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Abstract— Random variability and imprecision are two distinct
facets of the uncertainty affecting parameters that influence the
assessment of risk. While random variability can be represented
by probability distribution functions, imprecision (or partial
ignorance) is better accounted for by possibility distributions (or
families of probability distributions). Because practical situations
of risk computation often involve both types of uncertainty,
methods are needed to combine these two modes of uncertainty
representation in the propagation step. A hybrid method is
presented here, which jointly propagates probabilistic and possi-
bilistic uncertainty. It produces results in the form of a random
fuzzy interval. This paper focuses on how to properly summarize
this kind of information; and how to address questions pertaining
to the potential violation of some tolerance threshold. While
exploitation procedures proposed previously entertain a confu-
sion between variability and imprecision, thus yielding overly
conservative results, a new approach is proposed, based on the
theory of evidence, and is illustrated using synthetic examples.

Index Terms— (Random) Fuzzy Intervals, Probability, Possi-
bility, Belief functions, Dependence.

l. INTRODUCTION

Risk assessment methods have become popular support
tools in decision-making processes. In the field of contami-
nated soil management, for example, risk assessment is typi-
cally used to establish whether certain levels of soil contami-
nation might represent a threat for human health. The assess-
ment is carried out using predictive "models” that involve a
certain number of parameters. Uncertainty is an unavoidable
component of such a procedure. In addition to the uncertainty
regarding the model itself, each model parameter is usually
fraught with some degree of uncertainty. This uncertainty
may have essentially two origins : randomness due to natural
variability resulting from heterogeneity or stochasticity, or
imprecision due to lack of information resulting, for example,
from systematic measurement error or expert opinion. As
suggested by Ferson and Ginzburg [27], distinct methods
are needed to adequately represent random variability (often
referred to as “objective uncertainty”) and imprecision (often
referred to as "subjective uncertainty”).

In risk assessment, no distinction is traditionally made
between these two types of uncertainty, both being represented
by means of a single probability distribution. In case of partial
ignorance, the use of a single probability measure introduces
information that is in fact not available. This may seriously
bias the outcome of a risk analysis in a non-conservative
manner (see [23]). Let T:R" — R be a function (model) of n
parameters X; (X = (Xg, ..., Xn)). The main issue is thus to carry
the uncertainty attached to the variables over to T(x) with the
least possible loss of initial information. This is uncertainty

propagation. It may occur in practice, that some parameters
of empirical models can be represented by probability distri-
butions (due to observed variability, and sufficient statistics)
while others are better represented by possibility distributions
(due to imprecision), or by belief functions of Shafer (in the
case of partially observed variability and partial ignorance).

Many researchers have addressed uncertainty in risk as-
sessments using either one or the other of these modes
of representation. For example Labieniec et al. [37] used
probability distribution functions to address uncertainty in the
estimation of the risk of human exposure due to the presence
of contaminated land. Prado et al. [40] applied probability
theory in risk assessments related to the underground disposal
of nuclear waste. Dou et al. [13], Bardossy et al. [1], Freissinet
et al. [31] present applications of possibility theory to en-
vironmental problems. But fewer have considered combining
these different modes of representation (probability, possibility,
belief function) within the same computation of risk.

Kaufmann and Gupta [35] introduced hybrid numbers which
simultaneously express imprecision (fuzzy number) and ran-
domness (probability). In Guyonnet et al. [33] a method,
dubbed "hybrid” method, was proposed for a joint handling of
probability and possibility distributions in the computation of
risk. This method is related to an earlier proposal by Ferson et
al. [9] [25] who extended the approach of Kaufmann and used
hybrid arithmetic to treat risk analysis [22]. The hybrid method
combines random sampling of the probability distributions
(Monte Carlo method [7]) with fuzzy interval analysis [14].
The result is a random fuzzy set [32]. In order to compare
the random fuzzy set to a tolerance criterion, Guyonnet et
al. [33] proposed to summarize the resulting random fuzzy
interval under the form of a single fuzzy interval, from which
two cumulative (optimistic and pessimistic) distributions can
be derived for the purpose of comparison with a tolerance
threshold.

We consider four important issues in risk assessment [27]:
the first one is how to represent the available information
faithfully [26], the second one is how to account for
dependencies, correlations between the parameters in the
propagation process (linear, non linear monotone dependency,
interaction ...). For example the assumption of stochastic
independence between parameters can generate too optimistic
results [24] [29]. The third issue is the choice of the
propagation technique [3] [23]. The last one is how to exploit
the results of propagating variability and imprecision jointly.
This paper focuses on the two last steps. We revisit the
joint propagation of possibility and probability distributions
through a numerical model, laying bare the underlying
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assumptions, and we propose a new post-processing method,
suggested in [4], in the framework of belief functions. We
also discuss indices quantifying the amount of variability and
incompleteness of a random fuzzy set, with a view to present
the results of risk analysis to a user in an understandable
format.

In Section 2, we recall basic concepts of numerical pos-
sibility theory [15] and belief functions [42] in connection
with imprecise probabilities [12]. In Section 3, we explain the
hybrid propagation method [25] [33] in detail and we study
the links with the random set approach using belief functions
to propagate uncertainties [3]. In Section 4, we discuss the
exploitation of the random fuzzy results and show that the
postprocessing step proposed by Guyonnet et al. [33] intro-
duces a confusion between variability and imprecision that
may yield overly-conservative results. Then, we propose an
alternative approach that explicitly accounts for the difference
between the two components of uncertainty. Ferson’s method
[9] [25] [22] is also recalled. The difference between the three
information summarization methods is laid bare and illustrated
with synthetic numerical examples.

Il. UNCERTAINTY THEORIES

The aim of this section is to recall uncertainty theories use-
ful in the sequel, namely probability theory, possibility theory
and the theory of belief functions, albeit from the standpoint of
imprecise probabilities. Our purpose is to distinguish between
situations where uncertainty is due to the variability of the
observed phenomenon, from situations where it is due to a
mere lack of knowledge. While the former is handled by means
of probability theory, the latter is more naturally captured by
set-valued representations whereby all that is known is that a
certain value belongs to a certain set, which is possibly fuzzy.
This is the idea of possibility theory. More general theories
combine the two frameworks, thus yielding more general, and
also more costly representations.

A. Probability theory:the frequentist view

Probability theory is taylored to the representation of precise
observations tainted with variability. To consider a classical
setting of dice tossing, one can see the number obtained after
each toss but one does not always obtain the same outcome
for each toss. All probability measures P can be defined from
a sample space Q equipped with probability mesure, defined
on an algebra A of measurable subsets. In the discrete case,
a distribution function p : Q — [0,1] exists such that
> wea P(w) = 1. In the continuous case, let X be a real random
variable X — R. A probability measure Px on R is induced
from the sample space, with density px such that fR p(x)dx =1
Namely for any measurable subset A C R, called event, it
holds:

(discrete case) : Px(A) = Z p(w), Q

w:X(w)eA

(continuous case) : Px(A) = j; px (X)dx, 2

The cumulative distribution function of X is F : R — [0, 1],
defined from py as follows:

F(X) = Px((~o0, X)) = P(X < ) = f

—00

X

px(t)dt, ¥ xe R (3)

The number p(w) represents the (limit) frequency of observing
w after many trials in the discrete case, and the density of w
in the continuous case. Probability measures P verify:

YABCcQ PAUB)=PA)+P(B)-PANB) (4)
Probability measures are self-dual, that is P(A) = 1 — P(A).

B. Limitations of subjective probability

When faced with incomplete information regarding a given
model parameter, e.g. the knowledge that the parameter value
is located somewhere between a value min and a value max,
it is common to assume a uniform probability distribution
between min and max. This approach appeals to the Laplace
principle of insufficient reason, according to which all that is
equally plausible is equally probable. It can also be justified on
the basis of the "maximum entropy” approach (see [34]). More
generally, the subjective probability view (for instance, Lindley
[38]) claims that any state of knowledge, however incomplete,
can be represented by means of a single (a priori) probability.
Such a claim is based on the theory of exchangeable bets,
where the degree of probability of an event is understood as
the price a player accepts to pay for buying a lottery ticket
that brings one dollar to the player if this event occurs. It is
assumed that the ticket seller and the player exchange roles if
the former finds the price proposed by the latter unfair. In such
a constrained framework, it is easy to verify that the lottery
ticket prices for all events must follow the rules of probability
theory, or else the player is sure to lose money. This view
of probability is indeed purely subjective since two different
persons may offer different prices for the lottery tickets. Based
on this conceptual framework, Bayesian probabilists tend to
dismiss all alternative approaches to incomplete information
and belief representation as being irrational.

However, this point of view can be challenged in various
ways. First, adopting uniform probabilities to express igno-
rance implies that degrees of probability will depend on the
size of the universe of discourse. Two uniform probability
distributions relative to two different frames of discernment
representing the same problem may be incompatible with each
other (Shafer [42]). Besides, if ignorance means not being able
to tell whether one contingent event is more or less probable
than any other contingent event, then uniform probabilities
cannot account for this postulate because, unless the frame of
discernment is Boolean: even assuming a uniform probability,
some event will have a probability higher than another [20].
The subjective probability approach has also been criticized by
pointing out that the exchangeable bet framework is debatable:
the player may be allowed not to play. There is a maximal price
(s)he is ready to pay for buying the lottery ticket, and the seller
has a minimal price below which he no longer wants to sell
it. This is the basis of the imprecise probability framework of
Walley [43]. The bottom line of the criticism made by non-
additive probability theories is that while in the exchangeable
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bet framework, lottery prices are induced by the belief state
of the player, there is no one-to-one correspondence between
lottery prices and degrees of belief. For instance, the meaning
of a uniform probability distribution obtained from an expert
is ambiguous: it may be that the expert knows the underlying
phenomenon is really random (like a fair die), or that (s)he is
totally ignorant of this phenomenon, hence sees no reason to
bet more money on one outcome rather than another.

C. Numerical Possibility Theory

Possibility theory [15] is convenient to represent consonant
imprecise knowledge. The basic notion is the possibility distri-
bution, denoted , here a mapping from the real line to the unit
interval, unimodal and upper semi-continuous. A possibility
distribution describes the more or less plausible values of
some uncertain variable X. Possibility theory provides two
evaluations of the likelihood of an event, for instance that the
value of a real variable X should lie within a certain interval:
the possibility IT and the necessity N . The normalized measure
of possibility IT (respectively necessity N) is defined from the
possibility distribution 7 : R — [0, 1] such that sup,, 7(x) = 1
as follows:

I(A) = sup n(X) ®)

N(A) = 1~ TI(A) = inf (1 - x(x)) (6)
« The possibility measure IT verifies :
YA, BC R TI(AU B) = max(I1(A), II(B)) (7
« The necessity measure N verifies :
YA, BCR N(AN B)=min(N(A), N(B)) (8)

A possibility distribution may also be viewed as a nested set of
confidence intervals, which are the a-cuts [x . X,] = {X, 7(X) >
a} of x. The degree of certainty that [x ,X,] contains X is
N([x,.%X.]) (= 1 -« if m is continuous). Conversely, suppose
a nested set of intervals Ay with degrees of certainty 2; that
A contains X is available. Provided that A; is interpreted as
N(A) > 4;, and & is chosen as the least specific possibility
distribution satisfying these inequalities [18], this is equivalent
to knowing the possibility distribution

n(x) = min{l -4, x ¢ A}

with convention min@ = 1.

A pair (interval A, necessity weight ) supplied by an
expert is interpreted as stating that the (subjective) probability
P(A) is at least equal to A [18] where A is a measurable
set. This definition is mathematically meaningful [8], and in
particular, the a-cut of a continuous possibility distribution
can be understood as the inequality P(X € [x,,X.]) > 1 —a.
Equivalently, the probability P(X ¢ [x,,X,]) is at most equal
to a. Degrees of necessity are equated to lower probability
bounds and degrees of possibility are then equated to upper
probability bounds.

D. Evidence Theory

The theory of belief functions [42] (also called evidence
theory) allows imprecision and variability to be treated sepa-
rately within a single finite framework. Indeed, belief functions
provide mathematical tools to process information which is at
the same time of random and imprecise nature. We typically
find this kind of knowledge when one uses some measure-
ment device which has a systematic error (imprecision) and
a random error (variability). We may obtain a sample of
random intervals (m — 6, my + 68])i=1..x supposedly containing
the true value, where § is a systematic error, m is the
observed measurement i = 1...K and K is the number of
interval observations. Each interval is attached probability v;
of observing the measured value m;. That is, we obtain a mass
distribution (v;)i=1..k on intervals. The probability mass v; can
be freely re-allocated to points within interval [m — &, my + 6].
However, there is not enough information to do it.

Contrary to probability theory which assigns probability
weights to atoms (elements of the referential) the theory of
evidence may assign such weights to any subsets, called focal
sets, with the understanding that portions of these weights may
move freely from one element of such subsets to another . As
in possibility theory, evidence theory provides two indicators,
plausibility Pl and belief Bel, to qualify the validity of a
proposition stating that the value of variable X should lie
within a set A (a certain interval for example). Plausibility Pl
and belief Bel measures are defined from the mass distribution:

v:iP(Q) - [0,1] such that Z WE)=1 (9)
EcP(Q)
as follows:
Bel(A) = Z V(E) (10)
E,ECA
PIA)= » v(E)=1-Be(A) (11)

E.ENA+0

where P(Q) is the power set of Q and E is called focal element
of P(Q), when v(E) > 0.

Bel(A) gathers the imprecise evidence that asserts A ; following
Dempster [12], it is the minimal amount of probability that can
be assigned to A by sharing the probability weights defined by
the mass function among single values in the focal sets. PI(A)
gathers the imprecise evidence that does not contradict A ; it
is the maximal amount of probability that can be assigned to
A in the same fashion.

Evidence theory encompasses possibility and probability the-
ory.

« When focal elements are nested, a belief measure Bel
is a necessity measure, that is Bel = N. A Plausibility
measure Pl is a possibility measure, that is Pl = II.

« When focal elements are some disjoint intervals, plau-
sibility Pl and belief Bel measures are both probability
measures, that is we have Bel = P = PI, for unions of
such intervals.

Thus, all probability distributions and all possibility distri-
butions may be interpreted by mass functions. Hence, one
may work in a common framework to treat the information
of imprecise and random nature.
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E. Approximate Encoding of Continuous Possibility and Prob-
ability as Belief Functions

Belief functions [42] encompass possibility and probability
theories in the finite case (see Section I1-D). Here we explain
more precisely how we can build a mass distribution v
from a probability distribution function p or a possibility
distribution 7. In the continuous case, the representation will
be approximate but this is how we shall make computations.

1) Probability — Belief function.

Let X be a real random variable with a probability
density px. By discretizing it into mintervals, we define,
as focal elements, disjoint intervals (Ja, &j;1])i=1..m and
we can build the mass distribution (v;)i=1..m as follows
Vi =1.m][17]:

v(lai, &ia]) = vi = P(X €]ai, ai.1]) (12)

2) Possibility — Belief function.

Let Y be a possibilistic variable. We denote by = the
possibility distribution of Y and r, the a-cuts of . Focal
elements for Y corresponding to a-cuts are denoted
(ma))j=1.qWithao=a1=1>a2> -+ >aq>agq1 =0
and are nested. We denote by (vj = @j — @j;1)j-1.q the
mass distribution associated to (7,,)j=1..q (see Figure 1
for instance). Note that we thus approximate = by the
discrete possibility distribution 7, such that 7.(X) = a; <
n(X) if X € my; — 7, 1t is a lower approximation of 7.
Alternatively one might prefer an upper approximation
n* such that 7*(x) = aj = n(X) if X € 7y, — 7o, (s€E
Figure 1 for instance).

F. Imprecise Praobability

Let P be a probability family on the referential Q. For all
A € Q measurable, we can define:

its upper probability P(A) = sup P(A) (13)
PeP

its lower probability P(A) = ,‘,ng, P(A). (14)
Let P(P < P) = {P.YA C Q,P(A) < P(A) < P(A)} be
the family probability induced from upper P and lower P
probability induced from P. Clearly P is a proper subset of
P(P < P) generally. The notion of cumulative distribution
function becomes a pair of upper & lower cumulative dis-
tribution functions F and F defined as follows:

VxeR F(X) = P(X €] -0, x])
¥xeR F(X)=P(Xe€]-o,X])

(15)
(16)

where X is a random variable associated to P. The gap between
F and F reflects the incomplete nature of the knowledge, thus
picturing what is unknown.

We can interpret any pair of dual functions neces-
sity/possibility [N, I1], or belief/plausibility [Bel, PI] as upper
and lower probabilities induced from specific probability fam-
ilies.

o Let 7 be a possibility distribution inducing a pair of
functions [N, IT]. We define the probability family P(r) =
{P, YA measurable, N(A) < P(A)} = {P,VA measurable,
P(A) < TI(A)}. In this case, SUPpep(y P(A) = TI(A) and
infeca(r P(A) = N(A) (see [8], [18]).

« Conversely, given Ay € Ay C ... € A, some measurable
subsets of Q with their confidence degrees 1 — a; <

. < 1-an (1 - a; probabilities given by experts for
example), we define the probability family as follows:
P = (P,VA, 1-a; < P(A)}. We thus know that P = IT and
P = N (see [18], and in the infinite case [8]). We hence
can define upper F and lower F cumulative distribution
functions such that Yx e R F(x) < F(x) < F(x) with :

F(x) = II(X €] - o0, X]) 7)

F(X) = N(X €] - o0, x]) (18)

« A mass distribution v may encode probability family P =
{P, YA measurable, Bel(A) < P(A)} = {P, YA measurable,
P(A) < PI(A)} [12]. In this case we have: P = Pl and
P = Bel, so that:

VPeP,Bd <P<Pl (19)

Hence, We can define upper F and lower F cumulative
distribution functions such that Yx e R F(X) < F(X) <
F(x) with :

F(X) = PI(X €] = 00, X]) (20)

E(X) = Bel(X €] — o0, X]) (21)

So, we may cast possibility theory and evidence theories
into a probabilistic framework respectful of the incompleteness
of the available information. Possibility distributions 7 and
mass distributions v then encode probability families P(x) and
thus allow to represent incomplete probabilistic knowledge.
The intervals [N, IT] induced from z and [Bel, PI] induced from
v thus provide some bracketing of ill-known probabilities [5]
[21] [19] [26]. Note that this is not at all the view of belief
functions advocated by Shafer, nor Smets [41] 1. Moreover,
while a unique probability measure can be reconstructed
from the cumulative distribution F, there are several mass
functions yielding a given pair of upper and lower cumulative
distribution functions.

I1l. JOINT PROPAGATION OF IMPRECISION AND VARIABILITY THROUGH
MATHEMATICAL MODELS

Let us assume k < n random variables (X4, ..., Xi) taking
values (X, ..., X) and n—k possibilistic variables (X1, ..., Xn)
taking values (X1, ..., Xn) represented by possibility distribu-
tions (7%, ..., 7%). This section explains how to propagate
heterogeneous uncertainties pervading the parameters (Xi)i=1..n
through a function T by means of an hybrid probabilis-
tic/possibilistic method.

1These authors systematically refrain from referring to probability bounds,
and rather view Bel(A) as a degree of belief per se.
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Fig. 1. Transformation possibility—belief function

A. The hybrid propagation method

The hybrid propagation method, variants of which were
proposed in [9] [25] [33] involves two main steps (see Figure
2). It combines a Monte Carlo technique (Random Sampling
[7]) with the extension principle of fuzzy set theory [14]. We
first perform a Monte Carlo sampling of the random variables,
taking into account dependencies (if known), thus processing
variability (probability). Values thus obtained form prescribed
k-tuples (X1 = Xg,...,Xk = %) and fuzzy interval analysis
is used to estimate T. The knowledge on the value of T(X)
becomes a fuzzy subset, for each k-tuple. Random sampling is
resumed and the process is performed in an iterative fashion
in order to obtain a sample (nI, ...,m}) of fuzzy subsets where
m is the realization number of the k random variables. T(X)
then becomes a fuzzy random variable (or a random possibility
distribution) in the sense of [32] [36].

The hybrid procedure is summarized as follows [33]

1) Generate k random numbers (pa, ..., px) from a uniform
distribution on [0, 1] taking account dependencies (if
known) and sample the k probability distribution func-
tions to obtain a realization of the k random variables:
(X1, ..., %) (see Figure 2.a)

2) Select a possibility value « and the corresponding cut
as the selected interval.

3) Interval calculation : calculate the Inf (smallest) and
Sup (largest) values of T(xg,..., Xk, Xks+1, ---» Xn), €ON-
sidering all values located within the a-cuts for each
possibility distribution (see Figure 2.b).

4) Assign these Inf and Sup values to the lower and upper
limits of the a-cut of T(Xq, ..., Xk, Xks 1, -o» Xn)-

5) Return to step 2 and repeat steps 3 and 4 for an-
other a-cut. The fuzzy result of T(Xq, ..., Xk, Xk+1, --» Xn)
is obtained from the Inf and Sup values of
T(X1, ..., Xk> Xkt 1, --.» Xp) fOr each a-cut.

6) Return to step 1 to generate a new realization of the
random variables. A family of fuzzy numbers (], ..., 7})
is obtained (see Figure 2.c).

B. Underlying independence assumptions

The classical Monte Carlo method has been criticized by
Ferson [23] because it presupposes stochastic independence
between random variables. In the case where we know that

random variables are independent, the Monte Carlo method
is correct. It is worthwile noticing that within a Monte Carlo
approach the rank correlation (non linear monotone depen-
dency) between the random variables [6] can be taken into
consideration (if known). Even if we can account for some
dependencies between random variables with Monte-Carlo, it
is necessary to be aware that the Monte Carlo method cannot
account for all forms of dependence.

Similarly, we must be careful with the extension principle be-
cause it underlies a meta-dependence assumption on possibilis-
tic variables. In fact the presence of imprecision on Xy,1, ..., Xj
potentially generates two levels of dependencies. The first one
is a (meta-)dependence between information sources attached
to variables and the second one is a dependence between
variables themselves. The extension principle [14], Yu € R
defines the resulting possibility distribution as:

7 (u) = sup MmN (Xee1)s o 70(%0)). (22)

Xic1seees Xy T (X100 Xn)=U

It is equivalent to performing interval analysis on a — cuts
and hence assumes strong dependence between information
sources (observers) supplying the input possibility distribu-
tions, since the same confidence level is chosen to build these
a-cuts [17]. Namely, one expert interprets fuzzy intervals 7%
and ' for two possibilistic variables X and Y as a-cuts 7X and
7Y with the same confidence degree 1 — a. This suggests that
if the source informing on X is rather precise then the one in-
forming on Y is also precise (for instance it is the same source).
It induces a dependence between the knowledge of X and the
knowledge of Y since for instance pairs of values in 71)1( X n\lf
are supposed to be the most plausible. However, this form of
meta-dependence does not presuppose any genuine functional
(objective) dependence between possibilistic variables inside
the domain 7% x 7 (the observed phenomenona). The use of
"minimum” assumes the non-interaction of X1, ..., X,, which
expresses a lack of knowledge about the links between the
actual values of X,1, ..., Xn, hence a lack of commitment as to
whether Xy,1, ..., X, are linked or not. Indeed, the least specific
joint possibility distribution whose projections on the X and

Y axes is precisely 7% = min(z*, 7).
As a consequence of the dependence between the choice
of confidence levels, one cannot interpret the calculus of
possibilistic variables as a conservative counterpart to the



JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

Variable X;

2

n

Cumulative probability
©
[y

X1 Values x; of variable X3

Variable X1 b)

a-cut of Xyyq

Values of variable X1

o s

2z Variable X
g a4
2 Pk
o
© Xic Values x, of Variable X
T .
Variable X,
14
X |- _____ A ______2
| |
| |
O |

a-cut of Xn Values of Variable X,

Model result : random fuzzy number

1

o

T(Xt, s Xis Xca s o

Fig. 2. Schematic illustration of the "hybrid” method

calculus of probabilistic variables under stochastic indepen-
dence. Namely if PX and PY are probability measures assigned
to X and Y such that PX € P(x*) and PY e P(zY), it
does not imply that the joint probability P*Y = PX. PY is
contained in P(min(xX,zY)). To wit, assume X and Y have
uniform probability densities on [0, 1], and that 7% and 7" are
linear decreasing on [0, 1], so that 7%(u) = #"(u) = 1 - u.
Clearly, PX([u,1]) = IT¥([u,1]) = 1 — u. So PX e P(x%),
PY € P(nY). Yet, let C(u) = {(xy) : x+y > u}. Itis
clear that P*Y(C(u)) = 1 - ”72 if u<1and @ otherwise;
while IT*Y(C(u)) = sup,min(1 - x,1 - u+x) = 1 - 4. So,
I*Y(C(u)) < P*Y(C(u)) whenever u < 1. It means that if
Z = X+, then P? does not belong to P(?).

Besides, the hybrid propagation method clearly assumes
stochastic independence between the group of probabilistic
variables and the group of possibilistic ones, the latter viewed
as forming a random Cartesian product on the space of possi-
bilistic variables, as explained in the next section. Being aware
of the underlying assumptions, we can use this methodology
in risk assessment. We will see in the next sections how we
can estimate for example P(T(X) €] — oo, t]) (where t can be
a threshold) from this hybrid result (random fuzzy number).

C. Casting uncertainty propagation in the setting of random
sets

Belief functions [42] encompass possibility and probability
theory. In this section the hybrid method is cast in this enlarged
setting so as to better lay bare the underlying independence
assumptions and illustrate the links between the propagation
results obtained with the hybrid approach and what could be
a pure random set approach. For the sake of clarity, consider
a continuous function T of two variables. Let X be a discrete
random variable with Qx = {X4, ..., Xm} and pix = P(X = x),
Y a possibilistic variable. with possibility distribution 7.
Focal elements for X are singletons ({x})i=1..m and the mass
distribution is equal to (pix)izl,_m because X is discrete. We

s Xn)

choose a discrete probability for the sake of clarity. Focal
elements for Y corresponding to a-cuts are denoted (nlj) i=1.q
with g > 0 and are nested. We denote by (ij = aj—@j+1)j=1.q
the mass distribution associated to (nli) j=1..q- We thus encode
probabilistic and possibilistic variables as belief functions, in
the spirit of section 2.4.
Under the hybrid method, T(X,Y) is a discrete random fuzzy
subset. That is, we obtain m fuzzy numbers (niT)i:L,m with
corresponding probabilities (pix)i:l,m. Under the random set
approach [3] we interpret this random fuzzy set as mx q focal
elements (intervals) with mass distributions (pfij)izl_,_mj:Lq
and focal elements niTj = T(X,m,;). We have the following
result:

Proposition: The plausibility PIT and belief function
BelT associated to focal elements ﬂiTj and mass distribution
(pf(v}()izlmmjzlmq are such that YA measurable set,

AT = . Pl ()
i=1

m
BelT(A) = > pNT(A)
i=1
where HiT and NiT are the possibility and necessity measures
associated to fuzzy numbers .
Proof : The calculation of PIT reads as follows:

m
T = > ooy =>p > .
(i.]), Anxfi20 i=1 j=1..q, Anzf 0
So, PIT(A) =3, piPIT(A), for each i varying from 1 to n,

we have xif; C ... C i Vj > k. Thus PIT(A) = IT] (A).0

These results still hold when several independent proba-
bilistic variables are involved. These results do not directly
apply with more than one possibilistic variable. Indeed recall
that fuzzy arithmetic presupposes total dependence between
a-cuts.
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The hybrid method can be cast in the random set setting,
when there are several (say two) possibilistic and probabilistic
variables. Consider X, Y, two possibilistic variables encoded
as belief functions, their focal elements being (X Di=1..q»
(rY )J 1.q and the mass distributions (vX)I 1. (v )j=1.q- Let
Z, W be two discrete probabilistic variables encoded by their
focal elements ({z})k=1..m ({Wi})i=1..m and the mass distribu-
tions (Pg)k=1..m (P}")i=1..m. If independence between focal sets
is assumed, we can define the joint mass distribution (denoted
viju), associated to focal elements ﬂ'ljkl = T(n w; Az, (w})
of T(X,Y,Z, W), by:

i, j, k| Vijk = vixv}(pf D}N.
It corresponds to applying a Monte-Carlo method to all
variables. For each possibility distribution, an a-cut (here
7%, and nYJ) is independently selected. We thus assume the
stochastlc independence of the focal elements pertaining to
different variables.

Suppose now the same value of « is selected for all
possibilistic variables. In the hybrid method, the joint pos-
sibility distribution 7Y is characterized by min(z*, z¥) which
corresponds to nested Cartesian products of a-cuts and let vix’Y
be the mass associated to the Cartesian product 7% Xz . Then:

Vi, k1, =
Vi, k1, i #

XY
Viikl =V pfp?’v
vijw =0
Here we assume total dependence between focal elements
associated to possibilistic variables. Hence, if we want to

estimate PIT(A), for all measurable set A, using the last
definition of v, we still have:

2.

ik l; AT, #0

XYZW

PIT(A) = PPy

Z P P TIR (A)

where HL are the possibility measures associated to the output
possibility distributions ﬂ--lk-l obtained by the hybrid method.

IV. EXTRACTING USEFUL INFORMATION FROM A RANDOM FUZZY
INTERVAL

The results of the hybrid method are not easy to interpret
by a user and need to be summarized in some way S0 as
to be properly exploited. In this section we devise tools for
evaluating how much variability and how much imprecision
are contained in the output of the hybrid method, in the form
of separate indices. Then, we consider the problem of checking
to what extent the value of the quantity calculated by the
propagation step is likely to pass a given threshold. To this
end, we discuss methods for deriving cumulative distributions
from random fuzzy intervals. A method previously proposed
by some of the authors is criticized as being too conservative
and failing to separate variability from imprecision. A new
technique is proposed, based on averaging a random fuzzy
interval across a-cuts, in line with the previous discussion on
the hybrid method. This new technique is also compared to a
proposal by Ferson. Consider (r;)i=1...m being the sample of the
random fuzzy number T (X) obtained from the hybrid method
for the remainder of this section.

A. Measuring variability and imprecision separately

Since the output of the propagation technique is more
complex than a probability distribution, we cannot summarize
it by a mean value and a variance. Not only is the result
tainted with variability, but it also reflects the incompleteness
of the data via the presence of fuzzy intervals. It is possible
to summarize the imprecision contained in a fuzzy interval,
for instance using the mean interval (Dubois and Prade [16]).
The position of its middle-point (proposed a long time ago by
Yager [45]) reflects the average location of the fuzzy interval.
The width of the mean interval reflects the imprecision of the
fuzzy interval and is precisely equal to the surface under the
possibility distribution. Other evaluations like the degree of
fuzziness can be envisaged (see Delgado et al.[11])

Here we propose to combine probabilistic and possibilistic
summarized evaluations, with a view to process variability and
imprecision separely. To evaluate the average imprecision of
(mi)i, we can compute the average fuzzy interval (Kruse and
Meyer [36]) m*"

Vz, 7?2 = sup  min(mi(Xy), ...

320 %=z
The average imprecision is measured by the area | under 73",
thatis I = [ 2 (u)du.
To estimate the locational variability of T, we can work
with a representative value h{ of each fuzzy interval x;. Then
we can estimate a standard variance V of the form:

V = Z( r)2 ) Z hrhr

where h is a representative value of 7;. As the representative
value hi we can choose the middle point of the mean interval
(of each fuzzy interval ;). It is also equal to the average of
the midpoints of the a-cuts of nj, proposed by Yager [45] very

early : ) _
by :f (sup miq + mfm")da
0 2

V appears only as an indicator of result variability. For
instance, on Figure 3a, the variability V is small but the im-
precision | is high. In contrast, on Figure 3b, the variability is
high, but the imprecision is small. We could also try to define
the variability of the imprecision in the sample, considering
the variance of the surface under the fuzzy numbers ;.

We could also estimate a fuzzy variance 7@, et f be the
function which estimates the variance:

1 2
frlXy, onXm o — > X2 ———— ) XX
(xa ) m; m(m—l)%:J

To obtain 7r"a”a”°e we can work with a-cuts, and build nested
intervals n"ar iance [Vd o Vde], solving:

Vi = inf (X, ...
— X €T o

s tm(Xm))

» Xm)

Vo = sup f(xq, ...

Xi €Tl o

» Xm)

This fuzzy variance describes a potential variability, because
it scans variances of all probability functions compatible with
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the random fuzzy data. Ferson et al. [28] propose an algorithm
of quadratic complexity for computing the exact lower bound
Vu,, Of the sample variance for interval valued data. However,

they show that computing the exact upper bound Vg, is
NP-hard. There exists an algorithm that computes n‘é‘f‘fy‘ame
but it is exponential in the sample size. They propose an
algorithm of quadratic complexity, but it presupposes all the
interval midpoints are away from each other. Computing a
fuzzy variance is not straightforward, as we must apply these
algorithms for all a-cuts. See Dubois et al. ([30]) for recent
results on this problem.

B. The fuzzy prediction interval method

Let p; be the probability associated to fuzzy number r;
resulting from the hybrid method. If the Monte Carlo method
yields distinct fuzzy numbers, then p; = 1/m. Guyonnet et al.
in [33] propose to synthesize this random fuzzy result into a
single fuzzy subset denoted ny, discarding outliers. For a given
membership grade «, consider the intervals zj, = [U,,.Uia].
The distribution of the greatest lower bounds {u, }i-1m and that
of the least upper bounds {Ti,}i=1.m are built up. The interval

= [ug,. Udo] is computed as u,, = X0, U, 6]. 1 .](1 dA))
Ugo = 20 1u|06]' 11 1(d%) where 61 1;(a) = 1 if ae]
0 otherwise. Varylng a€][0,1],a fuzzy mterval 7y IS thus bU|It
The standard value d = 95 is chosen. That is, they eliminate
5% on the left and on the right side and perform the pointwise
union of the remaining fuzzy intervals, thus generalizing the
computation of an empirical prediction interval. Starting from
this fuzzy interval 74, we now can try to estimate the probabil-
ity of events such that: ] — oo, €], ]e, +], ]€1, €] according to
whether we are interested in checking the probability that the
output value lies under a threshold e, crosses this threshold,
or remains in between two prescribed values.

Unfortunately, there are caveats with this postprocessing
method. First, and most importantly, this method confuses
variability and imprecision. It does not account for the proba-
bilities generated by the random variables and it thus forgets
the frequency of each output fuzzy number. This may put
excessive emphasis on randomly generated fuzzy numbers
located on the extreme right-handside and left-handside parts
of the result 4. Next, one may obtain the same result whether
the n;’s have large imprecision and small variability as in
Fig.3a, or they are more precise with a great variability as
in Fig.3b.

We can illustrate these problems more clearly when com-
bining intervals and probability. For instance, let A, B be two
independent random variables such that: P(A = 1) = P(A =
2) =05 PB=4)=1/3, PB=6)=2/3and C = [1,2].
We compute T = (A + B)/C. With the hybrid method, we
obtain a random interval: T; = [2.5,5] with probability 1/6,
T, = [3.5, 7] with probability 2/6; T3 = [3, 6] with probability
1/6 and T4 = [4, 8] with probability 2/6. Putting d = 20%, with
this postprocessing we obtain Ty = [3, 7], and we assign to it
a mass equal to 1, which is debatable. Indeed we eliminate the
knowledge (frequency) brought by A and B, i.e. variability.

Lastly, we get false estimates of probabilities such as
Prx)([e1, €]). Indeed the method independently processes the

left-hand and the right-hand sides of the fuzzy intervals r;
while they are not independent, since any a-cut is generated as
a whole. The postprocessing proposed by Guyonnet et al. [33]
is thus debatable. Better alternative methods can separately
assess variability and imprecision.

C. Computing average upper and lower cumulative distribu-
tions

Recall (rj, pi)i=1..m is the sample of random fuzzy numbers
resulting from the hybrid method. Let us encode each r;
with focal elements corresponding to a-cuts (mj,), and the
associated mass distribution is (v, pi). (see Section II-E). We
obtain a weighted random sampling of intervals defining a
belief function. Then, we can estimate, for all measurable sets
A, PI(A) and Bel(A) such that:

PI(A) = Vo Pi;
(i,@); maNA+D

BA(W = D>, b
(i,@); maCA
We can dub it "homogeneous postprocessing”. This technique
again yields as in section 3.2:
PI(A) = ) pIl(A):  Bel(A) = ) piNi(A)
| I

This technique thus computes the eventwise weighted average
of the possibility measures associated with each output fuzzy
interval. It applies to any event, not just to the crossing of a
threshold .

Let us compare the previous postprocessing method of
Guyonnet et al. [33] with the pair of average cumulative dis-
tributions F(e) = PI(T(X) € (-, €]) and F(e) = Bel(T(X) €
(—o0, €]) defined from the above method. Note that the fuzzy
confidence interval computed by the former method can also
be expressed by a pair of cumulative distributions I14(T(X) €
(—o0, €]) and Ng(T(X) € (—oo, €]) defined from 74 (See Section
IV-B).

With the homogeneous postprocessing, we get PI(T(X) €
(—=c0,t]) =1 if and only if Vi = 1..m, IT;(T(X) €] — o, 1]) = 1.
That is t > t* = max;{inf(core(s;))}. We also have PI(T(X) €
(—o0,t]) = 0 if and only if Vi = 1.m IT;(T(X) € (—co,t]) = 0
That is t < t. = min{inf(support(r;))} (see Figure 3). We
study only the left-hand side part (for simplicity), that is
IMg(T(X) € (—o0,€]), with the Guyonnet et al. method of
Section IV-B. If d = 100%, the construction of u, will
necessarily imply:

for =0, uy, =t

for a=1, u,, = miin{inf(core(m))} <t

Thus, we can say that for d = 100%, the cumulative dis-
tribution TIg(T(X) € (-co,€]) = 1 V € > Uy, so it is
more conservative than PI(T(X) €] — «, €]) obtained by the
homogeneous postprocessing (because of not accounting for
frequencies). If d # 100%, the construction of uy, will
necessarily imply (see Figure 3):

for a=0, >

Hdoz 2 L.

for =1, u,, <t



JOURNAL OF IATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002

3a. Small variability of the sample
Large imprecision of each fuzzy number 7;

Fig. 3.

That is TIy(T(X) € (-c0,€]) = 0 V e € [t uy,l and
[g(T(X) € (—o0,€]) = 1 V €2 uy[. So, the fuzzy prediction
interval method according to [33], is essentially more
conservative (because of not accounting for frequencies) than
the method proposed in this section, and the reason why it
may appear less conservative for low plausibility values is
rhe use of outlier elimination.

Finally, the homogeneous post processing method separates
imprecision from variability. Namely the cumulative distribu-
tions F(€) = PI(T(X) € (-,€]) and F(e) = Bel(T(X) €
(—o0,€]) will be close to each other and their associated
variances will be large in Figure 3a, thus preserving the
high variability and precision of the output. On the contrary,
F(e) = PI(T(X) € (-0, €]) and F(e) = Bel(T(X) € (-, €])
will be very steepy and far away from one another in Figure
3b, reflecting the fact that the obtained fuzzy intervals are
imprecise but very close to one another. However, upper and
lower cumulative distributions cannot be used for predicting
if the output lies between two thresholds e; and e,. This is
because neither PI(T(X) € [e1, &]) nor Bel(T(X) € [e1, &]) can
be expressed in terms of upper and lower cumulative functions
F and F respectively.

D. Comparison with Ferson method

Ferson et al. [9] [22] [25] also treats variability and im-
precision separately in his technique for handling random
fuzzy numbers. In fact, they prescribe a degree of confidence
(thus a value ) and compute the upper and lower cumulative
probability distributions induced by the a-cuts of the fuzzy
intervals, weighted by probabilities (p;). The upper (noted F,)
and lower (noted F ) cumulative distributions for a prescribed
a are YXeR,:

Fu(0) = cardiy,, < x)/m

and
VxeR,E_ (x) = card{Ti, < x}/m

The gap between F, and E,, represents the imprecision due to
possibilistic variables and the choice of «. The slopes of F,
and F_ characterize the variability of the results. Thus with
this kind of representation, Ferson captures the variability and
imprecision of a random fuzzy interval in a parameterized
way and displays extreme pairs of cumulative distributions,
respectively outer, (Fo,F,), and inner ones (Fi,F,) (see

Uy t T OO

3b. Great variability of the sample
Little imprecision of each fuzzy number r;

Guyonnet et al. [33] postprocessing : the same possibility distribution 74 is obtained for different scenarii of variability and imprecision

Figure 4). Thus if the user is optimistic and assumes high
precision ( @ = 1), he works with the cores of the fuzzy
intervals, but, if cautious, he may choose a = 0 and use their
supports.

Let us compare this postprocessing technique with the av-
erage cumulative distributions in Section IV-C. In the latter
approach, each interval =, is associated to mass v, p;. With

1F -
08 r ]
06 r 1
04 :
0.2 ]
| = Average cumulative
0 - distributions
T(X)
Fig. 4. Postprocessing of Ferson and comparison with our homogeneous

postprocessing results.

the Ferson approach, level « is fixed and it computes:

Fa(d) = D) plla(T(X) € (o0, )

and

Fo(®) = D PiNG(T(X) € (=0, ¥])

where TTij, (T(X) € (=o0,x]) = 1 if x > &, and 0 otherwise,
Nie(T(X) € (-o0,X]) = 1 if x > &, and O otherwise. It is
obvious, since w1 C w1 C o, that Mip(T(X) € (—o0,X]) =
Ii(T(X) € (=00, X]) = [ig(T(X) € (—o0,X]) and Niz(T(X) €
(=00, X]) = Ni(T(X) € (=0, X]) = Nig(T(X) € (—o0, X]). Hence
(see Fig.4)

F1 < PI(T(X) € (-, €]) < Fo

and (see Fig.4)
Fo < Bel(T(X) € (-0, €]) < F1

Hence our homogeneous method produces average upper and
lower cumulative distributions which span the ranges between
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Fo and Fy on the one hand, F, and F, on the other hand;
moreover it holds [16]
1

F(e) = fo lF_w(t)da and F(e) = fo Fu(t)da

V. ILLUSTRATION ON A NUMERICAL EXAMPLE

In order to illustrate the application and implications of
these post-treatment methods, we consider a generic "model”
T that is a simple function of four parameters A, B, C and D:

_A+B
" D+C
For the purpose of the illustration we will consider two cases:

1) One with small variability and large imprecision.
2) Another with large variability and small imprecision.

A. Case 1. Small Variability, Large Imprecision.

Both A and C are represented by normal probability dis-
tributions (of average 100, resp. 10, and standard deviation 2,
resp. 0.5; see Figures 5 & 6), while B and D are represented by
possibility distributions (of core=[2, 10], support=[0, 20] resp.
core=[10, 50], support=[1, 90] see Figures 7 & 8). The appli-
cation of the hybrid method (see 111-A) yields many possibility
distributions for T, ten of which are depicted in Figure 9 (1000
fuzzy realizations of the probability distribution functions were
obtained). We represent the result of the hybrid method by

1 1
c c
1] o
£08 08
2 2
B -]
Bog Bog
ke kel
g g
£04 g04
E g
Eo2 Eo2
0 0
0 o
0 50 100 150 200 5 10 15 20
A fp

Fig. 5. Cumulative normal distri-
bution function with mean 100 and
standard deviation 2.

Fig. 6. Cumulative normal distri-
bution function with mean 10 and
standard deviation 0.5.

1 1
08 08
> >
=06 = 0.6
) i)
2 2
Bo.4 304
o o
0.2 0.2]
0 0
0 5 10 15 20 0 15 30 45 60 75 90
R n

Fig. 7. Possibility distribution for Fig. 8. Possibility distribution for
B. D.

showing, on the same picture, imprecision and variability by
means of a three-dimensional image of the random fuzzy set
T. Figure 10 displays the envelope of the hybrid result. We
can see on Figure 11 that a projection on the possibility space
[0,1] x R provides a two-dimensional view of the random

10

Possibility

o
IS
T

o 2 a 6 8 10 12 14
(A+B)/(C+D)

Fig. 9. 10 samples of the random fuzzy set of T.

fuzzy result (the envelope of fuzzy numbers in Figure 9).
Now using a projection on the probability space [0, 1] xR, we
obtain Ferson’s view on Figure 12 (see Section IV-D). Outer
(resp. inner) cumulative distribution functions correspond to -
cut=0 (resp. a-cut=1) and represent the most likely cumulative
distributions (resp. the least likely cumulative distribution).

Possibility
(=] o
o © R

o
IS

o
N

o

0.4

6

Cumulative distribution function (A+B)/(C+D)

Fig. 10.  Three-dimensional image of random fuzzy numbers induced by
hybrid method.

Figure 13 displays upper and lower probabilities of the
proposition % < t deduced from different postprocessings
presented in Sections IV-B, IV-C, IV-D where t is any value.
(IT, ©) and (N, ) are the upper resp. lower distributions ob-
tained from the post-treatment by Guyonnet et al. (see Section
IV-B). PI(T < t) and Bel(T < t) are the upper resp. lower
distributions obtained from our homogeneous postprocessing
method (see Section IV-C). We also represent the pairs of
inner and outer distributions of Ferson method. We recall
Guyonnet et al. postprocessing is debatable because it forgets
the variability of random variables A and C. We can see on
Figure 13 that Bel(T €] — o, 10.96]) = 95% whereas N(T €
] - o0, 11.4]) = 95%, namely Guyonnet et al. do over-estimate
the result by 4% compared to our approach. This error is small
here because variabilities of A and B are small, but it will be
more important in Case 2. The post-treatment of Guyonnet
et al. therefore appears more conservative. The method of
Ferson in section IV-D presents some disadvantages. Indeed,
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Fig. 11. The projection of Three-
dimensional image T on the possi-
bility space [0, 1] x R.

Fig. 12. The projection of Three-
dimensional image T on the prob-
ability space [0, 1] x R.
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Fig. 13. Comparison with three postprocessing on indicators of the veracity
of the proposition ” &8 < v,

there is a lower fractile at 95%(resp. upper probability) for
a = 0 equal to 5.8 (resp. upper probability for @ = 1 equal
to 11.9). That is, the value 11.9 is prudent but not very
informative and 5.8 is a risky value but maybe not sufficiently
conservative. The question is: what would be a reasonable
value for . Our homogeneous postprocessing in Section 1V-C
seems to be a good trade-off between the inner and the outer
distribution pairs, that also discriminates between variability
and imprecision. The imprecision due to B and D is reflected
in the gap between Pl and Bel measures, the variability due
to A and C is pictured in the slope of Pl and Bel. One
way to estimate the total uncertainty (imprecision+variability)
on T is to provide a confidence 90% interval (for example)
whose lower bound is computed from PI(T < t) and upper
bound from Bel(T < t)(here [1.7,10.76]). Being aware of the
dependency assumptions between parameters in the hybrid
method (see Section Il1-A) we are not sure that the actual
probability P(T €] — o, 1]) lies between Bel(T €] — =, 1]) and
PI(T €] — oo,1]) if special forms of unpredicted dependence
are present [3].

1

B. Case 2. Large Variability, Small Imprecision.

As previously, both A and C have normal probability distri-
butions (of average 100, resp. 10, and standard deviation 30,
resp. 3; see Figures 14 & 15), while B and D are represented
by possibility distributions (of core={10}, support=[8, 12] resp.
core={45}, support=[42, 48]; see Figures 16 & 17). Figure
18 proposes samples of outputs. Figure 22 presents the same
distributions as in Case 1. Contrary to Case 1, this example
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Fig. 14. Cumulative normal dis- Fig. 15. Cumulative normal dis-

tribution function of mean 10 and
standard deviation 3.

tribution function of mean 100 and
standard deviation 30.
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Fig. 16.
for B.

Possibility distribution Fig. 17.

for D.

Possibility distribution

Possibility

3 3.5

Fig. 18.

20 samples of the random fuzzy set of T.

highlights the defects of Guyonnet et al., postprocessing.
Indeed we obtain for example TI(T €] — 0,1.1]) = 95%
whereas PI(T €] — 0, 2.87]) = 95%, i.e. a underestimation of
62% compared to 2.87. Assuming a tolerance criterion of 2.5,
the post-treatment of Guyonnet et al. yields a lower cumulative
probability of 0%, (that is, % > t is true), while from our
homogeneous postprocessing, it is close to 75%. The larger
discrepancy between the two postprocessing methods for Case
2 is due to the fact that Case 2 is dominated by variability

rather than by imprecision.
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Fig. 19. Three-dimensional image of random fuzzy numbers induced by
hybrid method.
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Fig. 21. The projection of Three-
dimensional image T on the prob-
ability space [0, 1] x R.

Fig. 20. The projection of Three-
dimensional image T on the possi-
bility space [0,1] x R..

V1. CONCLUSION

This paper proposes an approach to jointly propagate proba-
bilistic and possibilistic uncertainty in deterministic mathemat-
ical models. It provides a computational device for generating
fuzzy random variables. Dependence and independence as-
sumptions underlying the approach have been laid bare, and a
postprocessing method based on belief functions has been de-
vised so as to extract useful information. This method assesses
the imprecision and the variability of the results separately, and
extracts average upper and lower cumulative distributions for
checking the positioning of the output variable with respect
to a threshold. Our proposal improves on previous works.
This methodology is currently experimented on environmental
pollution prediction problems where some parameters are ill-
informed and while statistical data are available on other ones
(see [2], [3]). The most common pitfall in risk assessment
is to assume variability in the face of partial ignorance,
thereby conveying a level of confidence in the outcome of
the analysis that is not consistent with the knowledge that
is truly available. An important message to be delivered to
decision-makers, or other stakeholders, is that a risk specialist
should be equipped with a formal language where the lack of
knowledge on model parameters is encoded in a specific way,
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Fig. 22. Comparison with three postprocessing on indicators of the veracity
of the proposal " &8 < t".

different from observed data stemming from acknowledgedly
random phenomena.

Further research is needed for representing knowledge on
dependence. The hybrid propagation scheme presented here
does account for partial prior knowledge on distributions,
not so much on dependence. Accounting for dependence
between variables in the propagation process is a very difficult
problem, let alone partial knowledge on dependence. Using
ideas of rank correlations [6], copulas [39] and the general
framework of upper and lower probabilities introduced by
Couso et al. [10] we may try to take into consideration some
links or dependencies which could exist between possibilistic
variables. Current work [3] is devoted to the computation
of conservative bounds that avoid making independence or
dependence assumptions. Such bounds can be obtained, even
if tediously so in the common framework of random sets [12]
outlined above, improving on Williamson and Downs [44].
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