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Possibilistic information fusion using maximal coherent subsets
Sebastien Destercke and Didier Dubois and Eric Chojnacki

Abstract— When multiple sources provide information about
the same unknown quantity, their fusion into a synthetic
interpretable message is often a tricky problem, especially
when sources are conflicting. In this paper, we propose to
use possibility theory and the notion of maximal coherent
subsets (MCS), often used in logic-based representations, to
build a fuzzy belief structure that will be instrumental both
for extracting useful information about various features of the
information conveyed by the sources and for compressing this
information into a unique possibility distribution. Extensions
and properties of the basic rule are also studied.

I. INTRODUCTION

When multiple sources deliver information tainted with
uncertainty about some unknown quantity, aggregating this
information can be a tedious task, especially when infor-
mation is conflicting. This problem was first addressed in
the framework of probability theory, and still constitutes an
active area of research (see [1] for a recent review).

Some shortcomings of probabilistic methods are empha-
sized in [2], where it is shown that probabilistic methods tend
to confuse randomness with imprecision. The shortcomings
of the arithmetic mean (the most used and founded fusion
operator for probabilities) are also discussed. Namely it tends
to suggest, as being plausible, values none of the sources
considered possible.

An alternative approach is to consider other theories of
uncertainty, such as imprecise probabilities [3], evidence
theory [4] or possibility theory [5]. These theories allow
to faithfully model incomplete or imprecise data, a feature
that probability theory arguably cannot account for. When
it comes to aggregating data from multiple sources, these
theories possess far more flexibility in the treatment of
conflicting information, mainly due to the flexible use of
set-operations (conjunction and disjunction ).

In this paper, we will focus on uncertainty modeled by
possibility distributions, for they can be easily elicited and
interpreted as collection of confidence intervals, and are
attractive from a computational viewpoint. On the other hand,
possibility distributions can sometimes be judged insuffi-
ciently expressive in regard with available information (other
theories should then be used).

Many fusion rules have been proposed to aggregate
conflicting possibility distributions, using combinations of
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conjunction and disjunction operations, possibly exploiting
additional data (e.g. reliability of sources); see [6] for review.
Most of these proposals result in a single final possibility
distribution built from the original ones provided by the
sources, thus eliminating inconsistency between them. In
this paper, we explore a fusion method based on maximal
coherent subsets (a natural way of coping with inconsistent
information inspired from methods in logic [7]). The pro-
posed fuzzy information fusion method does not preserve the
consonance property of possibility distribution and produces
a fuzzy belief structure.

The use of the notion of maximal coherent subsets in
uncertainty theories is not new: in the theory of imprecise
probabilities, the notion is thoroughly studied by Walley
in [8]. It is also used in [9] as a step in a fusion process,
and the result of the rule proposed in [10] can be seen as
a weighted average of maximal coherent subsets of sources.
In the context of evidence theory, the notion of maximal
coherent subsets is used in [11] to detect subgroups of
coherent sensors.

The paper is divided as follows: theoretical preliminaries
are introduced in section II, while section III makes a quick
review of existing possibilistic fusion rules. Section IV then
explains how maximal coherent subsets are applied to obtain
the fuzzy belief structure. Some properties of the proposed
method are laid bare in comparison with other fusion rules in
section V. Section VI presents and discusses some means of
extracting useful information from this structure, especially
a possibility distribution. Finally, section VII proposes some
possible ways of taking into account additional information
concerning the sources.

II. PRELIMINARIES

Zadeh introduced the link between fuzzy sets and possi-
bility theory, and he was the first to propose an extension
of Shafer belief structures [4] when focal sets are fuzzy
sets [12]. Since then, many proposals appeared, for exam-
ple by Yager [13], Dubois and Prade [14], Yen [15] and
Denoeux [16]). This section presents the framework adopted
in the paper to handle fuzzy belief functions.

A. Possibility theory

A possibility distribution π is a mapping from a space X
to [0, 1] such that π(x) = for some value of x, and is formally
equivalent to a normalized fuzzy membership function. One
can interpret a quasi-concave possibility distribution on the
real line as a set of nested intervals, with various confidence
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levels [17]. From a possibility distribution, possibility and
necessity measures are respectively defined as:

Π(A) = sup
x∈A

π(x)

N(A) = 1 − Π(Ac)

where Ac stands for the complement of A. A possibility
degree Π(A) quantifies to what extent the event A is plausi-
ble, while the necessity degree quantifies the certainty of A,
in the face of incomplete information modelled by π. These
measures can be interpreted as probability bounds, if needed.

An α-cut Eα of the distribution π is defined as the set

Eα = {x|π(x) ≥ α}
The core c(π) and the support s(π) of π respectively
correspond to E1 and limε→0E

ε

B. Fuzzy belief structure

A belief structure consists of a mapping m from subsets
of a space X to [0, 1] s.t.

∑

E⊆X m(E) = 1,m(E) ≥ 0
and m(∅) = 0. Sets E that have positive mass are called
focal sets. From this mapping, we can again define two set-
functions, the plausibility and belief functions, which read
[4]:

Bel(A) =
∑

E,E⊆A

m(E)

Pl(A) =
∑

E,E∩A

m(E) = 1 − Bel(Ac)

where the belief function quantifies the amount of informa-
tion that surely supports A, and the plausibility reflects the
amount of information that potentially supports A. When
focal sets are nested, a belief structure is equivalent to a
possibility distribution, and the belief (plausibility) function
is also a necessity (possibility) measure. In this model the
mass m(E) should be interpreted as the probability of only
knowing that the unknown quantity lies in E.

A natural way of putting fuzzy sets and belief functions
together is to assume focal sets are fuzzy. Suppose there are n
fuzzy focal sets denoted Fi that are fuzzy intervals of the real
line. The set of fuzzy focal sets along with masses m(Fi) can
be viewed as a fuzzy random variable. The degrees of belief
and plausibility of a fuzzy event A are defined as follows:

Plm(A) =
n

∑

i=1

m(Fi)

1
∫

0

sup
w∈F α

i

µA(w) dα (1)

Belm(A) =

n
∑

i=1

m(Fi)

1
∫

0

inf
w∈F α

i

µA(w) dα (2)

where F α
i is the α-cut of the fuzzy focal element Fi.

This is Yen’s [15] definition. The reason for choosing this
generalization rather than another one is that the part in-
volving fuzzy sets Fi in equations (1) and (2) computes
the Choquet integral [18] of the (possibly fuzzy) event A

with respect to the possibility measure and the necessity
induced by the distribution πi = µFi

, respectively. We thus
use linear operators in every part of the equation, which
sounds more coherent than using a mixing of linear operators
and the maximum/minimum definition of the possibility and
necessity of fuzzy events. Yen’s work is not based on these
two considerations, but rather on optimization criteria. Let us
also notice that Yen’s approach is in concordance with Smet’s
definition of a fuzzy event [19] (equations (1) and (2) reduce
to Smet’s definitions when the focal sets are crisp).

In the finite case, let {α1 = 1 > · · · > αq ≥ 0} be the
range ∪i=1,...,nµFi

(X) of the membership functions of focal
sets. The degrees of belief and plausibility of a fuzzy event
A become:

Plm(A) =
n

∑

i=1

m(Fi)
∑

αj

(αj − αj−1) max
w∈F

αj
i

µA(w) (3)

Belm(A) =
n

∑

i=1

m(Fi)
∑

αj

(αj − αj−1) min
w∈F

αj
i

µA(w) (4)

This generalization of belief structure to fuzzy focal sets
has another theoretical justification. In fact, it comes down
to reducing a random fuzzy set to a regular random set
where each cut F

αj

i has mass m(Fi)(αj −αj−1) [20]. In the
continuous case, it comes down to considering the convex
combination of possibility and necessity measures (viewed
as continuous consonant plausibility and belief functions)
induced by πi.

C. Problem statement and illustration

In this paper, we will consider a set N = {1, . . . , n} of
n sources, each of them providing a possibility distribution
πi as their evaluation of an unknown quantity x ∈ X . We
will then use maximal coherent subsets to summarize the
information and then work on the resulting structure.

To illustrate our purpose, consider the following example :
four sources (experts, computer code, sensor, . . . ) all provide
information in term of a best-estimate and a conservative
interval, and the possibility distributions are supposed to have
trapezoidal shapes. The information, represented in figure 1,
is summarized in table I.

TABLE I
EXAMPLE INFORMATION FROM SOURCES

Source Conservative interval Best estimate
1 [1,5] [2,4]
2 [1,13] [3,6]
3 [3,11] [7]
4 [5,13] [10,12]

III. EXISTING FUSION RULES: A QUICK REVIEW

Existing fusion rules mainly follow three different kinds
of behaviors [21]:
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Fig. 1. Example graphical representation

Conjunctive mode: It comes down to retaining infor-
mation common to all sources. This kind of fusion rule
presupposes all sources are reliable, which is often too
optimistic. In case of conflict, such rules lead to poorly
reliable results and cannot be applied if the conflict is total
between some sources. In the context of possibility theory,
the conjunction reads

π∩ =
⋂

i=1,...,n

(πi)

where ∩ is a t-norm operator (often the minimum or the
product), which generalizes set-intersection.

Disjunctive mode: Opposite to the conjunctive mode, it
performs the union of all (fuzzy) sets that model the pieces
of information provided by sources. It makes the pessimistic
assumption that at least one source is reliable, without
knowing which one. The pure disjunctive rule gives reliable
results that are often too imprecise to be really useful. In
possibility theory, it reads

π∪ =
⋃

i=1,...,n

(πi)

where ∪ is a t-conorm operator (often the maximum) gener-
alizing set-union.

Trade-off mode: This kind of fusion rule lies between
conjunctive and disjunctive mode, and is often used when
sources are partially conflicting. Usually, it tries to maintain
a good balance between reliability and informativeness. The
resulting possibility distribution π∗ of a trade-off rule is s.t.

π∩ < π∗ < π∪

where ∩ = min and ∪ = max (respectively the greatest
t-norm and smallest t-conorm).

As there are many possible trade-off rules (see [22] for a
review), we will only recall here the most commonly used.

Weighted arithmetic mean: It is the most popular and
commonly used trade-off combination. It reads

πWA =

n
∑

i=1

λiπi

where λi can be considered as the reliability of source i.
Weighted average can be interpreted as a statistical counting

procedure, where source i is considered as an independent
sample of weight λi. Many other trade-off fusion rules
are based on weighted average : Yager introduces the use
of ordered weighted average (OWA) in [23] and proposes
extensions in [24].

Adaptative rule: the aim of an adaptive rule is to progres-
sively go from conjunctive to disjunctive behavior as conflict
between sources increases. In case of total conflict (agree-
ment) between sources, the rule reduces to the conjunctive
(disjunctive) mode. The following adaptive rule, proposed by
Dubois and Prade [25], is often used as a reference, even if
partially ad hoc:

πAD(x) = max

(

π(n)(x)

h(n)
,min(π(m)(x), 1 − h(n))

)

(5)

with

h(n) = max(h(T ), |T | = n)

h(T ) = sup
x

(

min
i∈T

πi(x)

)

π(k)(x) = max
|T |=k

(

min
i∈T

πi(x)

)

n = sup
T⊂N

(|T |, h(T ) = 1)

m = sup
T⊂N

(|T |, h(T ) > 0)

where T ⊆ N is any subset of sources, and |T | is the
cardinality of T . Here, n is the greatest number of sources
that completely agree together (the cores of distributions
intersect), while m is the greatest number of sources that
partially agree together (the supports of distributions inter-
sect) . Distribution π(k) is the disjunction of the conjunction
of distributions stemming from k sources (it is equivalent
to the t-norm min if k = N , and to the t-conorm max
if k = 1). h(T ) can be interpreted as a measure of the
agreement between the sources in T (it is the height of the
conjunction between the distributions from sources in T ).
h(n) is the maximal level of agreement in subsets of size n.
Equation (5) can thus be interpreted as a trade-off between an
optimistic (π(n)) and a pessimistic (π(m)) distribution, with
the last one discounted by a level 1 − h(n).

In [26], alternatives to equation (5) are proposed that take
into account the distance between possibility distributions,
thus accounting for the metric structure of space X . All
these alternatives mainly consist of reformulating π(m) into a
distribution π′

(m). Its shape depends on a threshold distance
d0 and on the distance to a point from a consensus zone
(e.g. the core of π(n)). A generalization of equation (5) using
the Hamacher t-norm family (instead of operators max and
min) is proposed in [27]. In [28], another adaptive rule using
reliability of sources is proposed.

In the sequel, the new proposal is also an adaptive rule,
in the sense that it respectively reduces to a disjunction or
a conjunction when sources respectively conflict or agree
together. Nevertheless, an important difference with the



4

schemes mentioned above is that instead of directly produc-
ing a final synthetic possibility distribution, we propose to
build a fuzzy belief structure, more faithfully reflecting all the
information delivered by the multiple sources. This result can
then be exploited in various ways (one being the construction
of a final synthetic possibility distribution that can then be
compared to the other proposals).

IV. A METHOD BASED ON MAXIMAL COHERENT SUBSETS

When no information is available about the sources relia-
bility, and when these sources are conflicting, a reasonable
fusion method should take account of the information pro-
vided by all sources (i.e. without discarding any). At the same
time, it should try to gain a maximum of informativeness.
Using the notion of maximal coherent subsets (MCS) is a
natural way to achieve these two goals. It consists of applying
a conjunctive operator inside each non-conflicting subset of
sources, and then to use a disjunctive operator between the
partial results [7], [29]. We thus gain as much precision as
possible while not neglecting any source. We now explain in
detail how this approach applies to possibility distributions
on the real line.

A. Computing maximal coherent subsets of intervals

Assume the set N = {1, . . . , n} of sources supply n
intervals Ii = [ai, bi]. Using the method of maximal coherent
subsets on these intervals comes down to finding every
maximal subset Kj ⊂ N of sources s.t. ∩i∈Kj

Ii 6= ∅ and
then to performing the union of these partial results (i.e.
∪j ∩i∈Kj

Ii). An algorithm 1, that finds maximal coherent
subsets, was given by Dubois et al. in [30]. Contrary to what
happens in logic (where the exhaustive search for maximal
coherent subsets of formulas is of exponential complexity),
the algorithm 1 is linear in the number of intervals, and thus
computationally efficient.

The algorithm is based on increasingly sorting the interval
end-points into a sequence (ci)i=1,...,2n that is scanned in
this order. Each time (and only then) it meets an element ci

of type b, (i.e. the upper bound of an interval) followed by
an element ci+1 of type a (i.e. the lower bound of another
interval), a maximally coherent set of intervals is obtained.
Figure 2 illustrates the situation for α-cuts of level 0.5 of our
example. Using algorithm 1, we find two maximal coherent
subsets : K1 = {I1, I2} and K2 = {I2, I3, I4}. After
applying the maximal coherent subset method, the result is
(I1 ∩ I2) ∪ (I2 ∩ I3 ∩ I4) = [2, 4.5] ∪ [7.5, 9], as pictured in
bold lines on the figure. They can be thought of as the most
likely intervals where the unknown value may lie.

B. Building the fuzzy belief structure

Now the information provided by sources πi are supposed
to be fuzzy intervals. At each level α, their α-cuts form a set
of n intervals Eα

i . It is then possible to apply algorithm 1
to them : Let Kα

j be the maximal subsets of intervals s.t.

Algorithm 1: Maximal coherent subsets of intervals
Input: n intervals
Output: List of m maximal coherent subsets Kj

List = ∅ ;1

j=1 ;2

K = ∅ ;3

Order in an increasing order4

{ai, i = 1, . . . , n} ∪ {bi, i = 1, . . . , n} ;
Rename them {ci, i = 1, . . . , 2n} with type(i) = a if5

ci = ak and type(i) = b if ci = bk ;
for i = 1, . . . , 2n − 1 do6

if type(i) = a then7

Add Source k to K s.t. ci = ak ;8

if type(i + 1) = b then9

Add K to List (Kj = K) ;10

j = j + 1 ;11

else12

Remove Source k from K s.t. ci = bk ;13
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Fig. 2. Maximal coherent subsets on Intervals (0.5 α-cuts of example)

⋂

i∈Kα
j

Eα
i 6= ∅. Define Eα as the union of the partial results

associated to Kα
j as suggested in [22] :

Eα =
⋃

j=1,...,f(α)

⋂

i∈Kα
j

Eα
i (6)

where f(α) is the number of subsets Kα
j of maximal consis-

tent intervals at level α. In general, Eα is a union of disjoint
intervals, and it does not hold that Eα ⊃ Eβ ∀β > α.
So, the result is not a possibility distribution, since the Eα’s
are not nested. In practice, for a finite collection of fuzzy
intervals, there will be a finite set of values 0 = β1 ≤
. . . ≤ βk∗ ≤ βk∗+1 = 1 s.t. the sets Eα will be nested
for α ∈ (βk, βk+1]. Algorithm 2 offers a simple method to
compute threshold values βk. It simply computes the height
of min(πi, πj) for every pair of possibility distributions
πi, πj . Clearly, such a value is the threshold above which πi

and πj do not belong to the same coherent subset anymore.
If we apply the MCS method in (6) for all α ∈ (βk, βk+1],

we can build a non-normalized fuzzy set Fk with member-
ship range (βk, βk+1] (since sets Eα are nested in that range).
We can then normalize it (so as to expand the range to [0, 1])
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Algorithm 2: Values βk of fuzzy belief structure
Input: n possibility distributions πi

Output: List of values βk

List = ∅ ;1

i=1 ;2

for k = 1, . . . , n do3

for l = k + 1, . . . , n do4

βi = max(min(πk, πl)) ;5

i=i+1 ;6

Add βi to List ;7

Order List by increasing order ;8

by changing µFk
(x) into

max(µFk
(x) − βk, 0)

βk+1 − βk

while assigning weight mk = βk+1 − βk to this fuzzy focal
set. By abuse of notation, we still denote Fk these normalized
fuzzy focal sets in the sequel. Overall, we built a fuzzy belief
structure (F ,m) with weights mk bearing on normal focal
sets Fk. The weight mk can be interpreted as the confidence
given to adopting Fk as the information provided by all the
sources. Figure 3 gives an illustration of the result (before
normalization), on the example. The 0.5 α-cut, is exactly
the result of figure 2. The obtained fuzzy belief structure is
thus a meaningful “fuzzification” of the MCS method used
on classical intervals. If all sources agree at least on one
common value, the result is a single fuzzy focal set equivalent
to π(x) = mini=1,...,n πi(x) (usual conjunction). On the
contrary, if every pair of sources is in a situation of total
conflict (i.e. supx∈X min(πi, πj) = 0 ∀i 6= j), then the
result is a unique fuzzy focal set π(x) = maxi=1,...,n πi(x)
(usual disjunction). Thus, as mentioned before, the maximal
coherent subset method has the behavior of an adaptive rule.

Belief and plausibility measures can be derived for events
or fuzzy events from equations (1)-(2) viewing the fuzzy
random set as a convex combination of standard continuous
consonant belief structures associated to the fuzzy focal sets.
For crisp events A, these equations come down to

Plm(A) =

n
∑

i=1

m(Fi) sup
x∈A

πi(x); (7)

Belm(A) =

n
∑

i=1

m(Fi) inf
x6∈A

1 − πi(x). (8)

The results of the MCS method can also be encoded in
the form of a continuous belief structure [31] defined by the
Lebesgue measure on the unit interval (α ∈ [0, 1]) together
with the mapping α → Eα. The associated basic belief
density will be denoted mc(Eα) = 1∀α ∈ [0, 1]. One can
then work on this continuous structure instead of working on
(F ,m). The corresponding plausibility and belief measures
are then defined as
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Fig. 3. Result of maximal coherent subset method on example (—) and
0.5 α-cut (- - -)

Plc(A) =

1
∫

0

sup
w∈Eα

µA(w) dα (9)

Belc(A) =

1
∫

0

inf
w∈Eα

µA(w) dα (10)

It can be proved that the two belief structures are equiva-
lent. First consider a random fuzzy interval of the real line
{(Fi,mi), i = 1, . . . , p}. Define αi =

∑i

1 mi,∀i = 1, p
with α0 = 0. The corresponding continuous belief function is
defined by the Lebesgue measure on the unit interval together
with the mapping

α → Eα = (Fi)φi(α),∀α ∈ (αi, αi+1],

where φ(α) = α−αi

mi
maps (αi, αi+1] to (0, 1]. Then we can

prove:
Theorem: ∀A ⊆ X,P lm(A)(=

∑p
1 miΠi(A)) = Plc(A)

Proof: Denote by 1A the function with value 1 except if
A = ∅ where its value is 0. Let βi = φi(α) and notice that
dα = midβi. Then

Plc(A) =

∫ 1

0

1A∩Eαdα =

p−1
∑

0

∫ αi+1

αi

1A∩(Fi)φi(α)
dα

=

p−1
∑

0

∫ 1

0

1A∩(Fi)βi
midβi =

p−1
∑

0

miΠi(A).

This formal result shows that the fuzzy belief structure
(F ,m) resulting from the fusion process can be reduced
equivalently to a convex combination of possibility measures
or to a continuous random set.

C. Building a final possibility distribution

It can be hard to directly use the fuzzy belief structure
representation in practical problems (such as uncertainty
propagation through a mathematical model). In this case, a
method that derives a unique possibility distribution from a
fuzzy belief structure (F ,m) is needed.
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A natural candidate is to build the contour function of the
obtained continuous belief structure:

πc(x) = Pl(x) =

p
∑

1

miπi(x), ∀x, (11)

i.e. boils down to computing the weighted arithmetic mean
of the membership functions of (normalized) fuzzy focal
sets Fi, the weight of Fi being equal to mi. One can then
normalize the resulting distribution πc

1 and/or take its convex
hull if needed.

Figure 4 shows the contour function πc with the fuzzy
focal sets in the background. Figure 5 shows the same
function, once normalized and convexified, together with the
original distributions in the background. Both are given only
for the MCS method without any assumption about source
reliabilities or the metric structure of the space.

The final result is a bimodal distribution, with one mode
centered around value 8 and the other with a value of 4, this
last value being the most plausible. This is is so because
these areas are the only ones supported by three sources that
more or less agree together. We can expect that the true value
lies in one of these two areas, but it is hard to tell which one.
Indeed, in this case, one should either take the normalized
convex hull of πc as the final representation of the parameter
X , or find out the reason for the conflict (if feasible).

1by computing π′
c(x) = πc(x)/h(πc) where h(πc) is the height of πc

V. PROPERTIES OF THE MCS METHOD

This section studies some properties of the MCS fusion
rule in the light of requirements proposed by Oussalah [32].
Similar properties were studied by Walley [8] in the more
general setting of imprecise probability. We use the same
terminology as in [32] (we put between parentheses the
name used in [8] for the same property when possible and
relevant). For simplicity of notation (and to make comparison
with other fusion rules easier), we will refer in the property
definitions to the original distributions πi and their relation
with the resulting distribution πc given by equation (11),
but we could have equally referred to the continuous belief
structure mc or the random fuzzy set (F ,m), except for
properties 10 and 12 which concern πc only. In the sequel,
ϕ denotes a general aggregation operator.

1) Associativity (Aggregation of aggregates [8]): ϕ is
associative if ϕ(a, ϕ(b, c)) = ϕ(ϕ(a, b), c) . The MCS
method is not associative in general, and neither is its level-
wise application to possibility distributions. Associativity is
quite useful for local or step-by-step computations, but is
not verified in general by trade-off rules. It is also therefore
difficult to preserve under sophisticated conflict management,
that require all sources to be considered at once.

2) Commutativity (Symmetry [8]): ϕ is commutative if
ϕ(a, b) = ϕ(b, a). Equation (6) does not depend on a
particular order of the distributions πi, thus the MCS method
is commutative. Commutativity is necessary when sources
cannot be ordered in a sensible way.

3) Idempotence: ϕ is idempotent if ϕ(a, a) = a. After
equation (6), if the n sources supply the same fuzzy interval,
we retrieve it using the MCS method, which is thus idempo-
tent. When aggregating possibility distributions, idempotence
can be seen as a cautious assumption in case of possible
source dependencies. In particular there is no reinforcement
effect when several sources supply the same information. If
independence between sources must be acknowledged, one
may combine the possibility distributions πi, viewed as con-
sonant belief structures, using Dempster rule of combination.
It comes down to intersecting the cuts Eαi

i for distinct values
of αi, combining the local mass functions multiplicatively.
As this may result in conflict, one can apply the MCS method
to such n-tuples of cuts, instead of doing it using a the same
threshold α for all sources. In the case of two sources, note
that it yields focal sets of the form Eα

1 ∩ Eβ
1 if not empty

and Eα
1 ∪ Eβ

1 otherwise. This rule was already proposed by
Dubois and Prade in 1988 [21].

4) Weak zero preservation (Unanimity [8]): this property
states that if an element is considered as impossible by
all the sources, then it is also impossible for the fusion
result. This property corresponds to the informal requirement
made in [28] that the support of the resulting distribution
should be included in the union of the support of the source
distributions. This property is verified by all adaptive rules
(since they are equal to the disjunction only in case of pair-
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wise total conflict between all sources), and thus by the MCS
method since πc ⊆ maxi=1,...,n(πi). Note that this property
is called strong zero preservation in [32], but we choose to
call it weak, since it puts less constraints on the result than
its (here) strong counterpart.

5) Strong zero preservation (Conjunction [8]): This prop-
erty is verified when an element is considered as impossible
if it is considered as impossible by at least one of the sources
(for instance when πc ⊆ mini=1,...,n(πi)). This property is
not generally verified by the SMC method. However, it makes
sense only if sources agree together, thus we do not regard
it meaningful for an adaptive rule.

6) Weak maximal plausibility (Indeterminacy [8]): A fu-
sion rule verifies weak maximal plausibility if an element
considered as possible by all sources is also considered possi-
ble by the fusion result (in particular, πc ⊇ mini=1,...,n(πi)).
It is easy to check that MCS method verifies this property
(by an argument similar to the one used for weak zero
preservation).

7) Strong maximal plausibility (Total reconciliation [8]):
Strong interpretation of maximal plausibility is satisfied when
an element is considered as possible in the fusion result if
it is considered as possible by at least one of the sources
(i.e. πc ⊇ maxi=1,...,n(πi)). Although this insures that
every sources will fully agree with the fusion result, this
requirement leads most of the time to results that are too
imprecise to be useful.

8) Information relevance (Reconciliation and strong rec-
onciliation [8]): This property is informally stated in [26]
as the requirement that all distributions πi should be taken
into account (unless explicitly stated otherwise by additional
assumptions). Similar properties are more formally stated
in [8], where they are called reconciliation and strong recon-
ciliation. Let I be any maximal consistent subset of sources
s.t. mini∈I(πi) 6= ∅, then properties of reconciliation and
strong reconciliation are respectively satisfied (in our context)
if πc∩πi 6= ∅ i = 1, . . . , n and if πc∩

(
⋂

i∈I πi

)

6= ∅ for any
MCS I . By its definition, the MCS method naturally satisfies
(strong) reconciliation property. These properties are clearly
desirable if we have no reason to discard some particular
sources.

9) Insensitivity to complete and relative ignorance [8]:
Satisfying insensitivity to complete ignorance means that a
source n + 1 that provides no information at all should not
influence the fusion result (i.e. πn+1(x) = 1 if x ∈ [l, u],
0 otherwise where [l, u] is the whole domain). Insensitivity
to relative ignorance is a stronger version in which a source
n+1 that provide information implied by all the other sources
taken together (i.e. πn+1 ⊃ maxi=,...,n+1 πi) should not
influence the fusion result. Again, MCS method naturally
verifies these two properties (since a source n+1 as described
above would be in every MCS).

10) Convexity : This property is satisfied if the fusion
result is (fuzzy) convex (provided initial distributions are).
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Fig. 6. Left : equation (5) applied to two totally conflicting sources π1, π2

Right : equation (5) applied to π′

1(x) = π1(x − 0.05) and π′
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Fig. 7. Normalized final distribution πc for two sources, in function of
agreement level h

This property is not generally satisfied by the MCS method,
but it is always possible to take the convex hull of the result
(which implies losing some information).

11) Robustness to small changes: This property means
that small changes made to the original distributions (e.g.
horizontally shifting a distribution π(x) to π′(x) = π(x+ε),
coarsening or reducing the support or the core of a distribu-
tion by a small value ε, . . . ) should only cause a small change
on the final result. Since information is often approximately
modeled, this property is often considered as desirable [26]
(viz. the lack of robustness for the rule given by equation
(5), studied in [26]). Concerning the method proposed here,
although small changes can have an important impact for
a particular Eα by making a coherent maximal subset no
longer coherent, small changes will have small impact on the
overall structure (F ,m) and on the distribution πc (most of
the time, small changes will only cause small shifts in values
of βk). Thus the MCS method is robust to small changes in
the shape of the distributions πi.

12) Core sensitivity under high conflict : The fact that,
for some fusion rules, the core of the resulting distribution
can be sensitive to small changes when data are highly
conflicting has been emphasized in [28]. As an example,
figure 6 illustrates the sensitivity of the resulting core for
equation (5): When the two distributions are conflicting, then
the core of the resulting distribution c(πAD) = c(π1 ∪ π2),
but as soon as min(π1, π2) 6= ∅, c(πAD) = c(min(π1, π2)).
With this kind of behavior, a value that both sources judge
very unlikely can suddenly becomes the most plausible
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Properties
1 2 3 4 5 6 7 8 9 10 11 12

Fusion Rule
min

√ √ √ √ √ √ √ √
max

√ √ √ √ √ √ √ √ √
AD

√
TA,TC

√ √ √ √
TA

√ √
TC

√ √
TA

MCS
√

TA,TC

√ √ √ √
TA

√ √
TC

√ √ √
TA

√ √

TABLE II
COMPARISON OF THE PROPERTIES OF THE SMC METHOD WITH OTHER RULES (AD : ADAPTIVE RULE, min: MINIMUM T-NORM, max: MAXIMUM

T-CONORM).
√

TC(TA) : SATISFIED IN CASE OF TOTAL CONFLICT (TOTAL AGREEMENT) BETWEEN SOURCES

value. This is indeed quite adventurous, and means that
the core of the resulting distribution is not a continuous
function of the conflict level. In comparison, the core of
πc resulting from the MCS method does not exhibit such
a discontinuous behavior. Indeed, the core changes from
c(π1 ∪ π2) to c(min(π1, π2)) as h(π1, π2)

2 come close to 1
(complete agreement). Figure 7 illustrates the behavior of
the MCS rule as the agreement level h between distributions
π1, π2 of figure 6 increase (i.e. as π1 and π2 are respectively
shifted to the right and left). The figure shows that the
disjunctive part of the MCS is dominant in the result until
h = 0.5, after which the conjunctive part becomes dominant
in the resulting distribution. For h = 0.5, disjunctive and
conjunctive parts balance each others.

Table II summarizes the properties satisfied by the MCS
method in contrast with some other known fusion rules. It
satisfies all properties, except associativity, convexity, strong
versions of zero preservation and maximal plausibility, the
two latter being only satisfied in specific cases (i.e. when it
reduces to classical disjunction or conjunction). The MCS
method satisfies many desirable properties of fusion rules.
Strong versions of zero preservation and maximal plausibility
are not desirable, as they respectively enforce empty result
in case of total conflict, or a very imprecise result, which
often turns out to be useless. Associativity is incompatible
with adaptiveness and convexity hides the presence of con-
flict between sources. Overall, the MCS method meets all
requirements advocated in [26], [28].

VI. EXTRACTING USEFUL INFORMATION

A fuzzy belief structure (F ,m) is a good representation
of the information provided by the overall group of sources.
But it can be hard to draw conclusions or useful information
directly from it (see figure 3 to be convinced) if not simplified
using, for instance the contour possibility distribution. How-
ever it has rich content. In this section, we present various
evaluations that provide additional insights into the resulting
information .

2Note that h(T ) = sup
x

„

min
i∈T

πi(x)

«

is a measure of concordance

inside subset T

A. Finding groups of coherent sources

For each threshold in (βk, βk+1], merging the cuts ap-
plying algorithm 1 exploits the same maximal coherent
subsets K

(βk,βk+1]
j of sources. Changing the value of this

threshold yields a finite collection of coverings of the set of
sources. Increasing the threshold from 0 to 1, we go from
the largest sets of agreeing sources (i.e. those for which the
supports of distributions πi intersect), to the smallest sets
of agreeing sources (i.e. those for which cores intersect).
Subsets K

(βk,βk+1]
j can be interpreted as clusters of sources

that agree up to a confidence level βk+1.
Analyzing these clusters can give some information as to

which groups of sources are consistent, i.e. agree together
with a high confidence level ( possibly using some common
evidence to supply information) and which ones are strongly
conflicting with each other (and which items of information
are plausibly based on different pieces of evidence). The
groups in our example are summarized in the following table

Subsets Clusters Max. Conf. level
K(0,0.4] [1, 2, 3][2, 3, 4] 0.4

K(0.4,0.66] [1, 2][2, 3, 4] 0.66
K(0.66,0.91] [1, 2][2, 3][4] 0.91
K(0.91,1] [1, 2][3][4] 1.0

In our example, only few conclusions can be drawn from
the clusters, showing that, if this kind of summary can be
useful, it is not sufficient. Results show that some sources
are totally conflicting (since there is more than one subset in
K(0,β1]), and that source 4 looks more isolated than the three
others (at a confidence level higher than 0.66, it is strongly
conflicting with all other sources). This type of analysis can
trigger further investigations on reasons for conflict.

B. Measuring the gain in precision

It is interesting to measure how much precision is gained
by applying the MCS method to a set of n possibility distri-
butions. Let π∪ be the disjunction s.t. π∪ = maxi=1,...,n πi.
We consider that the overall imprecision of the information
provided by all the sources is equal to

IP = |π∪| =

∫

X

π∪(x)dx
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where |π∪| is the fuzzy cardinality of π∪, an extension of
the cardinality of an interval (the cardinality being a natural
candidate to measure imprecision). After fusion by the MCS
method, the imprecision of the resulting fuzzy belief function
can be measured as

IP ′ =
∑

mk|Fk|

The difference GP = IP − IP ′ quantifies the precision
gained due to the fusion process. This index is 0 in case
of total conflict and when the sources supply the same
possibility distribution. Indeed, the MCS method increases
the precision when sources are consistent with one another
but supply distinct pieces of information.

In our example, we have IP = 11.195, IP ′ = 5.412 and
the normalized index is 0.52, which indicates a reasonable
gain of precision after fusion.

Note that this kind of evaluation could be performed for
each threshold α. We can compute

IP (α) = |π∪,α| IP ′(α) = |Eα|
where |π∪,α| is the cardinality of the α-cut of π∪. Since
these evaluations depend on α, they can be viewed as gradual
numbers [33], [34]. A gradual number is formally a mapping
from (0, 1] to the real line R, such as IP (α) and IP ′(α).
Clearly, IP (α) measures the imprecision of the continuous
belief structure mE∪ which assigns to each α ∈ [0, 1] the
set E∪,α =

⋃

i=1,...,n Eα
i (Eα

i is the α-cut of πi). IP (α) is
a gradual evaluation the imprecision of the belief structure
resulting from the level-wise disjunction of α-cuts. It is
a monotonic gradual number. The gradual number IP ′(α)
measures the imprecision of mc likewise. However it is
is generally neither continuous nor monotone. The gradual
number GP (α) = IP (α) − IP ′(α) is thus a level-wise
measure of the precision gained by applying the maximal
coherent subset method. The following equality formalizes
the link between these gradual numbers and their scalar
counterparts IP , IP ′ and GP :

IP =

1
∫

0

IP (α)dα,

and likewise for IP ′ and GP . Since mk|Fk| =
∫ βk

βk−1
|Eα|dα, we effectively have IP ′ =

∫ 1

0
IP ′(α)dα. The

validity of the other equality IP =
∫ 1

0
IP (α)dα is trivial

given the definition of fuzzy cardinality.

C. Group confidence in an event, in a source

Since we consider the fuzzy belief structure (F ,m) result-
ing from the MCS method as a good representative of the
group of sources, plausibility and belief functions of an event
A can be interpreted respectively as an upper and a lower
confidence level given to A by the sources. In particular, if
A = πi, plausibility and belief can be used to evaluate the
resulting upper and lower “trust” in the information given by
source i in view of all the sources.

In our example, values [Belm(πi), P lm(πi)] for sources 2
and 4 are, respectively, [0.38, 1] and [0, 0.93] (using equations
(2)-(1) or (10)-(9)). We see that information provided by
source 2 is judged totally plausible by the group, and also
strongly supported (indeed, source 2 is undoubtedly the
less conflicting of the four). Because one source completely
disagrees with source 4, its belief value drops to zero, but
the information delivered by it is nevertheless judged fairly
plausible (since source 4 is not very conflicting with sources
2 and 3).

Belief and plausibility functions are natural candidates
to measure the overall confidence in a source, but their
informativeness can sometimes be judged too poor. Indeed, if
a distribution πi given by a source i is in total conflict with
the others, the resulting fuzzy belief structure (F ,m) will
give the following measures for πi : [Belm(πi), P lm(πi)] =
[0, 1] (total ignorance). It means that in the presence of
strong conflict, the MCS method grants no confidence in
individual sources, even though no source can be individually
discarded. On the contrary, if the pieces of information are
fully consistent, Belm(πi) ≥ 0.5 and Plm(πi) = 1. Note
that it suffices that one source contradicts other globally
consistent sources for Belm(πi) to vanish because the MCS
method deteriorates precision (even if to a limited extent) in
the case of inconsistency.

An alternative would be to take a fuzzy equivalent of the
so-called pignistic probability, namely

BetP (A) =
∑

m(Fk)
|Fk ∩ A|
|Fk|

(12)

where |Fk ∩ A|/|Fk| is taken as the degree of subsethood
, also called relative cardinality, of the fuzzy set Fk in A,
with A a (fuzzy) event. This pignistic probability is zero if
A is strongly conflicting with every focal set Fk and one
if every Fk is included in A (here, Fk is included in A iff
µFk

(x) < µA(x)∀x). In the example, equation (12) applied
to sources 2 and 4 (A = π2 and A = π4) respectively gives
confidence 0.80 and 0.49, confirming that source 2 is more
trusted by the group than source 4.

Let us note that other formulas instead of |Fk ∩ A|/|Fk|
could have been chosen to measure the subsethood of Fk

in A. Such other measures are considered in [35], [36].
One could also choose to consider the continuous random
set Eα and to use the continuous extension of the pignistic
probability proposed in [31], which would give yet another
result. Further research are needed to know the properties of
each of these measures and the relations existing between
them, and it is presently not clear when to choose one
measure rather than the others. From our standpoint, the
important things is that all these measures are consistent
ways to measure the coherence of A with respect to the
fuzzy belief structure coming out from the MCS method.

VII. TAKING ADDITIONAL INFORMATION INTO ACCOUNT

The fact that one needs no further information than the
distributions πi to apply the MCS method described above is
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Fig. 8. Result of MCS method with number of reliable sources r = 2

clearly an advantage: this means that the method is applicable
to any situation where information is modeled by possibility
distributions and to any space X (not only the real line)3.

However, it is often desirable to account for reasonable
assumptions or some additional information (either about
the sources or the particularities of the underlying space)
when using the fusion rule. It can be assumptions related to
the credible number of reliable sources, the existence of a
metric on the space X , information about individual source
reliabilities,. . .

We thus propose such extensions of the MCS method, that
accommodates such assumptions or information.

A. Number of reliable sources

Suppose there is information on the number r of sources
that can be expected to be reliable, or at least that some
assumptions can be made about this number. Given the lower
bound r on the number of reliable sources, we propose to
adapt equation (6) as follows

Eα
r =

⋃

j=1,...,f(α),
|Kα

j |≥r

⋂

i∈Kα
j

Eα
i (13)

where |Kα
j | is the number of sources in the maximal coherent

subset Kα
j . Namely, for each level α, only coherent subsets

which contains at least r sources are taken into account.
Using this threshold r, the contribution of isolated or small

groups of consistent sources is lessened. The proposed values
of r can of course be decreased or increased according to the
situation and the available information. Figure 8 illustrates
the fuzzy belief structure resulting from our example when
r = 2. This choice leads to discard all the information given
by source 4 after α = 0.66, as well as a small part of source
3 information. Our final structure is thus more informative, as
the (assumed) poorly reliable information supporting values
above 11 has been discarded.

3Note that algorithm 1 is only applicable to completely ordered spaces X ,
and if X is a finite space, the continuous belief structure mc just become
a usual discrete belief function

B. Accounting for the reliability of sources

Suppose that some numerical evaluation of the reliability
of each source is available. Denote λi the reliability of
source i, and suppose, without loss of generality, that λi ∈
[0, 1], value 1 meaning that the source is fully reliable, 0
representing a useless source. There are at least two ways
of taking this reliability indices into account, the first one
increasing the result imprecision by modifying the possibility
distributions, the second one decreasing the imprecision by
discarding poorly reliable subgroups of sources:

• Discounting: discounting consists of transforming πi

into a distribution π′
i whose imprecision increases all

the more as λi is low. In other words, the lower λi is,
the more irrelevant πi becomes. A common discounting
operation is:

π′
i(x) = max(1 − λi, πi(x))

Once discounted, sources are assumed to be reliable.
The effect of the discounting operation on MCS method
possesses a nice and intuitive interpretation. Indeed,
applying the SMC method to discounted sources means
that the information modeled by πi will only be con-
sidered for levels higher than 1 − λi, since below that
level, source i is present in every subsets Kj , as no
information coming from it will be considered. A draw-
back of this method is that if λi are too low, the result
will be highly imprecise.

• Discarding unreliable sources: assume the overall reli-
ability of a subgroup K is of the form

λK = ⊥i∈K(λi)

where ⊥ is a t-conorm. Choosing a particular t-conorm
to aggregate reliability scores then depends on the
dependence between the sources. For example, the t-
conorm ⊥(x, y) = max(x, y) correspond to the cautious
assumption that agreeing sources are dependant (i.e. use
the same information), thus the highest reliability score
is not reinforced by the fact that other sources agree.
On the contrary, the t-conorm ⊥(x, y) = x + y − xy
(the dual of the product t-norm) can be associated to
the hypothesis that sources are independent (reliability
score increases as more sources agree together). A limit
value λ can then be fixed, such that only subsets of
sources having a reliability score over this limit are kept.
Equation (6) then becomes

Eα
λ =

⋃

j=1,...,f(α),
λKα

j
≥λ

⋂

i∈Kα
j

Eα
i (14)

This method does not modify the pieces of information
πi.

We now consider our example with λ1 = 0.2, λ2 = 0.6,
λ3 = 0.8,λ4 = 0.2. Figure 9 shows the result of the MSC
method after discounting (the bounds of the variation domain
are assumed to be [0, 14]). The result using discounting is
very different from the result obtained with the original
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Fig. 9. Result of MCS method with reliability scores λ =
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Fig. 10. Result of MCS method with reliability scores
λ = (0.2, 0.6, 0.8, 0.2) and discarding of poor reliable subgroups
(⊥(x, y) = x + y − xy)

method, and it is clear that distribution π′
3 (i.e. the most reli-

able source) dominate the others. Figure 10 shows the result
of discarding poorly reliable sources, where independence is
assumed and λ = 0.5. As we can see, the result is this time
very close to the result of figure 8, except that now all the
information delivered by source 3 is taken into account, due
to its high reliability. From this simple example, we can see
that the fact of discounting sources can have a significant
impact on the result.

C. Accounting for the metric

In the original MCS method, if an isolated source is totally
conflicting with the others, then it will constitute a maximal
coherent subset of its own. If the notion of distance makes
some sense in X (X is a metric space), this will be true
whatever the distance of the isolated source distribution from
the others is. As stressed in [26], it is sometimes desirable
to take the distance between distributions into account, with
the aim of neglecting the information lying outside a certain
zone. Let kα = maxj=1,...,f(α) |Kα

j | be the maximal number
of consistent sources at level α. Denote EKα

j
=

⋂

i∈Kα
j

Eα
i .

At each level α a so-called consensus zone can be defined
as the interval:

EKα =
[

∩j,|Kα
j
|=kα

(

EKα
j

)]

= [kα, kα]

where [ ] denote the convex hull of a collection of (possibly)
disjoint sets. Now, let A = [a, a], B = [b, b] be two intervals.
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Fig. 11. Result of MCS method taking metric into account with d0 = 1

We define the closeness C(A,B) between A and B as

C(A,B) = inf
a∈A,b∈B

(d(a, b))

where d(a, b) is the distance between two points a and b of
the space X . Let us note that C(A,B) is not a distance
(it does not satisfy triangle inequality), but is a measure
of consistency between sets A and B accounting for the
metric. Indeed, it will be 0 as soon as A∩B 6= ∅. Since the
proposed method emphasizes the concept of consistency, this
choice looks sensible 4. Moreover, between two thresholds
βk, βk+1, the closeness C(EKα

j
, EKα

i
) between any two sets

EKα
j
, EKα

i
i 6= j is increasing with α, due to the nestedness

of these sets 5.
Like [26], the metric of the space can affect the MCS

method by fixing a distance threshold d0 to the consensus
zone, adapting equation (6) as

Eα
D =

⋃

j=1,...,f(α),
D(EKα

j
,Kα)≤d0

⋂

i∈Kα
j

Eα
i (15)

Pieces of information away from the consensus zone are
regarded as outliers and deleted. Figure 11 illustrates the
method when d0 = 1. Except F1, all fuzzy focal elements
are affected by the considered method. In the focal element
F3, distribution π4 is taken into account until α = 0.75 (After
this level, D(E

K
β
j

,Kβ) < d0). In F2 and F4, the previous
contributions of respectively π1, π2 and of π3 are discarded.
Moreover, the structure (F ,m) is simplified and composed
of only two fuzzy sets (F1, F2 and F3, F4).

Clearly, except for the discounting technique (which affect
the shape of the distributions), all other adaptations result
in minor modifications of equation (6). This implies that
computational costs of these adaptations are not much higher
than the costs of the original method. Except for the variant
involving discounting operations (which can lead either to
a gain or to a loss of information), all adaptations lead to
more informative results, since more information is taken
into account.

4Genuine distances between sets like the Hausdorff distance are less
meaningful in our context.

5this would not be true for the Hausdorff distance.
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VIII. CONCLUSIONS

An adaptive method for merging possibility distributions,
based the notion of maximal coherent subsets is proposed.
This method is simple (it can be applied without any
additional information, and is of linear complexity) and
the way it summarizes information is intuitively attractive
(maximal coherent subsets are the best we can do in the
presence of conflict). While most existing fusion rules only
aim at directly building a final synthetic distribution from
the initial ones, the result of our method is a fuzzy belief
structure from which useful information can be extracted.
The MCS method satisfies natural requirements expected
from an adaptive fusion rule, while avoiding drawbacks of
other fusion rules. Additional information concerning source
reliability can be accounted for, and outlier information can
be discarded from metric considerations if needed.

Close links between fuzzy belief structures and continuous
belief structures have been exhibited, thus giving theoretical
grounds to the fusion rule. Moreover, these links show
how fuzzy random variables can be reinterpreted in term
of continuous random sets6. This allows to apply results
concerning random sets to fuzzy random variable.

We have proposed various ways to extract useful infor-
mation from the result of the fusion. More specifically, we
concentrated on how to characterize the situation in term of
sources (which sources agree/disagree and to which level,
how to measure information gain or overall confidence in
each source). This kind of information is useful to figure out
where future efforts should be spent ( finding the causes of
a conflict, or suspecting redundancy of sources, . . . ).

We have also proposed a means to get a final distribution
coherent with the available information, using the fuzzy
belief structure resulting from our method. This allows the
decision maker to build a synthetic distribution, easy to
understand and to manipulate, which is a good representative
of the information delivered by the sources. To summarize,
the proposed fusion rule is:

• Simple, generic and intuitively attractive
• Theoretically sound (i.e. not based on ad hoc consider-

ations)
• Flexible
• Useful both for synthesis and analysis of multiple in-

formation sources
Axiomatic and theoretical aspects of the MCS method

have been discussed in this paper. It still remains to validate
its use in practical applications in contrast with other fusion
rules. We plan to use this type of method to analyze informa-
tion issued from the international benchmark BEMUSE [37],
concerning uncertainty analysis of thermal-hydraulic codes in
nuclear safety.
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