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Abstract

Numerical possibility theory, belief function have been suggested as useful tools to rep-
resent imprecise, vague or incomplete information. They are particularly appropriate in
uncertainty analysis where information istypically tainted with imprecision or incomplete-
ness. Based on their experience or their knowledge about a random phenomenon, experts
can sometimes provide a class of distributions without being able to precisely specify the
parameters of a probability model. Frequentists use two-dimensional Monte-Carlo simu-
lation to account for imprecision associated with the parameters of probability models.
They hence hope to discover how variability and imprecision interact. This paper presents
the limitations and disadvantages of this approach and propose a fuzzy random variable
approach to treat this kind of knowledge.

Key words: Imprecise Probabilities, Possibility, Belief functions, Probability-Boxes,
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1 Introduction

The processing of uncertainties has become crucial in industrial applications and
consequently in decision making processes. Uncertainties are often captured within
apurely probabilistic framework. It meansthat uncertainty pertaining to the param-
eters of mathematical models representing physical or biological processes can be
described by a single probability distribution. However, this method requires sub-
stantial knowledge to determine the probability law associated with each parameter.
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Due to time and financial constraints, information regarding model parameters is
often vague, imprecise or incomplete. It is more and more acknowledged that un-
certainty regarding model parameters has essentially two origins[23]. It may arise
from randomness (often referred to as "stochastic uncertainty") due to natural vari-
ability of observationsresulting from heterogeneity or the fluctuations of a quantity
intime. Or it may be caused by imprecision (often referred to as " epistemic uncer-
tainty") due to a lack of information. This lack of knowledge may stem from a
partial lack of data, either because collecting this data is too difficult or costly, or
because only experts can provide some imprecise information. For example, it can
be quite common for an expert to estimate numerical values of parameters in the
form of confidence intervals according to his/her experience and intuition. The un-
certainty pervading model parameters is thus not of a single nature: randomness
and incomplete knowledge may coexist, especially due to the presence of several,
heterogeneous sources of knowledge, as for instance statistical data jointly with
expert opinions. One of the main approaches capable of coping with incomplete-
ness as a feature distinct from randomness is the imprecise probabilities calculus
developed at length by Peter Walley [40]. In this theory, sets of probability distri-
butions capture the notion of partial lack of probabilistic information. In practice,
while information regarding variability is best conveyed using probability distribu-
tions, information regarding imprecision is more faithfully conveyed using families
of probability distributions. At the practical level, such families are most easily en-
coded either by probability boxes [22] or by possibility distributions (also called
fuzzy intervals) [16] or yet by belief functions introduced by Dempster [12] (and
elaborated further by Shafer [36] and Smets [38] in a different context).

Faced with information such as“l am surethe value of x liesinan interval [a, b] but
the value {c} seemsto be the most likely”, it is common to use triangul ar possibility
distribution with core {c} and support [a, b]. The choice of a linear interpolation
between the core {c} and the support [a, b] looks debatable. However, it has been
shown in [3,17] that the family of probabilities encoded by atriangular possibility
distribution contains all probability distributions of mode {c} and support [a, b]. It
has also been shown in [3] that the probability family encoded by triangular pos-
sibility distribution can contain bimodal probability distributions. We can question
the physical interpretation of such bimodal distributionsif we know that the prob-
ability model associated with x is unimodal. Neverthel ess, non-linear shapes could
be used instead, for example if the expert had knowledge suggesting that while
values |ocated outside the core are possible, they are nevertheless very unlikely (in
which case convex functions on each side would be used). While it can be argued
that the choice of the shapes of possibility distributions is subjective, this subjec-
tivity has far less consequences on the results than the fact of arbitrarily selecting
single probability distributions in the presence of such partial information. Actu-
ally, uncertainty might be reduced by imagining that expert can sometimes provide
the class of parametric distributions (e.g normal, lognormal...) without being able
to specify the parameters of probability model in an exact way (e.g. mean, standard
deviation, median ...) [32]. Frequentists use two-dimensional Monte-Carlo [9,26]



simulation to account for uncertainty associated with the parameters of a probabil-
ity model. This approach assumes that single precise probability distributions are
used to represent uncertainty related to the parameters of the probability model.
Because of its mathematical simplicity, 2MC simulation is routinely used and rec-
ommended as a convenient and natural approach. A two dimensional Monte-Carlo
simulation is a nesting of two ordinary Monte-Carlo simulations [25]. By nesting
one Monte-Carlo simulation within another, experts hope to discover how variabil-
ity and imprecision interact and produce uncertain outputs. Given the imprecise
nature of information regarding parameters, it sounds more faithfully to use inter-
valsor confidenceintervalsfor representing parameter knowledge, than full-fledged
probability distributions (especially considering the assumed non-stochastic nature
of parameter distributions). In order to represent a class of probability distributions
tainted with imprecision, it seems natural to combine Monte-Carlo technique [25]
with the extension principle of fuzzy set theory [15]. This process generates afuzzy
random variable [34]. Thiskind of approach has already received some attentionin
the literature for computing output of functions with probabilistic and fuzzy argu-
ments [2,24,32], or handling fuzzy parametric models[29,32].

Section 2 is dedicated to the basic concepts of probability-boxes, possibility theory,
belief functions and fuzzy random variablesin connection with imprecise probabil-
ities. The main disadvantages and limitations of the two-dimensional Monte-Carlo
simulation are discussed in Section 4. Next, we present how the framework of fuzzy
random variables allows to represent the class of probability distributions with im-
precise parameters faithfully. Our approach is different from those proposed by
Kentel et a. [29] and Moller et a. [32] in the sense where we process fuzzy ran-
dom variables in the belief function framework. Lastly, in Section 5 we compare
the fuzzy random variable approach with the two-dimensional Monte-Carlo simu-
lation on an academic example.

2 Representing imprecise probabilities

Let (Q,A) be a measurable space where A is an algebra of measurable subsets of
Q. Let P be a set of probability measures on (Q2,,4). Such a family may be natural
to consider if a parametric probabilistic model is used but the parameters such as
the mean value or the variance areill-known (for instance they liein aninterval). It
induces upper and lower probability functions respectively defined by:

P(A) = supP(A) and P(A) = inf P(A) YACQ.
PeP €

The upper probability of A isequal to one minusthe lower probability of the com-

plement of A. So, the lower probability isameasure of how much family P supports

event A and upper probability of A reflects the lack of information against A. Ina



subjectivist tradition, the lower probability for an event A can beinterpreted, in ac-
cordance with the so-called betting method, as the maximum price that one would
be willing to pay for the gamble that wins 1 unit of utility if A occurs and nothing
otherwise. The probability family

P(P < P) = {P,YA C Q,P(A) < P(A) < P(A)}

induced from upper and lower probability induced from P, is generally a proper
superset of P. It is clear that representing and reasoning with a family of proba-
bilities may be very complex. In the following we consider four frameworks for
representing specia sets of probability functions, which are more convenient for a
practical handling.

2.1 Probability boxes

Let X : Q — R bearandom variable and Fyx : R — [0, 1] be its associated cumu-
lative distribution function defined by Fx(x) = P(X € (-, X]), ¥X € R. Suppose
Fx and F, are nondecreasing functions from the real line R into [0, 1] such that
E (X) < Fx(x) < Fx(X), ¥x € R. Theinterval [EX,EX] iscalled a"probability box"
or "p-box" [22]. It encodes the class of probability measures whose cumulative dis-
tribution functions Fy are restricted by the bounding pair of cumulative distribution
functions F,, and Fx.

A p-box can be induced from the probability family P by:

Fy(X) = P((=e0,x]) and Fx(x) = P((-e0,X]), V¥X€R.
Let P(E, < Fx) be the probability family containing P and defined by
P(E, < Fx) = {P,¥x e R, E,(X) < F(x) < Fx(x)}.

Generally P(F, < Fy) strictly contains P(P. < P), hence also the set P it is built
from. The probability box [F,, Fx] provides a bracketing of someill-known cumu-

lative distribution function and the gap between F, and F reflects the incomplete
nature of the knowledge, thus picturing the extent of what isignored.

2.2 Numerical possibility theory

Possibility theory [16] is relevant to represent consonant imprecise knowledge. A
possibility distribution on a state space S can model imprecise information regard-
ing afixed unknown parameter and it can also serve as an approximate representa-
tion of incomplete observation of arandom variable. The basic notion is the possi-
bility distribution, denoted r, an upper semi-continuous mapping from thereal line



to the unit interval. A possibility distribution describes the more or less plausible
values of some uncertain variable X. Possibility theory provides two functions (the
possibility IT and the necessity N) allowing to evaluate the confidence that we can
have in the assertion: the value of areal variable X doesliewithinacertaininterval.
The normalized measure of possibility IT (respectively necessity N) isdefined from
the possibility distributionz : S — [0, 1] such that sup, s 7(x) = 1 asfollows:

II(A) = supn(x), N(A) =1-TI(A) = !(Q/f\ (1-n(x)).

XeA

The following basic properties hold:
I1(A U B) = max(T1(A), I1(B)), N(ANnB)=min(N(A),N(B)) VA,BCR.

A possibility distribution 7 is the membership function ur of a normalized fuzzy
set F. Faced with information expressing that an unknown quantity is restricted by
afuzzy set F, theidentity 7(s) = ur(s) meansthat if t isthe membership degreeof s
inF, tisinterpreted asthe possibility degree that the value of thisunknown quantity
is s. In the following the a-cut of a fuzzy subset F of aset S isthe subset F,, =
{s, ur(s) = a}. A numerical possibility distribution may also be viewed as a nested
family of subsets, which are the a-cuts 7. The degree of certainty that F, contains
XisN(F,) (= 1-«aif S = R and x is continuous). Conversely, suppose a nested
that A; contains X is available. Provided that 2; isinterpreted as alower bound on
N(A;) and x is chosen as the least specific possibility distribution satisfying these
inequalities[18], thisis equivalent to knowing the possibility distribution

n(X) = ir:qi“r!]{l— Ai, X & A}

with convention 7(x) = 1in case x € A; for al i.We can interpret any pair of dual
functions necessity/possibility [N, IT] asupper and lower probabilitiesinduced from
specific probability families.

e Let r beapossibility distribution inducing a pair of functions [N, IT]. We define
the probability family P(r) = {P, YA measurable, N(A) < P(A)} = {P, YA mea-
surable, P(A) < TI(A)}. In this case, SUPpcqp() P(A) = TI(A) and infpepr P(A) =
N(A) (see[11,18]) hold. In other words, the family P(r) is entirely determined
by the probability intervalsit generates.

e Suppose pairs (interval A;, necessity weight 4;) supplied by an expert are inter-
preted as stating that the probability P(A;) is at least equal to A; where A; isa
measurabl e set. We define the probability family asfollows: P(r) = {P, YA, 4; <
P(Aj)}. We thus know that P = IT and P = N (see [18], and in the infinite case
[11]).

We can define a particular p-box [E,, Fx] from the possibility distribution 7 such
that F,(X) = N((—o0, x]) and Fx(x) = TI((—o0, X]), ¥x € R. But this p-box con-



tains many more probability functions than P(r) (see [3] for more details about the
compared expressivity of a p-box and a possibility distribution).

2.3 Belief functions induced from random sets

A random set on afinite set S is defined by a mass assignment v which is a proba-
bility distribution on the power set of S. We assume that v assigns a positive mass
only to afinite family of subsets of S called the set F of focal subsets. Generally
v(0) = 0and Y .5 v(E) = 1. In the context of this paper, we consider disjunctive
random sets, whose focal elements E contain mutually exclusive elements. A focal
element represents imprecise information about some quantity X such that all that
is known about X isthat it liesin E. The weight v(E) is then the probability that
the state of information is of the form X € E (and not more precise). A random set
induces set functions called plausibility and belief measures respectively denoted
by Pl and Bel, and defined by Shafer [36] asfollows:

Bel(A) = Z v(E) and PI(A) = Z v(E) = 1 — Bel(A%).

E,ECA E.ENA%£0

Bel(A) gathers the imprecise evidence that asserts A ; PI(A) gathers the imprecise
evidence that does not contradict A.

This approach initiated by Shafer [36] and further elaborated by Smets [38] in a
different context allows imprecision and variability to be treated separately within
a single framework. Indeed, it provides mathematical tools to process informa
tion that is at the same time of random and imprecise nature. These set-functions
can be interpreted as families of probability measures, even if this view does not
match the original motivation of Shafer [36] and Smets [38] for belief functions.
A mass distribution v may encode the probability family P(v) = {P € P/VA C Q,
Bel(A) < P(A)} ={P € P/VA C Q, P(A) < PI(A)}. Thisfamily generates |ower and
upper probability functions that coincide with the belief and plausibility functions,
i.e.
PI(A) = sup P(A), Bel(A) = inf P(A)
PeP(v) PeP()

Originally, such imprecise probabilities were introduced by Dempster [12], who
considered a probability space and a set-valued mapping I' from a probability space
(Q, A,P)toS yielding arandom set. For simplicity assumeVw € Q, I'(w) # 0. Let
X : Q — S be ameasurable selection from I' such that Yw € Q, X(w) € I'(w)
and Py be its associated probability measure such that Py (A) = P(X~1(A)). Define
upper and lower probabilities as follows:

P(A) = sup Px(A) P(A) = xie?fr) Px(A)

Xes(I)



where s(I') is the set of measurable selections of I'. For all measurable subsets
AcQ,wehave AC AC Awhere A ={we QT(w) CAlandA = {w € Q,T(w) N
A # 0}. By defining the mass distribution vr on Q by vr(E) = P({w,'(w) = E}).
We thusretrieve belief and plausibility functions as follows:

P(A) = P(A) = PIr(A) = > wr(E)

ENA+0

P(A) = P(A) = PIr(A) = > r(E)

ECA
In the continuous case, when S = R, continuous belief functions can be defined
letting (2, A, P) be the unit interval equipped with the Lebesgue measure, and I'(w)
be aBorel-measurabl e subset of reals (e.g. aninterval) (see Smetg[37]). Then again,
PI(A) = P(I'(w) N A # 0) and Bel(A) = P(I'(w) < A).We may extract upper Fx and
lower F, cumulative distribution functions such that, ¥x € R F,(x) < F(x) <
Fx(x) with:

Fx(X) = PI(X € (-o0,X]) and F,(x) = Bel(X € (—o0, X]).

Thisisaparticular p-box. But this p-box contains many more probability functions
than P(v). Interestingly, a p-box isaspecia case of continuous belief function (see

for instance [14]) with focal sets in the form of intervals ([Eil(a),E;(l(a)]),a €
—1
(0, 1. v([Fx (pi), EX'(P)]) = pi — pia

3 Fuzzy random variables

A fuzzy random variable associates a fuzzy set to each possible result of arandom
experiment. In the literature, fuzzy random variables can be interpreted in different
ways depending on the context of the study. Originally, a fuzzy random variable
T assigns a (precise) probability to each possible (fuzzy) image of T (for instance
the membership function of alinguistic term in aterm scale), by considering it as
a “classical” measurable mapping [34]. There are variants according to the type
of metrics chosen on the set of measurable membership functions [30]. Below, we
are going to briefly describe two other interpretations, The first one views a fuzzy
random variable as apossibility distribution over classical random variables (named
the 2d order model [6,8]). In the other one, afuzzy random variable corresponds to
afamily of probability measures constructed from a probability space and a fuzzy
relation between this space and another space, and the fuzzy relation is interpreted
asafamily of conditional probabilities. The fuzzy random variable is then equated
to aset of probability functions[1]. In both views, the membership function u g of a
fuzzy set F isinterpreted as apossibility distribution 7 associated to some unknown
guantity.



3.1 Second order possibility measure induced by a fuzzy random variable

Let (O, A, P) be a probability space. Let F (R) be the set of measurable fuzzy sub-
setsof R. Here, we briefly recall how a second-order possibility measure on the set
of classical random variables, induced by a fuzzy random variable, is constructed
[6,8]. For instance, consider the random variable T = f(X,Y), where f : R2 - R
is a known mapping, X arandom variable Q — R and Y is another imprecisely
known random variable described by a fuzzy set associated to the membership
function ug : R — [0, 1]. Hence, it defines a constant mapping, Y : Q — F(R) that
assigns, to every element of Q, the same fuzzy set Y. That means for each w € Q
and eachy € R, uy(y) represents the possibility grade that Y (w) coincides withy.
Then, T = f(X,Y) isafuzzy random variable, defined by the extension principle,
by

Hiw® = Sp (). ()
t=f(X(w).y)

Let [T()], = f(X(w),Ya) = {f(X(w),y) : y € Y,}. The fuzzy random variable
T : Q - F(R) represents the following imprecise information about the random
variable T : Q — R: for each @ > 0, the probability P(T (w) € [T (w)],) is greater
than or equal to 1—«. Thisisin agreement with the fact that the possibility distribu-
tion associated with T is equivalent to stating that for each cut [T (w)]., the degree
of necessity has a lower bound: N([T (w)],) = 1 — «. Under thisinterpretation we
can say that, for each confidence level 1 — «, the probability distribution associated
with T belongsto the set P+, = {Pr, T e s(T,)}, where s(T,) isthe set of selections
from the random set T, i.e 5(T.) = {T : Q » R, T(w) € [T (w)].}. Thus, given an
arbitrary event A of the final space, the probability Pt (A) belongs to the set

Pz, (A) = (Pr(A), T € s(To)) ()

with confidence level 1 — a. In [6] the fuzzy set P+ of probability functions, with
membership function given by the equation:

15, (Q) = supfa € [0,1], Q € Pr), ¥ Q

is viewed as an impreci se representation of the probability measure Pr. Infact, us.
is a possibility distribution on the space of probability functions. According to the
availaple information, the quantity us_(Q) represents the possibility degree that Q
coincides with the true probability measure associated with T, P+. On the other
hand, for each event A, the fuzzy subset of the unit interval Bz (A), defined as

5:o(P) = Supla € [0,1]/p € Py, (A)). ¥ p € [0.1],

represents our imprecise information about the quantity Pt (A) = P(T € A). Thus,
the value up.(x)(p) represents the degree of possibility that the “true” degree of
probability P+ (A) is p. De Cooman recently proposed a behavioral interpretation
of such fuzzy probabilities[10].



The possibility measure P; is a “second order possibility measure”. We use this
term because it is a possibility distribution defined over a set of probability mea-
sures [40]. A second order possibility measure is associated with a set of (meta)
probability measures, each of them defined, as well, over a set of probability mea-
sures. Thus, a second order possibility measure allows us to state sentences like
“the probability that the true probability of the event A is 0.5 ranges between 0.4
and 0.7". On the other hand, it is easily checked that the set of probability functions
considered in equation (2) yields a plausibility function :

Pl,(A) = P(w € Q,[T (w)]. N A # 0})
and lower bounded by a belief function:
Bel,(A) = P({w € Q, [T ()] € A}).

Theinterval [Bel,(A), Pl,(A)] isthe a-cut of the fuzzy probability P+(A).

3.2 The order 1 model of fuzzy random variables

The second order model ( of the last subsection) associates, to each event (crisp sub-
set of the final space), afuzzy set in the unit interval. Here we assume a probability
space (Q2, A, P) and an ill-known conditional probability function P(t|w), relating
gpaces Q and therange R of avariable T. It is supposed that the knowledge about
P(t|w) consists of a conditional possibility distribution 7(t|w), such that, when w is
fixed I1(Alw) > P(Alw). It induces the probability family #1 on the output space,
defined by ([1,5]):

Py = (Pr.P1(A) = fQ P(AIW)dP(w). TI(Alw) > P(Alw))

For instance, consider again the random variable T = f(X,Y), where f : R? - Riis
aknown mapping, X arandomvariable Q — R. Now, Y € R isanother, imprecisely
known, quantity that deterministically affects the relation between X and T viathe
function f. The information about Y is given by means of a possibility distribution
wi. T (w) = f(X(w),Y) defined by equation (1) is now interpreted as a conditional
possibility distribution z(t|w). According to Section 2.2, for each w € Q the set of
probability measures {P(-|w), P([T (w)].lw) > 1 - @,Ya > 0} coincides with the
set of probability measures dominated by the possibility measure I(-|w). Thisview
comes down to considering the fuzzy random variable assigning to each realization
w the fuzzy set 7(-|w), as a standard random set that assigns to each pair (w, @) the
set [T (w)],, with amass density de x dP(w) (it is acontinuous belief function in the
spirit of Smets[37]). The plausibility measure of ameasurable set (e.g. an interval)



A, describing our information about T isthus of the form :

Plt(A) = sup{Pt(A), Pt e P1} = jg;j; o QdadP(w) = fH(AIw)dP(a)).
w)|o# Q (3)

Similarly for the lower bound:

Bel; (A) = inf{P1(A), Pt € P1} = ff~ dadP(w) = f N(Alw)dP(w). (4)
Q J[T(w)].CA Q

We can interpret the values Pl (A) and Belr (A) asthe most precise bounds (the least
upper onefor Pl; (A), the greatest lower one for Bely (A)) for the “true” probability
of A, according to the available information [6]. There exists a strong relationship
between these plausibility and belief functions and the fuzzy set P+(A) with cuts
[Bel,(A), Pl,(A)] defined in Section 3.1. Equating the fuzzy sets T (w) with possi-
bility distributions z(-|w), the following result holds:

[Belr (A), Ply(A)] = [ fo ' Bel,(A)da, fo ' Pl (A)dal],

In other words, the interval [Belr (A), Pt (A)] coincides with the “mean value” [19]
and the average level [35] of the fuzzy set P+ (A) [1].

3.3 Discretized encoding of probability, possibility, p-boxes and fuzzy random
variables as random sets

Belief functions [12,36] encompass possibility, probability, probability-boxes the-
ories and the previous subsection shows it may as well account of a special view of
fuzzy random variables. Hence, we can encode probability distributions p, p-boxes
[Ey. Fy], possibility distributions s and fuzzy random variables X. Continuous rep-
resentations on thereal linewill be approximated in a discrete framework, by using
mass distribution v, for making practical computations.

e Let X bearea random variable. In the discrete case, focal elements are single-
tons ({xj}); and the mass distribution v is defined by v({xj}) = P(X = x;). In the
continuous case, we define focal intervals ((x, Xi11])i by discretizing probability
density into m intervals and a mass distribution v is defined by v((Xi, Xi;1]) =
P(X € (X, Xjs1]), Yi=1...m.

e Let X be anill-known random variable described by a possibility distribution 7.
Focal sets correspond to the a-cuts

Ej={Xn(X) >}, Vj=1.q

of possibility distribution 7 associated with X such that a1 = 1 > aj > aj;1 >
ag > 0and Ej € Ej,1. Mass distribution v is defined by v(E;) = aj — aji1, V
j=1...qwhereagy,1 = 0.

10



e Let X be an ill-defined random variable represented by a p-box [EX,EX]. By
putting

Ex}(p) = min{x[Ey(x) > p}, ¥ p € [0,1] ©)

—1 A —

Fx (p) = min{x|Fx(x) > p}, ¥ p € [0, 1] (6)
we can choose focal sets of the form ([E;l(pi), Ex (pi)])i and the mass distribu-
tionv such that v([E;(l(pi),E;(l(pi)]) = pi—pi-1 Wherel > p; > pi-1 > 0. Kriegler
et a. [31] have shown that this p-box isrepresentable by a belief function, so that
P(Ey < Fx) = P(v). Thisresult is generalised to cumulative distributions on any
finite ordered set by Destercke et a. [13].

e Let X be afuzzy random variable described by a finite set of possibility distri-

butions (7%, ..., 7") with respective probability (pi,..., pn). Using the order 1
view developed in the previous sections, focal sets of possibility distributions

Ej={Xr'(X) > )}, j=1,...,0,i=1,...,n

witha; = 1 > aj > @j1 > aq > 0. Mass distribution v is defined by v(niaj) =
(@j—aja) xp,foradl j=1,...,qandi = 1,...,n where ay,; = 0. Besides,
we can observe that the induced plausibility (resp. belief) of a measurable set A
coincides with the arithmetic mean of the possibility (resp. necessity) measures
IT' (weighted by the probabilities of the different values of X,) i.e. [2]:

m

PR = > vg=), D, Pivi= ) Rll(A), ™

(i,j):AmE};t@ i=1 j:AnE};&@ i=1
m m .
Bel(A) = >, vij= pivi = ). PIN'(A). ®
(i.i):EjcA i=1 j:EicA i1

4 Representation of parametric probabilistic models tainted with impreci-
sion

In uncertainty analysis, it is usual to represent knowledge pertaining to uncertain
quantitiesby parametric probabilistic models P,. But oneisnot always ableto spec-
ify the values of parameters 6 € ® precisely. Indeed, based on their experience or
their knowledge about random phenomenon, experts can provide a class of distri-
butions having, for instance, the same shape but differing in central tendency. They
can aso provide a class of distributions being from the same distribution family
(e.g. normal distribution N (u, o)) with the same mean (e.g. u) but different vari-
ances (e.g. o € [0, 7). That means that experts may be able to provide an interval
regarding possible values for a given parameter (e.g. o € [0, o), but also to ex-
press preferences within thisinterval by defining confidence intervals (e.g. [o, 7],

11



is a confidence interval of o with alevel 1-a). Frequentists use two-dimensional
Monte-Carlo (2MC) simulation to account for uncertainty (imprecision) associated
with the parameters of probability model. Because of its mathematical simplicity,
this approach is now widely used and recommended [27,39]. It seems clear that
the two-dimensional Monte-Carlo method faces the same difficulties, in particu-
lar regarding the choice of the meta-probability function that represents knowledge
about the parameter of probability model.

4.1 The classical approach: the two-dimensional Monte-Carlo method

A two-dimensional Monte-Carlo simulation [9] isanesting of two ordinary Monte-
Carlo simulations [25]. This subsection presents its basic steps and discusses the
underlying assumptions.

4.1.1 Presentation

Let X : Q — R" be a random vector and consider the random variable T =
f()?), where f : R" — R is a known mapping. Assume that random variables
(Xq,...,Xp) are represented by parametric probabilistic models (P;f_i)i:l,,,.n. More-

over, the vector parameters (64, . . ., ) of the probability models P, P are
themselves represented by single probability distributions P, . . ., Pn.l For instznslnce,
X = (X1, X2) © N(u1, 1) - N(iz, 072). Then 8, = (uq, o) has distribution P; =
U([ay, az]) - U([as, a4]), F2 = (2, 072) has distribution P, = U[as, ae]) - U([az, ag]),
where al a; are precise values, U means “uniform distribution”. The 2MC method
issummarized as follows[9]:

(1) Generatean n-realization (6., . . ., 6,) according to the probability distributions
P1,...,Pn and in accordance with dependencies (if known).

(2) Generate m redizations (xJ(61), . . ., X(6h))j=1...m according to the probabili-
ties P;fl, cee, P;f", respecting dependencies (if known), based on the parameter
sdlection 4y, . .., .
domvariableT.

(4) Return to step 1 until a collection of n possible probability distribution func-
tions (each corresponding to a choice of parameters) is obtained (see Figure
1).

Typically, the first step of the simulation represents the expert’s uncertainty about
the parameters that should be used to specify the probabilities about X for step
2. The second step of the simulation represents natural variability of the underly-
ing physical and biological processes. The two-dimensional Monte-Carlo method
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Fig. 1. Sample of 10 cumulative probability distributions resulting from 2MC sim-
ulation where T = X x Y with X=Triangular(3,M,8), ¥ = N(u,0) and
(M, i, ) = (U[4,6]), U([7.5,10]), U([1, 2])) by assuming independence between X and
Y, between M and (u, o) and strong independence between u and o

hence provides a probability measure on the space of probability functions PQI
called a"meta-distribution".

4.1.2 Comments on the two-dimensional Monte-Carlo method
There are some limitationsto the use of the 2M C approach [20]:

(1) The two-dimensional Monte-Carlo simulation requires an expert to specify
one probability distribution function (it is often just postulated) for each un-
certain parameter of probability models and potential inter-parameter depen-
denciesaswell. Analysts already face real difficultiesto characterize the prob-
ability distribution function pertaining to the underlying physical and/or bio-
logical process, and one may wonder to what extent they can justify rele-
vant probability distributions regarding the parameters of probability models.
Not being ableto correctly specify probability distributions about parameters,
certain analysts tried three- and even four-dimensional Monte-Carlo simula-
tions. They need to provide higher-order probabilities modeling their state of
knowledge about the parameters of a mathematical model, but the higher the
order of the distribution, the less useful and meaningful such information is
for decision-making.

(2) The two-dimensional Monte-Carlo simulation provides a sample of cumula-
tive distribution functions (see Figure 1). It thus appears difficult to explain
this kind of outputs to managers and decision makers. Faced with these re-
sults, analysts conceal the complexity of the meta-distribution by represent-
ing the median or the mean distribution and the 100" and 100(1 — )" per-
centiles of the distributions considered as an envel ope of the meta-distribution
(see Figure 2 with @=0.05). This postprocessing may involve a great loss of
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Fig. 2. Median, lower and upper percentiles at 95% resulting from the post-processing of
Monte-Carlo 2D simulation.

Cumulative distribution

information and a misinterpretation of the results. Indeed, they might believe
that 100(1-2a)% of possible distributions represented by the meta-distribution
are within the envel ope defined by the 100a" and 100(1 — o)™ percentiles of
the distributions. This interpretation would be totally incorrect. For instance,
consider five possible cumulative distributions resulting from the 2MC simu-
lation, from which 20% on the left and on the right side are eliminated, and
perform the pointwise union of the remaining cumulative distributions (see the
20" and 80" percentiles of distributions in dotted line on Figure 3). Accord-
ing to Figure 3, we can observe that neither FX nor F2 (two of five possible
cumulative distributions) lie within the envel ope defined by the 20" and 80"
percentiles. It isthus not true that 60% of the possible distributionslie inside
bound limits. The same problem occurs, for instance, with the estimated aver-
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Fig. 3. Envelope defined by the 20" and 80" percentiles of distributions in the meta-distri-
bution.

age distribution because an ad hoc distribution might be obtained which might
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differ from any of the distributions of the meta-distribution.

(3) There are aso difficulties about parameter dependencies in the probability
model. Due to a lack of knowledge, analysts often assume independence be-
tween such parameters which can create impossible mathematical structures.
For example, consider an ill-known random variable X represented by a uni-
form distribution 2([a, b]) where (a, b) € [a,a] x [b,b]. Assumea <b < a <
b, itisthen possibleduring step 1 of the two dimensional Monte Carlo simula-
tion, under independence assumptions, to obtain (ay, bs) € [a, @] x [b, b] such
thata<b<b;<a<ax< b whichis meaningless. According to this exam-
ple, taking into account of dependencies between parametersis necessary, but
not so obvious.

Evenif the 2M C approach purposedly triesto separate variability from imprecision,
its first main problem is that it treats partial ignorance in the same way it treats
variability. Faced with imprecise information the two-dimensional Monte Carlo
simulation does not allow to handle this kind of knowledge more correctly than a
classical Monte-Carlo method. distinction between imprecision and variability. The
second main problem isthe treatment of uncertainty about parameter dependencies.
The same difficulties appear asin classica Monte Carlo methods[21,23].

4.2 The fuzzy random variable approach

In this subsection, we propose a practical uncertainty propagation model expressed
in terms of fuzzy random variables in order to represent a parametric probabilis-
tic model tainted with imprecision faithfully. Consider ill-known random variables
(Xq,..., X,) represented by a class of probability measures (P .. PX“) adT =

f(Xy,...,Xn), where f : R" — R is aknown mapping. For the %\ke of clarity in
notations, we consider 6; asavector for al i (i.e. for instance 6; = (u, o) whereu is
the mean and o the standard deviation). Assume that expert gives vector parameters
(61, ...,60) € [0, 611 x...X[6., 6] or confidenceintervals[g, 6], forali=1...n
with confidence level 1 — «. Let Q' :]0, 1[— R be a possible quantile function of
X; such that

Yu €]0, 1, Q;'(u) = inf{x|F)'(x) > u}

where F;f‘ defines a possible cumulative distribution function of X;. We decide that
Q' (0) is the smallest possible value for X; and Q,'(1) the greatest. The function
Q' can beinterpreted as the quasi-inverse function of F;(ii and if arandom variable
U is associated with uniform distribution on [0, 1], Q;'(U) then has cumulative
distribution function F .
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4.2.1 Interval case

Assume that random variables U4,. . .,U, follow uniform distributionson [0, 1] and
that expert provides parameters (61, . .., 6,) € [6,,61] X ... X [6.,6,]. By combin-
ing random sampling with interval anaysis, the distribution function becomes a
random set I't : Q — P(R) defined as follows:

F1(@) = [infi gy 7 FQEUL@)). ... QO (Un(w))),
0P, ety QUL . QU] Ve € @

If we perform arandom sampling

1 m
ul...ul

ulooum

of sizem fromauniform distribution on [0, 1] according to dependencies (if known),
the mass distribution v can be defined by

V(TN ego 7 FQEUD), ... QU (ul),
SUP; g g7y FQ(UD, -, QU = 2, Vj=1...m.
By construction, we haveYw € Q, T (w) € I't (w) and upper and lower bound prob-
abilities can be estimated by means of plausibility and belief functionsas defined in
Section 2.3. For example, consider thetrivial case T = f(X) where f : x — x and

X is associated with the normal distribution N (u, o) with (u, o) € [u, u] X [o, 7).
We thus define arandom set 't : Q — P(R) such that B

I't(w) = inf X (U(w)), su X (U(w
T( ) [(;1,(T)€[/_1,/_1]><[g,(_7] /1,0'( ( )) (ﬂ,(r)e[/_l,ﬁ?x[g,(_r] ;1,0'( ( ))]

where ij,(, U u+ 0 X Qpi(u) and Qos isanumerical approximation of the
inverse normal distribution N (0, 1). That means we have

I't(w) = [min(,u_ + 0 X Z(w),,L_z + 0 X Z(w)),max(u + o X Z(w), 1 + 7 X Z(w))]
with Z(w) = Qo1(U(w)) (i.e. Z = N(0, 1)).

4.2.2 Fuzzy interval case

In this case, experts provide nested intervals[,, 6], for al i = 1...n with certainty
levels 1 — . Then, for each value of «, f(X4,..., X,) becomes arandom set I'! :
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Q — P(R) defined for each confidence level 1 — a by

I3 (@) = [Inf; g0, F(Q (Ur(@)), - ., Q5" (Un(w))),
SUP,gegg . F(Qor(Un(@)), - - Q' (Un(@))], Y € Q.

This approach assumes a strong dependence between information sources pertain-
ing to parameters (6., . . ., 6,), i.e. on the choice of the confidence level. This sug-
geststhat if the sourceinforming 6, israther precise then the oneinforming on other
parameters is also precise. We thus define a fuzzy random variable T : Q — F(R)
from the above described random simulation process:

Ui () (1) = supla € [0, 1]t € I ()}, Yw e Q

where the a-cuts of possibility distribution T (w) correspond to the random set
I'T(w). According to Section 3.1, the fuzzy random variable T induces a fuzzy set
P+ of probability functionsthat in turn induces fuzzy probabilities P (A) of events
A, following the definitionsin Section 3.1. As previously, if we perform a random
sampling (Ug, ..., Un)

1 m
Ul...U1

ul ..oum
the fuzzy random variable T takes the possibility distribution values T+, ..., Tm
with corresponding probabilities 1/m. According to Section 3.2, we can estimate
the lower and upper probabilities [Bel, PI] for al measurable events A ¢ R such
that:

PITeA) = . x sup i (t) and Bel(T € A) = L inf (1 - s, (1)

U U
T teA =l
For example, consider therandom variable T = f(X) where f : x +— x and X isrep-
resented by a normal distribution N (u, o) where u (resp. o) is represented by the
triangular possibility distribution with core {8.75} and support [7.5, 10] (resp. with
core {1.5} and support [1, 2]). Figure 4 shows lower and upper cumulative distri-
butions [Bel((—o, .]), PI((—oo, .]) (see Section 3.2) and allows to display the order
1 model induced from the fuzzy random T. Figure 5 presents lower and upper
cumulative distributions [Ea,fa]:[Bela((—oo, J), Pl,((=o,.])] for @ € {0,0.5,1}
(see Section 3.1) and alows to display the second order possibility model in-
duced from T. We can see that Bel((~0,.]) =~ 1/3(F,(.) + F,s(.) + F,(.)) and

PI((—c0,.]) = 1/3(Fo(.) + Fos() + Fa(.)).
Contrary to the previously shown postprocessing of the meta-distribution, obtained

by the two dimensional Monte Carlo simulation, the new model presents the advan-
tage of being able to estimate all measurable events. Compared to the method by
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fuzzy random variable sampling afuzzy random variable sampling

Moller and Beer [32] (section 4.1.1 p. 110 et seq.), the proposed approach prop-
agates imprecise and uncertain information exactly (up to discretization). While
these authors compute a fuzzy probability density and a fuzzy p-box via fuzzy
arithmetics, our method may compute the probability of any measurable event di-
rectly. Moreover, thismodel might be combined with other kinds of knowledge (see
Section 5).

5 [llustrative example combining heter ogeneous knowledge

Consider the previous mapping f : (X,y) — x x y and the ill-known random vari-
ables X and Y. In afirst step, an expert provides predictive intervals about the
quantity x defining a triangular possibility distribution 7 with core [4, 6] and sup-
port [3, 8]. The quantity y is represented by a normal distribution N (u, o) where
(u, ) € [7.5,10] x [1, 2] with the central values (8.75, 1.5) being estimated more
likely.

Arandomset I'y : Q — P(R) is then defined such that X(w) € I'x(w) where
I'x(w) corresponds to an a-cut of zx (i.e. ['(w) = my*(U(w)) where 3 (z) = {x €
R/nx(x) = z} and U = U([O,1])). A triangular possibility distribution 7# with
core {8.75} and support [7.5, 10] (resp. 77 with core {1.5} and support [1, 2]) is pro-
posed to represent the knowledge relative to i (resp. o). The fuzzy random variable
Y : Q — F(R) isthus defined such that

pro@ = spla 0.1z il QL U@). sp QL UW)

€M XMy (‘1,0‘)&7&;)(”({;

where U = U([0, 1]) and Q;’(, Is the inverse normal distribution N (u, o) deduced
by the numerical approximation of inverse normal distribution A'(0, 1). Assuming
stochastic independence between X and Y, we obtain a fuzzy random variable T :
Q — F(R), to represent the ill-known quantity t = f(x,y), which verifies

K7 (@) = supla € [0,2]| z € f o (Tx(w), [Y (@)])).
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Figure 6 shows the lower and upper cumulative distributions (Bel — ——, Pl o o o)

Proba(XxY<z)
1r e
0.8+
0.6
0.4r-
Pl, X fuzzy rand. var.
/
0.2+ , /’ - — —-Bel, X fuzzy rand. var.
7 S Pl, X fuzzy var.
. ‘ I - - —-Cr, X fuzzy var.
le) et - = L L L L )
(@] 20 40 60 80 100 120 140
XxXY

Fig. 6. Upper and lower cumulative probabilities of X x Y where X is either described by a
possibility or by a parametric probabilistic model.

induced from the fuzzy random variable T .

Assume now that expert upgrades his/her original knowledge pertaining to quan-
tity x and provides a class of distributionsfor X namely atriangular distribution of
support [3, 8] and mode M € [4, 6] with a central value {5} being estimated more
likely. In order to represent the knowledge associated with the mode M, we pro-
pose a triangular possibility distribution 7™ with core {5} and support [4, 6]. One
thus obtains the following class of possibility distributions:

Hr) @) = supla € [0,1]/ z € f o ([X(@)]a. [Y(w)]a)}
where X : Q — F(R) is defined by

i@ = suplar € [0.1]/ z € [ inf Q(U(w). sup Qi(U(@)])

Mer,

with QX istheinverse triangular cumulative distribution of support [3, 8] and mode
M. Figure 6 displayslower (Bel .—.—.) and upper (Pl —) probabilitiesinduced from
the new representation of X namely afuzzy random variable. The total uncertainty
about T can be characterized by the interval [E_l(O.OS),E‘1(0.95)] corresponding
to the lower 5% and the upper 95% percentiles of credibility and plausibility mea-
sures. According to Figure 6 we thus obtain the interval [14, 87.5] with the first
representation of X and [17.5, 76] in the second one, that is a reduction of 20% of
total uncertainty pertainingto T.

Compare now these results with the two-dimensional Monte Carlo approach. Fig-
ure 7 presents the cumulative distribution F; of X x Y, (resp F,) obtained with
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Fig. 7. First order probability and possibility measures

(M, o)=(Triang(4, 5, 6),U([7.5,8.75]), Triang(1,1.5,2)) (resp (M,u,07)=(U([4,6]),
U([7.5,10]), U([1,2]) assuming independence). To estimate F, (resp F,), we use
the Theorem of Total Probability namely: F(t) = P(X xY < t) = 3,; P((X,Y) =
(X, i) x P(X xY < t|(X,Y) = (X,Vi)). According to Figure 7, we can conclude
that F1(40) = 0.3 < F,(40) = 0.4 but these results must be used with caution.
Indeed, according to the nature of knowledge pertaining to (M, i, o), the estimated
probabilities F, et F, are subjective. If we want to remain faithful to available
information, we can only assert that the probability P(X x Y < 40) can poten-
tially reach PI(X x Y < 40) = 0.5 and we are certain that it is not lower than
Bel(X x Y <40) =0.2.

6 Conclusion

In uncertainty analysis, imprecise knowledge pertaining to uncertain quantitiesis
often modeled by parametric probabilistic models. When data are lacking, it is
hard to specify the value of their parameters precisely. Because of its mathemati-
cal and computational simplicity, many analysts routinely use and recommend the
two-dimensional Monte-Carlo simulation as a convenient approach to distinguish
imprecision from variability in uncertainty analysis. This paper has recalled the
main disadvantages and limits of the 2M C simulation, which may significantly un-
derestimate over-estimate uncertainty about the results, and can thus be misleading.
This paper suggests that parametric probabilistic models tainted with imprecision
can be processed within the framework of fuzzy random variables and we propose
a practical method based on combining Monte-Carlo simulation and interval anal-
ysis to represent them. When information about model parameter valuesis scarce,
our approach looks more faithful to available knowledge than the two-dimensional
Monte-Carlo method. There certainly might be situations, where statistical evi-
dence is richer, where the two-dimensional Monte-Carlo method could be more
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appropriate. Nevertheless, it isnot very easy to represent classes of probability dis-
tributionsin general cases. It isthusinteresting to further investigate the potential of
triangular or trapezoidal possibility distributionsin order to better control the prob-
ability families they encompass. The aim is to eliminate distributions that are not
in conformity with the natural process under study, and thus to reduce imprecision.
Because the presence of imprecision potentially generates two level s of dependency
[7], further research is also needed for representing knowledge about dependence.
Indeed, both the fuzzy random variable approach and the two-dimensional Monte-
Carlo simulation cannot easily account for dependence between variables and pa-
rameters. Borrowing from results on rank correlations [4], copulas [33] and the
general framework of upper and lower probabilities introduced by Couso et a. [7],
we may try to take into consideration some links or dependencies which could exist
between model parameters, and between the group of parameters and the group of
variables.
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