall that, for any relation� on a power
set2X , one can define its symmetric part (A ∼ B ⇐⇒
A � B andB � A), its asymmetric part (A � B ⇐⇒
A � B andnot(B � A)) and an incomparability relation:
A m B ⇐⇒ not(A � B) andnot(B � A). � is said to
bequasi-transitiveiff � is transitive.� is a weak order iff
it is complete and transitive. In the latter case, the compar-
ison can obviously be can be captured by a monotonic set
function or ”capacity”:

Definition 1 A capacity onX is a mappingσ defined from
2S to [0, 1] that is consistent (σ(∅) = 0), non trivial (σ(S) =
1), and monotonic, i.e. such that:∀A,B ⊆ X, A ⊆ B ⇒
σ(A) ≤ σ(B)

Capacities are meaningful in argument-based decision : if
d is supported by a set of positive (resp. negative) arguments
A (C(d) = A), then this decision can be evaluated by means
of σ(A) — i.e. capacities suit the situations where all the
elements ofX are positive (resp. negative). The essence
of capacities, i.e. the monotony principle saying that the
larger the set, the higher its importance, is not tied to the use
of a numerical measure nor to the use of a single scale of
evaluation.

Consider for instance Dempster Shafer belief function
– they evaluate the likelihood of events by an interval
[Bel(A), P l(A)]. Pl(A) is a capacity and measures the
plausibility of event A, while the capacityBel(A) its cer-
tainty. The comparison of events, givenA �Bel,P l B ⇐⇒
Bel(A) ≥ PL(A) is thus an interval order, in the sense of
the Ferrer relation, thus incomplete. It is nevertheless mono-
tonic. (?; ?) have extended the monotonicity principle to the
relational framework, thus defining more general concept of
comparative capacity:

Definition 2 A relation � on a power set2X said to
be positively monotonic (or ”orderly”) i.e. satisfies:
A ⊆ C,D ⊆ B, A � B ⇒ C � D 1.

A relation� on a power set2X is a comparative capacity
iff it is reflexive, quasi-transitive, non-trivial (X � ∅) and
positively monotonic

Contrary to numerical capacities, comparative capacities
are not necessarily complete and transitive relations. For
instance, thediscrimax order( (?); see also (?)) relies on

1Remark that this implies the monotony of� implies the
monotony of�, i.e. A ⊆ C, D ⊆ B, A � B ⇒ C � D

a rank function (possibility distribution)π : X 7→ [0, 1].
It is defined by: A �Discrimax B iff Π(A \ B) ≥
Π(B \A), whereΠ(V ) = maxx∈V π(x). This definition of
�Discrimax yields a complete but not fully transitive com-
parative capacity (indifference is not transitive). Another ex-
ample is given by a family of probability distributions, say
F . The relationA �F B ⇐⇒ ∀P ∈ F , P (A) ≥ P (B)
yields a transitive but incomplete comparative capacity.

In the present paper, we aim at focusing on and at charac-
terizing a particular class of bipolar decision making situa-
tions, namely the one that are qualitative rather than quanti-
tative in essence. The next Section presents two basic rules
that go this way. We will see in Section how the basic prop-
erties of bipolar capacities can be expressed axiomatically
and going further, which axioms can capture the principle
of qualitative reasonning. Efficient rules are studied in Sec-
tion that are more decisive that the basic ones without going
outside the qualitative requirement.

Two basic ordinal rules for comparing bipolar
sets

For each decisiond, letC(d) be the set of arguments relevant
for d, including positive and negative ones. If any, argument
irrelevant ford are outsideC(d) For the sake of simplicity,
we assume the positiveness (respectively the negativeness)
of an argument is not a matter of degree. Hence we can
suppose thatX is divided into three disjoint subsets:X+

is the set of positive arguments,X− is the set of negative
arguments,X0 is the set of indifferent ones, if any. For a
rich decision maker looking for a holiday accomodation, the
price is not a relevant argument and belongs toX0. But con-
sidering a house, having a garden is a positive argument (is
in X+) and that missing a garden is a negative argument (is
in X−). Obviously, only one of the two arguments belongs
to C(d). Arguments that present both a positive and a nega-
tive aspect (for instance, being far from the main roads) can
also be encompassed, through a similar duplication process
: we will have two sub-arguments, one inX− and one in
X+, that are either both present inC(d), or both absent of it.

So, anyA ⊆ X can thus also be partitioned in three
disjoints subsets: letA+ = A ∩ X+, A− = A ∩ X−,
A0 = A ∩ X0 be respectively the positive, negative and
indifferent arguments ofA.

All the arguments obviously do not share the same degree
of importance. In a pure qualitative, ordinal approach of de-
cision making, let us suppose that the importance arguments
is a transitive and complete notion, i.e. that it can be de-
scribed on a totally ordered scaleL = [0L, 1L], e.g. by a
function:

π : X 7→ L = [0L, 1L]

π(x) = 0L means that the decision maker is indifferent to
argumentx ; 1L is the highest level of attraction or repulsion
(according to whether it applies to a positive or negative ar-
gument). π is supposed to be non trivial, i.e. at least one
x receives a positive rating. Wheneverπ(x) > π(y), the
strength ofx is considered at least one order of magnitude
higher than the one ofy, so thaty is negligible in front of



x. So the strength ofA shall be measured by the following
qualitative possibility measure:

∀A ⊆ X, OM(A) = maxx∈Aπ(x)

OM(A) reflects the order of magnitude of the sets of ar-
gumentsA (irrespective of their signs) - hence the notation
OM .

In order to ensure the indifferent arguments, i.e. the ones
in X0, do not affect the decision process, i.e. thatOM(A ∪
{x0}) = OM(A), we require that

∀x0 ∈ X0 ⇐⇒ π(x0) = 0L.

The Bipolar Qualitative Pareto Dominance
As said in the introduction, if all the arguments were nega-
tive, we could apply Wald’s cautious principle, i.e. decide
that (the object evaluated by)A is preferable to (the object
evaluated by)B iff OM(A) = OM(A−) ≤ OM(B) =
OM(B−). On the contrary, if all the arguments were pos-
itive, we could apply the optimistic rule, i.e. decide thatA
is preferable toB iff OM(A) = OM(A+) ≥ OM(B) =
OM(B+). In the bipolar case, one could consider that each
of the two scales defines a criterion, i.e. that the ranking of
decisions does not rely on a single ordinal evaluation, like
in the unipolar case, but on two ordinal evaluations, namely
on the pair(OM(A+), OM(A−)). This yields the follow-
ing Pareto-like rule (?), which does not assume commen-
surateness between the evaluation of positive and negative
arguments:

A �Pareto B ⇐⇒
OM(A+) ≥ OM(B+)

and OM(A−) ≤ OM(B−)
where OM(V ) = maxx∈vπ(x)

It is easy to see that�Pareto is reflexive and transitive.
Moreover:

• A is strictly preferred toB (A �Pareto B) in two
cases: eitherOM(A+) ≥ OM(B+) andOM(A−) <
OM(B−), or OM(A+) > OM(B+) andOM(A−) ≤
OM(B−).

• A andB are indifferent whenOM(A+) = OM(B+) and
OM(A−) = OM(B−).

• There is a conflict whenOM(A+) > OM(B+) and
OM(A−) > OM(B−). ThenA is not comparable with
B: �Pareto is a partial relation.

It is perhaps too partial: for instance, whenOM(A−) >
OM(A+), �Pareto concludes thatA is incomparable with
B = ∅ and this even if the positiveness ofA is negligible
w.r.t its negativeness. In this case, one would rather say that
gettingA is bad and that getting nothing is preferable. An-
other drawback is observed whenOM(A+) > OM(B+)
andOM(A−) = OM(B−): the above definition enforces
A �Pareto B, and this even ifOM(A+) is very weak w.r.t
the order of magnitude of the negative arguments — in the
latter case, a rational decider would examine the negative
arguments in details before concluding.

The Bipolar Possibility Relation
The above decision rule does not account for the fact that
the two evaluations that are used canshare a common scale.
The following new decision rule takes this commensura-
bility into account. The principle at work here is simple:
any argument againstA (resp. againstB) is an argument
proB (resp. proA) and conversely, and the most supported
decision is preferred:

A �Poss B ⇔ max(OM(A+), OM(B−))
≥ max(OM(B+), OM(A−))

In other terms, the rule focuses on the arguments of high-
est importance, deciding thatA is at least as good asB iff,
at that decision level, i.e. at levelOM(A ∪ B) there are
arguments in favor ofA or arguments attackingB. Thus
A �Poss B iff, at the highest level, there is at least a positive
argument forA or an argument againstB, but no negative
argument againstA and no positive argument proB.

Importantly, �Poss collapses to themax rule if
X = X+ ∪ X0 and to Wald’s pessimistic rule if
X = X− ∪ X0, as�Pareto also does. Like�Pareto also,
�Poss satisfies the weak unanimity principle:

OM(A+) ≥ OM(B+)
and OM(B−) ≥ OM(A−) ⇒ A �Poss B

But the converse implication is not valid. It
may append thatA ∼Poss B while OM(A+) >
OM(B+) andOM(B−) = OM(A−)

Finally,�Poss is reflexive and quasi-transitive, and more-
over complete (this is obviously not the case of�Pareto).

However,�Poss and�Parero are very rough rules that
may be not decisive enough. In particular, if may happen
thatA ( B while none of the rule is making a strict pref-
erence betweenA andB — the usual drowning effect of
possibility theory reappears here.Variants will be presented
in Section that overcome this difficulty. But the two rules
have the advantage to capture the essence of ordinal decision
making, as shown by the axiomatic study of the Section .

Remark
In a preliminary work (?), we have investigated a kind of
dominance rule that is close to the Bipolar Possibility Re-
lation. Like �Poss, it focuses on arguments of maximal
strength, but applies a more restrictive dominance principle:
A is at least as good asB iff, at level OM(A ∪B) the exis-
tence of arguments in favor ofB is counterbalanced by the
existence of arguments in favor ofA and the existence of
arguments againstA is cancelled by the existence of argu-
ments againstB. Formally:

Definition 3 A �DPoss iff :
OM(B+) = OM(A ∪B) ⇒ OM(A+) = OM(B+)
OM(A−) = OM(A ∪B) ⇒ OM(B−) = OM(A−)

�DPoss is a reflexive and transitive rule but it is very often
incomplete. For instance, any set containing a positive and
a negative argument of the highest level, i.e. a conflicting
set, is incomparable to any set of arguments of a lower level
(�Poss would rather conclude to an indifference). The rule



is thus very interesting from a theoretic descriptive point of
view, but such a large range of incomparability sounds diffi-
cult to use in practice.

Axioms for ordinal comparison on a bipolar
scale

As usual in axiomatic characterizations, an abstract rela-
tion� on2X is considered and the natural properties that it
should obey are formalised — here, the property that should
be required for qualitative bipolar comparison relations. Let
us begin by the general properties any bipolar procedure is
succeptilble to obey

Axioms for monotonic bipolar set relations

The basic notion of bipolar reasoning over sets of arguments
is the separation ofX in good and bad arguments. The first
axiom thus states that any argument is either positive or
negative, i.e. better than nothing or worse than nothing:

Clarity of arguments ∀x ∈ X, {x} � ∅ or ∅ � {x}

One can then trivially scale the elements ofX = X ∪ {∅}
and make a partition of them. Denoting�X the correspond-
ing relation, we have:

x �X y ⇐⇒ {x} � {y} X+ = {x, {x} � ∅}
x �X ∅ ⇐⇒ {x} � ∅ X− = {x, ∅ � {x}}
∅ �X x ⇐⇒ ∅ � {x} X0 = {x, ∅ ∼ {x}}

Now, arguments that are indifferent to the decision maker
should obviously not affect the preference. This is the
meaning of the next axiom:

Status quo consistency
If {x} ∼ ∅ then∀A,B : A � B ⇔ A ∪ {x} � B

⇔ A � B ∪ {x})

The Status quo consistency axiom allows to forget aboutX0.
Let us now discuss the property of monotonicity with

respect to the addition of arguments. Monotonicity in
the sense of Definition 2 can obviously not be obeyed as
such in a bipolar scaling. Indeed, ifB is a set of negative
arguments, it generally happens thatA � A ∪ B. We
rather need axioms of monotonicityspecific topositive and
negative arguments – basically, the one of bipolar capacities
(?), expressed in a comparative way.

Positive monotonicity
∀C,C ′ ⊆ X+,∀A,B : A � B ⇒ C ∪A � B \ C ′

Negative monotonicity
∀C,C ′ ⊆ X−,∀A,B : A � B ⇒ C \A � B ∪ C ′

Now, the bipolar scale encodes all the relevant informa-
tion, saying that only the positiveness and the negativeness
of A andB are to be taken into account: ifA is at least as
good asB on both the positive and the negative sides, then
A is at least as good asB. This is expressed by the axiom of
weak unanimity.

Weak Unanimity
∀A,B,A+ � B+ andA− � B− ⇒ A � B

Notice that the axiom of weak unanimity can in some
cases be reinforced by a second and more restrictive axiom,
strong unanimity. It claims that only indifference on both
sides results in indifference. We will see in next section
that it is the essence of the Bipolar Qualitative Pareto
Dominance rule.

Strong Unanimity ∀A,B 6= ∅:
A+ � B+ and A− � B− ⇒ A � B
A+ � B+ and A− � B− ⇒ A � B
Finally, adding an axiom of non triviality, we get the

following generalisation of comparative capacities:

Non-Triviality : X+ � X−

Definition 4 A relation on a power set2X is a mono-
tonic bipolar set relationiff it is reflexive, quasi-transitive
and satisfies the properties of Clarity of Arguments, Status
Quo Consistency, Non-Triviality, Weak unanimity, Positive
Monotonicity, and Negative Monotonicity

Proposition 1 �Possis a monotonic bipolar set relations

Proposition 2 �Pareto is a monotonic bipolar set relations

In the present work, we are interested in relations that are
only base on the strenght of the individual arguments they
contain. It suppose that arguments should be well-ordered.
This very natural property very natural one and can be
viewed as a strong form of the Clarity axiom : a monotonic
relation is said to be simply generated if it is entirely
determined by a weak ordering of arguments inX. This
implies first of all that�X is a weak order. A minimal
condition of coherence with�X is that if an argument is
replaced by a better one (resp. a worste one), the preference
cannot be reversed. This can be view as a condition of
monotonicity with respect to�X

Monotonycity w.r.t. �X or ” X-monotonicity”
∀A,B, x, x′ such thatA ∩ {x, x′} = ∅ andx �X x′

A ∪ {x} � B ⇒ A ∪ {x′} � B
A ∪ {x} ∼ B ⇒ A ∪ {x′} � B
B � A ∪ {x′} ⇒ B � A ∪ {x}
B ∼ A ∪ {x′} ⇒ B � A ∪ {x}
This axiom, that seems very natural, is richer that it seems.

For instance, in implies some property of echangeability of
equivalent arguments (provided that they are not already in
the argumentation). This kind of property is often called
”anonymity” in social choice and decision theory.

In summary, we shall write the axiom of simple genera-
tion as follows:

Simple generation: �X is a weak order and� is
monotonic with respect toX-monotonicity” .

Proposition 3 �Poss is simply generated. It is moreover
complete.

Proposition 4 �Pareto is simply generated. It moreover
satisfies strong unanimity.



Qualitative bipolar relation
Definition 4 is actually very general and encompasses nu-
merous models, be they qualitative (e.g.�Pareto is obvi-
ously a monotonic bipolar set relations.) or not (e.g. cu-
mulative prospect theory in its full generality). As we are
interested in preference rules that derive from the principles
of ordinal reasoning only we now focus on axioms that ac-
count for ordinality.

The ordinal comparison of sets was extensively used,
especially in Artificial Intelligence (see for instance (?; ?; ?;
?)). The basic concept of ordinal reasoning is Negligibility
that presupposes that each level of importance should be
interpreted as an order of magnitude, much higher than the
next lower level. In the context of bipolarity, we propose
to capture Negligibility by a pair of axioms. The first one
enforces this property for positive sets, the second one, for
negative sets.

NEG+ ∀A,B,C : A � B andA � C ⇒ A � B ∪ C

NEG-: ∀A,B,C : B � A andC � A ⇒ B ∪ C � A

The first axiom has been around in AI, directly under
this form or through more demanding versions – the ”union
property” of non monotonic reasoning or Halpern’s [1977]
”Qualitativeness” axioms (see (?) for a discussion). The sec-
ond axiom is effective in terms of negligibility for negative
affects.

Ordinal reasoning generally comes along with a notion
of Closeness. Since the addition of highest level negative
(resp. positive) arguments can decrease (resp. increase) the
preference to a set, closeness should also be expressed w.r.t
positive and negative sets:

CLO= ∀A,B,C : A ∼ B andA ∼ D ⇒ A ∼ B ∪ C

CLO+∀B,C : B � C andC � ∅ ⊆ X+ ⇒ B ∼ B∪C
CLO- ∀B,C : B � C andC � ∅ ⇒ B ∼ B ∪ C

Definition 5
A monotonic bipolar relation is said to be qualitative iff it
satisfies NEG+, NEG-, CLO=, CLO+, CLO-.

Proposition 5 �Pareto and �Poss are qualitative mono-
tonic bipolar relations

Conversely, consider a weak order�X on X, encoding
the order of magnitude the different arguments. Applying
the principles of qualitative bipolar reasoning described by
the previous axioms can lead to several different rules. But
�Pareto is the unique decision that follows from�X, un-
derstood as an order of magnitude scale by applying only
the principe of (i) qualitative bipolar decision making and
(ii) weak and strong unanimity. Indeed, any other prefer-
ence relation in the family refines it, i.e. obey the preference
A �Pareto B when the Bipolar Qualitative Pareto Dom-
inance rule allows to conclude. This direct result can be
formalised as follows:

Definition 6 �′ refines� iff ∀A,B : A � B ⇒ A �′ B

Theorem 1 For any�X be weak order onX, letF(�X) =
{D,DX ≡�X} the set of monotonic bipolar rules generated
by≥X. �Pareto is the least refined of the monotonic bipolar
set relations inF(�Pareto

X ) that are separable, transitive
and qualitative and obey the principles of weak and strong
unanimity.

Theorem 3 shows that the Bipolar Qualitative Pareto
Dominance rule is the least committed relation that fol-
lows from strong unanimity when embedded in a qualitative
framework. On the other hand, Section has shown that this
decision rule is too demanding, in the sense that it induces
a strict preference that is counterintuitive in some situations.
So, let us relax the unanimity postulate, requiringweak una-
nimityonly.

Now, the characteristic of the of the�Poss rule is that
the principles of negligibility are not only applied within the
positive subscale and within the negative subscale, but also
apply when taking both positive and negative arguments into
account. We need for instance to express that ifA is so good
that it can cope with rather negative set of elementsB and
also win the comparison withC, thenA ∪ B is still better
thanC: ∀A,B,CA ∪B � ∅ andA � C ⇒ A ∪B � C
And similarly, if a globally negativeA (A ≺ ∅) is so bad that
it is outperformed byC (C � A) and cannot be enhanced
by B (∅ � A ∪ B), thenC � A ∪ B, i.e. : ∀A,B, C∅ �
A ∪ B andC � A ⇒ C � A ∪ B. All these properties
as well as theNEG+ andNEG− axioms can be expressed
by the following axiom of global negligibility:

NEG ∀A,B, C, D pairwise disjoint sets, A �
B andC � D ⇒ A ∪ C � B ∪D

This axiom is usually, ie in purely positive scales, consid-
ered as consequence of NEG+ and positive monotony. When
a bi-scaled framework is to be taken into account, the NEG+
condition is not any more a sufficient condition for getting
NEG. So, we lose a property that it is as the foundation of a
pure order of magnitude reasonning.

Similarly, the three axioms of closeness can be in a more
general property that is usual in a mono scale qualitative sys-
tem but that need to be explicitely required when a bipolar
scale is required:

CLO ∀A,B, C, D pairwise disjoint sets, A �
B andC � D ⇒ A ∪ C � B ∪D

These requirements of a pure qualitative scale is at the
foundation of the�Poss rule:

Theorem 2 The following propositions are equivalent:
- � is a complete monotonic bipolar set relation on2X ,

is simply generated and satisfies NEG and CLO.
- there existsπ : X 7→ [0L, 1L] such that�≡�Poss.

Alltrough �Pareto does not appear as a good candidate
for bipolar ordinal reasoning, it should be noticed that a
similar theorem can be established for it. Here, the key
property is the strong unanimity axiom that claims, in
additition to weak unanimity, that only indifference on both
the positive and the negative side results in indifference:

Strong Unanimity ∀A,B 6=

∅
{

A+ � B+ and A− � B− ⇒ A � B
A+ � B+ and A− � B− ⇒ A � B



The negligibility axioms cannot be required as such, be-
cause they induce a kind of commensurateness between the
positive and the negative scale.

Theorem 3 For any�X be weak order onX, letF(�X) =
{D,DX ≡�X} the set of monotonic bipolar rules generated
by ≥X. Any separable monotonic bipolar set relations in
F(�X) that obeyNEG++, NEG−− and strong unanimity
is a refinement of�Pareto

X .

The efficiency principle
In summary�Poss encodes the a natural model of bipolar
order of magnitude, and any other model follows the strict
preference it proposes – but can be more decisive, hopefully.
We have indeed seen that this rule (and it is also the case
of �Pareto) suffers from a severe drowning effect, as usual
in standard possibility theory. For instance, whenB is
included inA and even if all the proper elements ofA are
positive, theA is not necessarily strictly preferred toB. The
proper extension of the principle of efficiency, that should
be at work here, has one positive and one negative side:

Positive efficiencyB ⊆ A andA \B � ∅ ⇒ A � B
Negative efficiencyB ⊆ A andA \B ≺ ∅ ⇒ A ≺ B

�Poss and �Pareto also fail the classical condition
of preferential independence, also called the principle of
preadditivity, that encompasses the above conditions of
efficiency (and also separability). This condition simply
says that arguments present in bothA and B should not
influence the decision:

Preferential Independence: ∀A,B,C such that(A ∪
B) ∩ C = ∅ : A � B ⇐⇒ A ∪ C � B ∪ C

Except in very special cases where all the arguments are
of different levels of importance (�X is a total order), these
axioms are incompatible with axioms of ordinality. It is al-
ready true in the pure positive case, i.e. whenX− is empty
(?). But this impossibility result is not damning: the solu-
tion is to build relations that are in agreement with�Poss

(we shall give up�Pareto because of its important draw-
backs) and satisfy Preferential Independence. Such rules are
presented in the next section.

Refining the bipolar possibility relation
To overcome the drowning effect, we can indeed propose
comparison principles that refine�Poss, that is, relations
� compatible with�Poss but more decisive, i.e. such that
A �Poss B ⇒ A � B. All relations presented here sat-
isfy Preferential Independence and are thus efficient in both
positively and negatively.

The ”discri” rule just adds the principle of preferential
independence to the ones proposed by�Poss, simply can-
celling the elements that appear in both sets before applying
the rule:

Definition 7 (Discri) A �Discri B ⇐⇒ A \ B �Poss

B \A

�Discri is complete but not transitive; its strict part,
�Discri is obviously transitive. WhenX = X+ (resp.
X = X−), sets of positive (resp. negative) arguments are to
be compared; unsurprisingly, it is easy to check that in this
case,�Discri collapses to the discrimax (resp. discrimin)
procedure.
�Discri simply cancels any argument appearing in bothA

andB. One could moreover accept the cancellation of any
positive (resp. negative) argument inA by another positive
(resp. negative) argument inB that share the same order of
magnitude. This yields the following two rules based on a
levelwise comparison by cardinality. The arguments inA
andB are scanned top down, until a level is reached such
that the numbers of positive and negative arguments pre-
sented by the two alternatives are different; when it is the
case, the set that present the lower number of negative argu-
ments and the greater number of positive ones is preferred:
a Pareto comparison of the two cardinality-based criteria is
performed by�Bilexi.

Definition 8 (i-section) For any leveli ∈ L:
Ai = {x ∈ A, π(x) = i} is the i-section ofA.
A+

i = Ai∩X+ (resp.A−
i = Ai∩X− ) is its positive (resp.

negative)i-section.

Definition 9 (BiLexi) A �Bilexi B ⇐⇒ |A+
lb| ≥

|B+
lb | and|A−

lb| ≤ |B−
lb |)

wherelb = Argmax{i : |A+
i | 6= |B+

i | or |A−
i | 6= |B+

− |}

It easy to show that�Bilexi is reflexive, transitive, but
not complete. Indeed, if at the decisive level (lb) one of the
set wins on the positive side, and the other on the negative
side, a conflict is revealed and the procedure concludes to
an incomparability. This information is particulary interest-
ing, and should not be confused with indifference: in case of
incomparability, the decision maker has trouble with the sit-
uation and no alternative seems better than the other : (s)he
does not know what to choose – for any choice, there is a
reason to regret it. In case of indifference, both alternative
are equally satisfactory, and the choice can be made without
any regret. So,�Bilexi concludes to an incomparability if
and only if there is a conflict between the positive view and
the negative viewat the decisive level. From a descriptive
point of view, this range of incomparability is a good point
in favor of�Bilexi.

Now, if one looks for an even more decisive procedure,
one could accept to lose this information about the conflict.
A complete and transitive refinement of�Bilexi will be ob-
tained:

Definition 10 (Lexi)
A �Lexi B ⇐⇒ ∃i ∈

L such that

{
(∀j > i, |A+

j | − |A
−
j | = |B+

j | − |B
−
j |)

and (|A+
i | − |A

−
i | > |B+

i | − |B
−
i |)

Finally, the projection of both�Bilexi and�Lexi on X+

(resp. X−) is complete and transitive and amounts to the
leximax (resp. leximin) preference relation (?). Each pro-
jection is thus representable by a qualitative capacity (see
e.g. (?)). Thus:



Proposition 6 There exists two capacitiesσ+ andσ− such
that:

A �Lexi B ⇐⇒ σ+(A+) − σ−(A−) ≥
σ+(B+)− σ−(B−)

A �Bilexi B ⇐⇒ σ+(A+) �Bilexi

σ−(B+) andσ+(B−) �Bilexi σ−(A−)

The proposition is obvious using the classical encoding
of the leximax (unipolar) procedure by a capacity, e.g.
σ+(V ) = σ−(V ) =

∑
i∈L |Vi| · |X|i.

The three rules obviously define monotonic bipolar rela-
tion. Each of them refine�Poss and satisfy Preferential In-
dependence. They can be ranked from the least to the most
decisive (�Lexi), that is moreover complete and transitive.

Proposition 7 A �Poss B ⇒ A �Discri B ⇒ A �Bilexi

B ⇒ A �Lexi B

Related works
Gigerenzer, G. Goldstein: chaque critere dit bon ou mauvais
et a une force. On les classe qu plus fort au moins fort.
Le premier quio dit bon pour a et mauvais pour b fait la
decision.

Results in cognitive psychology have pointed out the im-
portance of bipolar reasoning in human decisions. Psychol-
ogists have shown that the simultaneous presence of positive
and negative affects prevents decisions from being simple to
make (?) (see also (?; ?)). Cumulative Prospect Theory (?)
is the first attempt to account for this idea. CPT assumes
reasons supporting a decision and reasons against it can be
evaluated by means of two capacitiesσ+ andσ−, σ+ mea-
suring the importance of the group of positive affects,σ− the
importance of the group of negative affects. The higherσ+,
the more convincing the set of arguments and conversely the
higherσ−, the more deterringA. This approach moreover
admits that it is possible to map these evaluations onto a so-
called “net predisposition” expressed on a single scale. The
net predisposition depends on the importance of each group
and is given by:

∀A ⊆ X, CTP (A) = σ+(A+)−σ−(A−) whereA+ = A∩X+, A− = A∩X−

Variants exist that measure utility by some function ofσ+

andσ−.
On the other hand, since the comparison of net predis-

position systematically provides a complete and transitive
preference, it can fails to capture a large range of decision-
making attitudes: the point is that, contrasting affects make
decision difficult, so that the comparison of objects charac-
terised by bipolar evaluations does not systematically yields
a complete and transitive relation – but can imply some in-
comparabilities (see e.g. (?)). That is why bicapacities were
generalised by the notion of bipolar capacity (?). The idea
is to use two measures, a measure of positiveness (that in-
creases with the addition of positive arguments and the dele-
tion of negative arguments) and a measure of negativeness
(that increases with the addition of negative arguments and
the deletion of positive arguments), but without combining
then. ThenA is preferred toB iff it is the case with respect

to both measures – i.e. according to the sole Pareto principle.
This allows the representation of conflicting evaluations and
can lead to a partial order. On the other hand, degenerated
cases where the second measures is always0 encompass the
use of a aggregation ofσ+ andσ−, as prescribed by CPT.

Our approach is clearly a qualitative counterpart to the
above works. In the�Lexi relation, the positive and negative
sets of affects are evaluated separately by capacitiesσ+ and
a σ− and the aggregated in agreement with net predisposi-
tion. The bilexi-rule does not make an aggregation of them,
thus allowing the expression of conflicts. This concludes our
argumentation in favor of�Lexi and�Bilexi : they com-
ply with the spirit of CTP as well at its practical advantages
(transitivity and representability by a pair of functions), they
are efficient and in accordance with but more decisive than
OM reasoning.

This paper has adopted a prescriptive point of view in the
sense that the rules were studied with respect to the proper-
ties that should obey a qualitative theory of bipolar decision
making. Reciprocally, their descriptive power, i.e. their abil-
ity to represent the behavior of human decision maker have
been tested — these experimental results, presented in (?)
confirm�Poss as the basis of ordinal decision making and
show the predominance�Lexi as a decision rule for the deci-
sion makers that satisfy preferential independence.�Bilexi

seems to be the good model for the subset of decision maker
for who conflicts leads to incomparability. Following (?) we
think that the characterisation of�Bilexi and�Lexi should
not be difficult and we leave it for further research.

Conclusion
This paper has focused on and characterised a particular
class of bipolar decision making situations, namely the one
that are qualitative rather than quantitative in essence. The
proposed work is an extension of possibility theory to the
handling of sets containing two-sorted elements considered
as positive or negative. The results were couched in a ter-
minology borrowing to argumentation and decision theo-
ries, and indeed we consider they can be relevant for both.
Our framework is a qualitative application of Cumulative
Prospect Theory and more recent proposals bipolar capac-
ities. Its expressivity could be extended to elements whose
positiveness and negativeness depend on the considered de-
cision (using a duplication process of suchx asx+ andx−

and considering subsets containing one of them at most).
The paper is also relevant in argumentation for the evalu-
ation of sets of arguments in inference processes (?), and
argument-based decisions (?). The next step in our research
is naturally the extension to (qualitative) bipolar criteria
whose satisfaction is a matter of degree (?). In the future,
comparison between our decision rules and those adopted in
the above works as well as aggregation processes in finite
bipolar scales (?) is in order.

preuves
Lemma 1 �Poss is complete

Proof. This follows from the simple fact that it is based on
the comparison of two measures.



Lemma 2 �Poss is transitive

Proof. SupposeA �Poss B andB �Poss C. Four cases
are possible:

• ∃a+ ∈ A+,∀x ∈ A− ∪ B+, π(a+) > π(x) and∃b+ ∈
B+,∀x ∈ B− ∪ C+, π(b+) > π(x). Thenπ(a+) >
π(b+) and thus∀x ∈ C+, π(a+) > π(x). So,∃a+ ∈
A+,∀x ∈ A− ∪C+, π(a+) > π(x) : OM(A+ ∪C−) >
OM(A− ∪ C+).

• ∃b− ∈ B−,∀x ∈ A− ∪ B+, π(b−) > π(x) and∃c− ∈
C−,∀x ∈ B− ∪ C+, π(c−) > π(x). Thenπ(c−) >
π(b−) and thus∀x ∪ A−, π(c−) > π(x). So, ∃c− ∈
C−,∀x ∈ A− ∪C+, π(c−) > π(x) : OM(A+ ∪C−) >
OM(A− ∪ C+).

• ∃a+ ∈ A+,∀x ∈ A− ∪ B+, π(a+) > π(x) and∃c− ∈
C−,∀x ∈ B− ∪ C+, π(c−) > π(x). So, the maximun
of a+ andc− has a possibility degree strictly better than
anyx ∈ A− and that anyx ∈ C+ : OM(A+ ∪ C−) >
OM(A− ∪ C+).

• ∃b− ∈ B−,∀x ∈ A− ∪ B+, π(b−) > π(x) ∃b+ ∈
B+,∀x ∈ B− ∪ C+, π(b+) > π(x). Hence ce con-
tradiction∃b− ∈ B−,∀b+ ∈ B+, π(b−) > π(b+) and
∃b+ ∈ B+,∀b− ∈ B−, π(b+) > π(b−). This case never
occurs.

So, in any case,A � B andB � C impliesA � C: � is
transive, i.e.� quasi transitive.

Lemma 3 : ∼Poss is not transitive

Proof. Choosea+, a−, b+, b−, c+, c− such thatπ(b+) =
π(b−) = α > π(a+) = π(c−) = β > π(a−) = π(c+) =
γ, and buildA = {a−, a+}, B = {b−, b+}, C = {c−, c+}.

So OM(A+ ∪ B−) = OM(C+ ∪ B−) = OM(A− ∪
B+) = OM(B−∪B−) = α. We thus haveA ∼Poss B and
B ∼Poss C, butOM(A+ ∪ C−) = β > γ = OM(A− ∪
C+), henceA �Poss C.

The transitivityA � B,B � C =⇒ A � C can be
proofed as soon asOM(B+) 6= OM(B−), i.e. as soon as
B is not suffering from an internal conflict.

Lemma 4 �Poss is simply generated

Proof. When restricted to singleton,�Poss is a complete
preorder that ranks the positive arguments by decresing or-
der ofπ, then the null arguments, then the negative argument
by increasing value ofπ. This ranking defines is complete
and transitive –�Poss is simply generated

Lemma 5 �Poss is X-monotonicity

Proof. Let A, x, x′ be such thatA∩ {x, x′} = ∅ andx′ �X
x.

If x ∈ X+, thenx′ ∈∈ X+ andπ(x′) ≥ π(x).

• if A ∪ {x} �poss B: then OM(A+ ∪ {x} ∪ B−) >
OM(A− ∪ B+). Replacingx by x′, i.e. π(x) by π(x′),
the first OM level increase, so we getOM(A+ ∪ {x′} ∪
B−) > OM(A− ∪B+) : if A ∪ {x′} �poss B.

• if A ∪ {x} ∼poss B: then OM(A+ ∪ {x} ∪ B−) =
OM(A− ∪ B+). Replacingx by x′, i.e. π(x) by π(x′),
the first OM level increases, so we getOM(A+ ∪ {x′} ∪
B−) ≥ OM(A− ∪B+) : if A ∪ {x′} �poss B.

• if B � A ∪ {x′}, thenOM(B+ ∪ A−) > OM(A+ ∪
{x′} ∪ B−). Replacingx′ by x, i.e. π(x′) by π(x), the
secod OM level decrease, so we getOM(B+ ∪ A−) >
OM(A+ ∪ {x} ∪B−), i.e. B � A ∪ {x}.

• if B ∼ A ∪ {x′}, thenOM(B+ ∪ A−) = OM(A+ ∪
{x′} ∪ B−). Replacingx′ by x, i.e. π(x′) by π(x), the
secod OM level decreases, so we getOM(B+ ∪ A−) ≥
OM(A+ ∪ {x} ∪B−), i.e. B �Poss A ∪ {x}.

If x′ ∈ X−, thenx ∈∈ X− andπ(x) ≥ π(x′). The same
kind of proof in four cases can be drawn.

If x′ ∈ X+ andx ∈ X−:

• if A ∪ {x} �poss B: A negative argument on the left is
replaced by a positive one, soOM(A+ ∪ B− ∪ {x′}) ≥
OM(A+ ∪B−) > OM(A− ∪B+ ∪ {x}) ≥ OM(A− ∪
B+): A ∪ {x′} �poss B.

• Similarly, if A∪{x} ∼poss B we have:OM(A+∪B−∪
{x′}) ≥ OM(A+ ∪ B−) = OM(A− ∪ B+ ∪ {x}) ≥
OM(A− ∪B+): A ∪ {x′} �poss B.

• if B � A ∪ {x′}, a positive argument on the right is
replaced by a negative one,OM(B+ ∪ A− ∪ {x}) ≥
OM(B+∪A−) > OM(A+∪{x′}∪B−) ≥ OM(A+∪
B−): B � A ∪ {x}.

• Similarly, if B � A ∪ {x′} we have :OM(B+ ∪ A− ∪
{x}) ≥ OM(B+ ∪ A−) = OM(A+ ∪ {x′} ∪ B−) ≥
OM(A+ ∪B−): B � A ∪ {x}.

Proof of Proposition ??. The quasi transitivity of�poss is
proved in the previous Lemma 1.

Positive and negative monotony, as well as status quo con-
sistency follow from the monotony ofOM , that is a possi-
bility measure (i.e.OM(U ∪ V ) ≥ OM(V )∀U, V ).

Non triviality of �poss is obtained from the non trivial-
ity of π (there existsx such asπ(x) > 0), that implies
OM((X+)+ ∪ (X−)−) = OM(X+ ∪ X−) > 0 while
OM((X+)− ∪ (X−)+) = OM(∅) = 0.

Clarity of argument is also trivial: ifx is positive, then
OM({x}+ ∪ (∅)−) = π(x) ≥ OM({x}− ∪ (∅)+) =
OM(∅) = 0: {x} �Poss ∅. If x is negative, we get
in the same way{x} �Poss ∅. If x has a degree0, we
getOM({x}+ ∪ (∅)−) = π(x) ≥ OM({x}− ∪ (∅)+) =
OM(∅) = 0: {x} ∼Poss ∅.

For proving weak unanimity, recall thatA+ �Poss B+

implies ∃a+ ∈ A+,∀x ∈ A+ ∪ B+, π(a+) ≥ π(x)
and that A− �Poss B− implies ∃b− ∈ B−,∀x ∈
B− ∪ A−, π(b−) ≥ π(x). So, OM(A+ ∪ B−) =
max(π(a+), π(b−)) ≥ OM(A− ∪B+): A �Poss B

Proof that �pareto is a monotonic bipolar set relations

Proof of Proposition 3. This proposition summarizes
lemmas 1, 4, 5


