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Abstract

This paper discusses some models of Imprecise Probability Theory ob-
tained by propagating uncertainty in risk analysis when some input param-
eters are stochastic and perfectly observable, while others are either random
or deterministic, but the information about them is partial and is represented
by possibility distributions. Our knowledge about the probability of events
pertaining to the output of some function of interest from the risk analysis
model can be either represented by a fuzzy probability or by a probability
interval. It is shown that this interval is the average cut of the fuzzy proba-
bility of the event, thus legitimating the propagation method. Besides several
independence assumptions underlying the joint probability-possibility propa-
gation methods are discussed and illustrated by a motivating example.
Key-words: Random sets, possibility distributions, fuzzy random variables,
independence.

1 Introduction

It is now more and more widely acknowledged that all facets of uncertainty cannot
be captured by a single probability distribution. In risk analysis, the basic task



consists of exploiting the mathematical model of some phenomenon, so as to predict
its output when some inputs or parameters of the model are ill-known.

There are two basic reasons why such parameters or inputs cannot be assigned
precise values. First, some quantities are subject to intrinsic variability. For in-
stance, when predicting the effect of radioactivity pollution on the health of people,
it is clear that this effect depends on the particulars of individuals (their weight, for
instance), and such characteristics differ from one individual to another. Another
reason for uncertainty is the plain lack of knowledge about relevant parameters.
This lack of knowledge may stem from a partial lack of data, either because this
data is impossible to collect, or too expensive to collect, or because the measurement
devices have limited precision, or yet because only human experts can provide some
imprecise information.

Under such a situation, the traditional attitude was to represent each and every
ill-known parameter or input by means of probability distribution, for instance re-
sorting to Laplace principle of Insufficient Reason that prescribes the use of uniform
distributions in the absence of information. A more refined approach is the appeal
to subjective probability distributions, whereby additive degrees of belief are sup-
plied by experts via an exchangeable betting procedure. However, several scholars
have complained that predictions obtained under such assumptions were generally
not conservative and can only be attached a limited trust. Indeed, this purely prob-
abilistic view has the major defect of not taking the idea of lack of knowledge for
granted, and confuses it with the variability phenomenon. It seems that part of the
controversies between subjective and objective probabilities are due to this confu-
sion. Indeed, a variable quantity, if precisely observable, can faithfully be modeled
by a single probability distribution built from the observation of frequencies. How-
ever a fixed but ill-known quantity is more naturally modeled in terms of partial
lack of knowledge, for instance by means of confidence intervals, where confidence
levels are subjectively assessed.

More often than not, the uncertainty pervading parameters and inputs to a math-
ematical model is not of a single nature, namely, randomness as objective variability,
and incomplete information may coexist, especially due to the presence of several,
heterogeneous sources of knowledge, as for instance statistical data and expert opin-
ions. In the last thirty years, a number of uncertainty theories have emerged that
explicitly recognized incompleteness as a feature distinct from randomness. These
theories have proposed non additive set-functions which most of the time combine
set-valued and probabilistic representations. The most general setting is the one of
imprecise probabilities developed at length by Peter Walley[35]. In this theory, sets
of probability functions capture the notion of partial lack of probabilistic informa-
tion. Slightly more restrictive is the theory of evidence, inititiated by Dempster [9],
an approach relying on the notion of random set, each set-valued realization repre-
senting a plainly incomplete information item. The set-functions generated in this
mathematical framework were further exploited by Shafer [32] and Smets [33], within
a purely subjectivist, non-statistical approach to uncertain evidence. Even more re-



strictive is the framework of possibility theory, where pieces of information take the
form of fuzzy sets of possible values (Zadeh [39]), which can be interpreted as con-
sonant (nested) random sets. The merit of this framework lies it its great simplicity
which enables incomplete probabilistic information on the real line to be encoded in
the form of fuzzy intervals (Dubois and Prade [15, 13]). Possibility distributions can
also straightforwardly accommodate linguistic information on quantitative scales.
All such theories are coherent with each other, in the sense that they all represent
upper and lower probability bounds, thus proposing a common framework for ran-
domness and incomplete information. In this paper we are especially interested in
the joint uncertainty propagation through mathematical models involving quantities
respectively modeled by probability and possibility distributions. Different types of
uncertain quantities can be considered:

e 1. Random variables observed with total precision. This is the standard case
in probabilistic modelling, where only variability is present.

e 2. Deterministic parameters whose value is imprecisely known. Our informa-
tion about it can be modeled by:

— 2.a A random variable: when there is a random error in the measurement
of this deterministic value.

— 2.b A set: when the information about the parameter is the fact that it
lies in a given range.

— 2.c A fuzzy set: when the information about the parameter is linguistic
(like “the temperature is high”)

— 2.d A nested family of confidence intervals supplied by an expert along
with the corresponding levels of confidence. This case like the previous
one can be modeled by a possibility distribution.

— 2.e A random set: when the random error in the measurement goes along
with a systematic error taking the form of a perception interval.

e 3. Imprecisely observed random variables: in this case variability and incom-
pleteness come together because each observation in a statistic is set-valued
by lack of precision, due to a limitation of the observation device.

In cases 2.b, ¢, d, the natural tool for representing uncertainty is a possibility dis-
tribution - a binary one in case 2.b. The fact that cases 1 and 2.a can be modeled
by a probability distribution should not hide the fact that in case 2.a randomness
does not pertain to the observable, but to the measurement device. So, this case
could be captured more naturally by confidence intervals, enclosing the ill-known
fixed value, and derived from the statistical analysis of the observations. Case 2.e
extends this situation to when the measurement device produces set-valued (impre-
cise) observations of a fixed ill-known quantity. It is formally similar to case 3, but
in the latter, the observed quantity is subject to intrinsic variability.



If a mathematical model involves both random variables and imprecisely known
parameters, the predictions are likely to take the form of a fuzzy random variable,
which is a random variable taking fuzzy sets as values. Fuzzy random variables have
been introduced in slightly different settings (see [20] for an overview). The original
motivation stemmed from putting together random variables and linguistic variables
introduced by Zadeh [38]. However, a special case of a fuzzy random variable is a
random set, and not all fuzzy sets come from linguistic data, since for instance
possibility distributions are fuzzy sets that can encode nested families of confidence
intervals. Fuzzy random variables can be generated by computing a function whose
arguments involve random variables and possibilistic variables without referring to
linguistic information (Guyonnet et al. [21]).

The aim of this paper is to describe basic principles underlying the combination
of these three sources of information for the purpose of uncertainty propagation. An
important aspect of the discussion concerns the way to represent knowledge about
heterogeneous variables. We provide three different approaches to jointly propagate
probability distributions and possibility distributions, and compute upper and lower
probabilities of output events. Each one of these propagation models reflects a par-
ticular situation. We analyze the relations among these models, and relate them
with other models in the literature. Section 2 provides the necessary technical back-
ground. Section 3 presents an example that will illustrate how the same possibility
distribution can be interpreted differently in different situations. Its combination
with the same probability measure leads us to different propagation models. In
particular, the case when a random quantity is described by a possibility measure is
distinguished from the case when a deterministic (constant) value is ill-known. In
section 4, we consider the joint propagation of subjective possibilistic information
and well-observed random variables. We show that it generates a fuzzy random vari-
able in section 5, where we prove that the imprecise probability intervals of events
obtained in the previous section are average intervals of the fuzzy probabilities gen-
erated by a higher order approach. In section 6, we considered the joint propagation
of random and deterministic but ill-known quantities. Section 7 provides a more
general propagation framework. We end the paper with some concluding remarks
and open problems.

2 Preliminaries and notation

In this section, some definitions needed in the rest of the paper are recalled. A fuzzy
set F'is identified with a membership function from a finite set S to the unit interval.
The value F'(s) is the membership grade of element s in the fuzzy set. A fuzzy set
is not empty if its membership function is normalized, that is, F'(s) = 1 for some
element s. In this paper, a fuzzy set is interpreted as a possibility distribution 7
associated to some unknown quantity x. Then 7(s) is interpreted as the possibility
that z = s. Throughout the paper, we will use the notation 7 to denote a possibility



distribution and —the membership function of- its associated fuzzy set. A random
set on S is defined by a mass assignment m which is a probability distribution on
the power set of S. We assume that m assigns a positive mass only to a finite
family of subsets of S called the set F of focal subsets. Generally m(()) = 0 and
Y pcgm(E) = 1. A random set induces set functions called plausibility and belief
measures, respectively denoted by Pl and Bel, and defined by Shafer [32] as follows.

PI(A) = 3 m(E); (1)

Bel(A) = Y m(E). (2)
ECA

These functions are dual to each other in the sense that P1(A) = 1 — Bel(A°),
where A€ denotes the complement of A in S. The possibility distribution induced
by a mass assignment m is defined as m,,(s) = Y p..cpm(E). It is the one-point
coverage function of the random set. Generally m cannot be recovered from m,,.
However if the set of focal sets F is nested, then the information conveyed by m
and 7, is the same. In this case the plausibility measure is called a possibility
measure and is denoted II, while the belief function is called a necessity measure
and is denoted N. In can be checked that

(AU B) = max(II(A),TI(B)); N(AN B) =min(N(A), N(B)) (3)
[[(4) = maxmn(s); N(A4) = ggg(l — Tm(s)) (4)
Suppose that 7(sy) = 1 > 7w(s2) > ... > 7(sy) > 7(Sps1) = 0, and E; =

{s1,...,s;}, then
m(E;) = m(s;) — m(sip1),Vi=1,...,n. (5)

These set-functions can be interpreted as families of probability measures, even if
this view does not match the original motivations of Shafer [32] and Smets [33] for
belief functions nor the ones of Zadeh [39] for possibility theory. Let P be a set
of probability measures on S. They induce upper and lower probability functions
respectively defined by

P*(A) = sup Q(A); P.(A) = inf Q(A) (6)

QeP QeP

The set of probability measures dominated by an upper probability P* is denoted
it by P(P*) = {Q, P*(A) > Q(A),VA C S}. If the upper probability measure P* is
generated by the family P, then P(P*) is generally a proper superset of P. In the
case of a plausibility function P1, the set P(P1) of probability functions dominated by
Pl is not empty and it generates lower and upper probability functions that coincide
with the belief and plausibility functions, i.e.:

PI(A) = s P(A); Bel(A) = inf P(A 7
(A) Peggl) (A) (A) pantoy (A) (7)



This view of belief and plausibility functions as lower and upper probabilities was
actually originally put forward by Dempster [9] using a set-valued mapping I' from
a probability space (€2, A, P) to S (yielding a random set), where A is an algebra of
measurable subsets of Q. For simplicity assume Yw € Q,T'(w) # 0. A selection from
I" is a function f from €2 to S such that Vw € Q, f(w) € I'(w). The set of measurable
selections from I' is denoted S(I'), and we write f € S(I') for short. Each selection
f vields a probability measure Py on S such that P;(A) = P(f'(A)). Now define
the following upper and lower probabilities:

P*(A) = sup P;(A); P(A) = inf P(A). 8
(A)= s #(A); Bu(A) = inf Pr(4) (8)

Let the upper and lower inverse images of subsets A C S be measurable subsets
A* and A, of Q defined by A* = {w,T'(w) N A # 0}, A, = {w,['(w) C A}. Define
the mass assignment mrp on S by mp(F) = P{w,I'(w) = E}). Then belief and
plausibility functions are retrieved as follows:

P*(A) = P(A*) =PIp(A) = ) mr(E); (9)
ENA#0

P,(A) = P(A,) = Belp(4) = Y mp(E); (10)
ECA

So, the approach by mass assignments, the one using selection functions, and the
one using multiple valued mappings are equivalent, as to the probability bounds they
induce on events.

A fuzzy random variable is a generalization of the Dempster setting [9] to when
the set-valued mapping I' is changed into a fuzzy set valued mapping ®. It is
supposed that Vw € €, ®(w) is a normalized fuzzy set of S. To each fuzzy subset
F of S with membership function 7 is attached a probability mass me(F) =
P({w, ®(w) = F}).

3 Joint Probability-Possibility propagation: A Mo-
tivating Example

As indicated in the introduction of this work, our final goal is to propose a frame-
work for the propagation of three types of information: precise information about
a variable, incomplete or linguistic information about a fixed parameter and incom-
plete information about a variable. A possibility distribution can model imprecise
information about a fixed unknown parameter and it can also serve as an approxi-
mate representation of incomplete observation of a random variable. Although the
same possibility distribution can describe two different types of information, the
way in which it must be combined with a probability distribution representing a



random variable will be different in each case. Let us provide a simple example that
illustrates these different situations.

A game consists of two steps. In the first step, we can choose one of two keys.
One of them opens a safe containing a reward worth 1000 euros. The other key does
not open anything. The second step is partially unknown. It leads either to a win
of at least 700 euros, else a possibly smaller reward of at least 50 euros. A more
exact evaluation cannot be given.

A random variable, X, represents the reward obtained in the first step. It takes
the values 0 or 1000, each of them with probability 0.5. More precisely, the results
of the key experiment are w;="“the chosen key opens the safe” and w, =“the chosen
key does not open the safe”, and the variable is X : {wj,ws} — IR defined as
X (wy) = 1000 and X (wq) = 0.

Let the quantity Y : Q — IR denote the reward in the second step. We can
model our knowledge about Y (w;) and Y (ws) by means of the necessity measure:

N((50,00)) =1, N((700,00)) = 0.5.
It contains the same information as the possibility distribution:
m(z) =11if 2 > 700, w(x) = 0.5, if 50 <z <700 and 7(x) = 0, if < 50.

Alternatively, it can be described by the random set with mass assignment m((50, 00)) =
0.5, m((700,00)) = 0.5.
Three possible scenarii articulate the second step with respect to the first one.

a) Whether the additional reward depends on the chosen key or not is unknown.

b) The additional reward is an (ill-known) constant g, independent from the
chosen key.

c¢) If the chosen key opens the safe, then an additional reward (in addition to the
1000 initial euros) worth more than 700 euros is received. If the chosen key
does not open the safe, there will be a consolation prize worth more than 50
euros.

In this paper, there is a given underlying probability space (€2, F, P). The random
variable X : 0 — IR is known. There is also some information about the second
reward Y. In each of the three cases, the incomplete information about Y is deter-
mined by the same possibility distribution, 7, but a different type of information is
given in each case. Yet, we do not know how Y : {2 — IR is defined. For each ele-
ment, in the initial space w, we can not determine each image, Y (w). Thus, we can
neither determine the probability distribution P x y), nor the probability measure
induced by T', Pr. But we shall represent the available information about them by
means of upper probability measures.

Let us try to evaluate the resulting knowledge on the total gain T' = X + Y
for each scenario. We shall see that the available information about the probability
distribution of 7" is different in each situation.



a) Here the link between X and Y is unknown. In particular, we don’t know
whether the second reward Y is a constant (independence) or not (total de-
pendence). However, we can model our knowledge about the value of this
reward by means of a (constant) fuzzy random variable Y : {wy,w,} — P(IR)
that associates to both results about the key the same fuzzy set Y = 7 (the
possibility distribution above), as we have got the same information about
Y (wy) and Y (wy). Here, we must combine the precise information about a
random variable (the value of the first reward) with an independent incom-
plete information about another one (the value of the second reward). If the
chosen key opens the safe, the total reward is, surely, greater than 1050 euros.
In addition, with probability at least 0.5, it is greater than 1700 euros. If the
key does not open the safe, the total reward is, surely, greater than 50 euros.
In addition it is greater than 700 euros with probability at least 0.5. In other
words, the possibility that T'(w;) =t is:

() =<1 ifte (1700, )

{ 0.5 if ¢ € (1050, 1700]
0 otherwise.

And the possibility that T'(wy) coincides with ¢ is

0.5 if t € (50, 700]
() =91 ifte (700,00)
0 otherwise.

For an arbitrary event A, the probability Pr(A) = P(T € A) is

P(T€A)=) P(Te€AX=u) P(X=ux),

=1

where P(T € A|X = z;) is dominated by IT(A) (the possibility measure as-
sociated to 7'.) Indeed, since the process driving the choice of the additional
reward is unknown, all that is known about 7" is of the form X + Y, = z; + Yo,
a fuzzy set with distribution 7*. Hence, P(T € A) is dominated by P}(A) =
Zle P(X = z;)TI'(A). In the example, P} is the possibility measure associ-
ated to the mass assignment

mq (1700, 00)) = my ((1050, 00)) = m, ((700,00)) = m, (50, 00)) = 1/4.

It can be obtained via Dempster’s rule applied to the probability Px attached
to X and the possibility 7 describing Y, followed by a projectionon T’ = X +Y.
This fact points out that even if the relation between X and Y is unknown,
the pieces of information about them are independent. P corresponds to the



possibility distribution

0 ifa<50

0.25 if = € (50,700]
To(z) =4 0.5 if 2 € (700, 1050]

0.75 if 2 € (1050, 1700]

1 if z > 1700.

In the second scenario, we have additional information about Y: we know that
it is a fixed number, i.e. Y(w;) = Y(ws) = 3. So, we have more information
about 7" than in the previous case: we know that the reward in the second step
is fixed (it does not depend on the chosen key.) Hence we have the following
information about the conditional probability values P(T =t|Y = y) :

o (0.5 if £ = 1000+ v,
PT=tYy =y =PX=t—y) = {0.5 1=y
On the other hand, we know that P(T' € A) = [ .., P(T € Aly)dQy (y) where
Qy <1I, that is:

P(T € A) < Pj(A) = sup {/>50 P(T e AlY =vy) de} .

Qy<II

This supremum coincides with the Choquet integral of ga(y) = P(T € A]Y =
y) with respect to II (where II represents the possibility measure associated to
the possibility distribution 7.) Hence, using the mass function induced by

P;({t}) = 0.5sup Px(t —y) + 0.5 sup Px(t —vy)

y>50 y>700

0.25 if ¢t € [50,700)
— Y05 ift>700
0 otherwise.
The set-function P that is obtained is not necessarily a possibility measure
(since sup, P (T = t) < 1), nor a belief function. In Section 5, we will show
that P is dominated by P (it represents more precise information), even if,

as shown in the table below, m,(t) = P([0,t]) = P([0,1]).

/ [0, 50) | [50, 700) | [700, 1050) | [1050, 1700) | > 1700
supy2700 ([ ,t] y) 0 0 0.5 0.5 1
P[0, ¢)) 0 0.25 0.50 0.75 1




c¢) In this situation the same random process is at work in the result of the two
steps. Now, the information about (X,Y) : Q — IR? should be represented
by the multi-valued map I'xy : {wi,ws} — P(R)? such that Ty y(w) =
{1000} x (700, 00) and I'xy (w2) = {0} x (50, 00). Each subset so obtained has
probability 0.5. All we know about (X,Y) is that it is a selection of I'yx y. We
easily observe that the marginal upper probability of I'xy on the Y axis is
the possibility measure associated to the possibility distribution 7 previously
considered. (All we know about the probability distribution of the second
reward, Py, is that it is dominated by this possibility measure.) In this third
scenario, we can thus represent the available information about T'= X +Y
by means of a random set I'y : 2 — Q(IR) given by:

L7 (wy) = 1000 + (700, 00) = (1700, 00) and I'r(ws) = (50, 00),

each with probability 0.5. (If the chosen key opens the safe, the total reward
is surely greater than 1700 euros. If it does not open it, we only know that
the total reward is greater than 50 euros.) In this case, our information about
the probability distribution of 7' can be represented by the basic assignment:

me ((1700,00)) = 1/2 = m. ((50,00)) .
The upper probability associated to m., P, is a possibility measure that

neither dominates nor is dominated by the first upper probability measure,
P

As we have stated at the beginning of the paper, our aim is to show how we should
combine a probability measure and a possibility measure in different settings. In the
following sections, we will describe in detail the three different propagation models
outlined in this example. We will show the relationships and the differences among
them. To conclude this section, let us observe that, in the first case (case (a)), we
can represent, in a natural way, the available information about the random variable
T by a fuzzy random variable. It takes several different “values” (images), each one
of them related to a value of X. (When X takes value z;, the image of the fuzzy
random variable is the fuzzy set 7). We can find in the literature different models to
represent the probabilistic information provided by a fuzzy random variable. In next
section we will show the relations between the plausibility measure here defined, Py,
and each of those models.

4 When the joint propagation of probability and
possibility yields a fuzzy random variable

This section systematizes the situation of scenario (a) in the motivating example.
Let us now consider a random variable X : {2 — IR, that takes the values 1, ..., x,,

10



with respective probabilities pi,...,p,. Let us assume that we know these values
and probabilities. Let us consider, on the other hand, another variable, Y : 2 — IR
imprecisely known. Let us suppose we have the same information about all its
images Y (w), and that it is given by means of “confidence sets”, which are cuts
of a fuzzy set Y;. Namely, we will assume that there is a family of nested sets,
Ay D ... D A,, with their respective confidence levels, 1 —a; > ... > 1 —«,. The
available information about Y (w) takes the form of lower probability bounds:

P(Aj)Zl—Oéj, j:17,q

These inequalities reflect information given by an expert: “the value Y (w) belongs
to the set A; with a confidence degree 1 — «;”. (For instance, if ¢ =1 and a3 =0
we should reflect that the expert only knows the range of Y, but anything else.)
Notice that we have “pure probabilistic” information about X, which may reflect a
phenomenon of variability and “possibilistic” information about Y because of the
nested structure of confidence sets. However, even if the knowledge Y, about Y
does not depend on a random phenomenon, the actual value of Y may fluctuate
according to the value of X. There is no information about this possible (objective)
dependence between X and Y, but the source of information about X (standard
statistical data) is independent from the source of information about Y (a human
expert).

Following [15] (finite universes) and [3, 4] (general setting), the set of probability
measures {P : P(A;) > 1—a;, Vj=1,...,q} coincides with the set of probability
measures that are dominated by the following possibility measure, II:

(0%} 1fAﬂA1=@
MA) =< a1 fANA#0, ANA =0, j=1,...,q—1 (11)
1 ifANA, #0.

This possibility measure is determined by the basic assignment m:
m(Aj) = l/j :Oéj+1 —Oéj, j = 0,...,q,

where Ay =IR2D A, D... 04, 12A;and 0=y <a; <... <oy < g1 =1

Therefore, for variable X, there is randomness but total precision, while the infor-
mation regarding Y is incomplete: especially Y is possibly tainted with variability,
but its relationship to X is just unknown.

Let us now consider the random variable 7' = f(X,Y)), where f : R* — IR is
a known mapping. Now we need to represent the available information about the
probability measure induced by 7' : €2 — IR. We easily observe that, when X takes
the value z; (i € {1,...,m}), T is in the set T;; = f(x;, A;) = {f(zi,y) 1 y € A;}
with a confidence degree 1 — ;. Recalling again the results from [4] and [15], we
observe that, for each i € {1,...,m}, the set of probability measures {P : P(T;;) >
1—a;, Vj=1,...,q} coincides with the set of probability measures dominated by

11



the possibility measure II given by:

' (05] lfAmT’ﬂ:@
HZ(A): Qi1 lfAﬂﬂj#@7Amﬂ(]+l):@7.7:177q_1
1 if ANT;, # 0.

This possibility measure is related to II as follows. Its possibility distribution, 7,
is obtained from 7 (the possibility distribution of IT) by the extension principle of
fuzzy set theory [38]:
()= sup 7(y), Vt€ R (12)
yifziy)=t
It is the membership function of the fuzzy set f(z;, f/o) We also observe that IT¢ is
determined by the mass assignment m;:

mz(R) =V = Oq, mz(T’l]) =Vj= 0511 _aj7j = 1a"'7q_17 mz(j—’zq) =V, = 1_Oéq-

Thus, according to the probability distribution of X and our information about
Yo, the probability measure of T' is imprecisely determined by means of the basic
assignment mp that assigns the probability mass v;; = p; v; to each focal T;; (Tj =
IR,V i.) The associated plausibility and belief functions are given by the expressions:

Plp(A)= Y vy, VA Belp(A) = > vy, VA

(4,3):ANT; ;70 (4,3):T3; CA

This view comes down to considering the random fuzzy set, assigning to each realiza-
tion x; the fuzzy set 7', as a standard random set, using a two-stepped procedure:
first select a fuzzy set with membership function 7* with probability p; and then
select the a-cut A; of m* with probability v;. Besides, we can observe that the plau-
sibility measure describing our information about 7' coincides with the arithmetic
mean of the possibility measures II° (weighted by the probabilities of the different
values of X)) i.e.:

m

(i,4): ANT;; 0 i=1 j:ANT};#0
Similarly the belief function Bely coincides with the arithmetic mean of the
necessity measures N* (similarly weighted) i.e.:

m

(z,j)ngA =1 jlegA

These expressions are special cases of definitions independently proposed by
Dubois and Prade [11] in the mid-eighties, Yen [34] in the early nineties for fuzzy
events. Taking into account the properties of possibility measures as upper envelopes

12



of sets of probability measures (see [15], for finite universes and [3, 4, 24], for the
general case), we get the equalities:

Plr(A) :sup{zm:piPi(A) . P, e P(ITY), izl,...,m}. (15)

Belr(A) = inf {ipiPi(A) P e P, i=1,... ,m} . (16)

These equations suggest another probabilistic interpretation of these plausibility
and belief functions, laid bare in case (a) of the example: let us consider an arbitrary
event A. According to our information about Yj, if we observe the value x; for the
random variable X, then the probability P(T" € A|X = z;) that T takes a value in
A is less than or equal to IT(A), and at least equal to N*(A). In other words,

Ni(A) < P(T € A|X = z;) = P(A) < IL,(A).

On the other hand, the probability that X takes each value x; is p;. Thus, according
to the Theorem of Total Probability, all we know about the quantity Pr(A) = P(T €
A) is that it can be expressed as Y .-, p; P;,(A), where P, is a probability measure
dominated by II;, for each i. Hence, according to equation (15), we can interpret
the values Plr(A) and Bely(A) as the most precise bounds (the smallest for Ply(A),
the largest for Belp(A)) for the “true” probability of A, according to the available
information.

5 Relationship with existing approaches to fuzzy
random variables

At the end of Section 3, we have remarked that a fuzzy random variable could
be used to represent our imprecise knowledge about the random variable 7. It
was patent in the previous section since the resulting knowledge about 7' = f(X,Y)
could be obtained by generating the fuzzy sets f(z;, f/) by picking the x;’s randomly,
while Y is a constant fuzzy set, as done by Guyonnet et al. [21]. A fuzzy random
variable admits as many interpretations as there are interpretations of fuzzy sets
in the literature (see [16] for a detailed description.) Next, we are going to briefly
review two of these interpretations. According to each one of them, the information
provided by the fuzzy random variable will be summarized in a specific way. Thus,
we will see how two different interpretations can lead us to a classical model or an
order 2 imprecise model, respectively. Our intention in this subsection is to compare
the plausibility-belief model constructed in Section 4 with these two interpretations.
As indicated in the introduction, a fuzzy random variable associates a fuzzy set, to
each possible result of a random experiment. Different definitions of fuzzy random
variables (see for instance [10], [22], [26] or [30]) differ in the way the classical
measurability condition of random variables is transferred to this context.
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5.1 The imprecise higher order uncertainty setting

In our particular problem, the fuzzy random variable is constructed specifically as
follows. Let (£2,.4, P) be a probability space. On the one hand, let us consider a ran-
dom variable, X : Q — IR (X represents the observation of a certain characteristic
of each element of ). Let us consider, on the other hand, another random variable
Y : Q — IR. Let us suppose that the available (imprecise) information about Y is
given by the fuzzy set associated to the membership function 7 : IR — [0, 1]. Hence,
it defines a constant mapping, ¥ : Q — 75(]R) that assigns, to every element of
Q, the same fuzzy set, . Thus, for each w and each y, ?(w)(y) = m(y) represents
the possibility grade that Y (w) coincides with y. This scheme illustrates that our
knowledge about the image of Y does not depend on each particular individual,
w € . Let us now consider a map f : IR* — IR and the random variable given as
T = fo(X,Y). The available information about 7" is given by the fuzzy random
variable T : Q — P(IR) defined as follows:

T(w)(t) = sup (y).
{yeR:f(X(w).y)=t}

Let us assume that the element w of the population is selected. Then, the degree
of possibility that the true image T'(w) is ¢ coincides with the degree of possibility
that Y (w) belongs to the set {y|f(X(w),y) = t}. Thus, the fuzzy random variable
T : Q — P(IR) represents the vague information available about the random variable
T : Q — IR. Following this approach, we can assign, to each event of the final
space, a fuzzy subset of the unit interval. This fuzzy quantity reflects the (vague)
information available about the true probability of the event.

In [5] the second author proposed a model of this type. Here, we briefly recall how
this model is constructed. Then, we will show the relationship between this model
and the plausibility-belief model defined in Section 4. Let us first assume that the
fuzzy random variable T : Q — 75(]R) represents the following imprecise information
about the random variable T': €2 — IR: for each o > 0, the probability of the event
“T(w) € [T(w)]a, Yw € Q7 is greater than or equal to 1 — . This is in agreement
with the fact that the possibility distribution associated with T is equivalent to
stating that for each cut [T(w)]a, the degree of necessity N([T'(w)]s) > 1—a. Under
this interpretation we can say that, for each confidence level 1 — «, the probability

distribution associated to 7" belongs to the set Pz = {Pr : T € S(T,)}, where

S(T,) is the set of selections from the random set T,. Thus, given an arbitrary
event A of the final space, the probability Pr(A) belongs to the set

P (A) = {Pr(A): T € S(T,)} (17)

with confidence level 1 — a. In [5] the fuzzy set P; of probability functions, with
membership function given by the equation:

Pr(Q) = supfa € [0,1]: Q € Py, }, VQ
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is viewed as an imprecise representation of the probability measure Pr. In fact, pT
is a possibility distribution on the space of probability functions. According to the
available information, the quantity pf(Q) represents the possibility degree that @)
coincides with the true probability measure associated to T', Pr. On the other hand,
for each event A, the fuzzy number JBT(A), defined as

Pp(A)(p) =sup{a € [0,1] : p € P (A)}, Vp €[0,1],

represents our imprecise information about the quantity Pr(A) = P(T € A). Thus,
the value PT(A) (p) represents the degree of possibility that the “true” degree of
probability Pr(A) is p. De Cooman recently proposed a behavioral interpretation
of such fuzzy probabilities [2].

The possibility measure Pf is a “second order possibility measure”. We use this
term because it is a possibility distribution defined over a set of probability measures
[36]. It is recalled in the second section that a possibility measure encodes a set of
probability measures (the set of probability measures it dominates). Hence, a second
order possibility measure is associated to a set of (meta-)probability measures, each
of them defined, as well, over a set of probability measures. Thus, a second order
possibility measure allows us to state sentences like “the probability that the true
probability of the event A is 0.5 ranges between 0.4 and 0.7”. On the other hand, it
is easily checked that the set of values considered in equation (17) is upper bounded
by: .

Plo(A) = PHw € Q: [T(w)]a N A # 0})

and lower bounded by:

Bely(A) = P({w € Q : [T(w)]a C A}).

Remark 1 In particular, if A is an interval of the form (—oo, x|, and the final
space is finite, then Pl,(A) and Bel,(A) respectively coincide with the values:

Fr(z) = Ply((—00,z]) = P({w € Q : min[T'(w)]s < z})

and

Fio(z) = Bely((—00,z]) = P({w € Q : max[T (w)]a < z}).

In [18], Ferson and Ginzburg represent the imprecise information about Pr by the
nested family of sets of probability measures {P({ Fia, F}) }acpo)- Here P({Fua, F%})
represents the set of probability measures obtained from F,, and £, i.e., the set:

{Q : Fuo(z) < Q(—00,z] < Fl(x), Vx € IR}.

On the other hand, it is important to notice that the set of probability measures
defined by the pair (Bel,, Pl,) is, in general, more precise than the set of proba-
bility measures induced by(F.,, F¥). In [6] the relationships between both sets of
probabilities are studied.
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Remark 2 In contrast, for each € (0,1}, the set of probability measures
Py, is generally more precise than the set of probability measures associated to
Bel, and Pl,. Hence, for an arbitrary event A, the set of values Py (A) is included
in the interval [Bel,(A), Pl,(A)]. For finite universes, it is easily checked that the
maximum and the minimum of these sets do coincide. (This is not true in general,
as shown in [28].) On the other hand, the set of values Py (A) is not necessarily
convex, because (as we checked in [29]) the set of probability measures Pz, is not
so either. Generally speaking, when we replace this set by the set of probability
measures associated to (Bel,, Pl,) we may lose meaningful information as shown in
[5]. Anyway, with respect to the information we want to provide with the current
model, these differences are meaningless, because we are only interested in a pair of
bounds (lower and upper) for the probability of every event, and our referential is
finite, by hypothesis.

5.2 The average probability interval

In the literature, second order probability measures are used in general to repre-
sent the information given by an expert. They indicate subjective degrees of belief
about the true probability measure that models a given phenomenon. Here we used
a second-order possibility measure. Kyburg [27] argues that one should not com-
bine regular (especially frequentist) probability values and higher order information.
However a result in the form of a fuzzy subinterval in the unit interval is more dif-
ficult to interpret by a user interested in making a decision on the basis of the
probability of an event of interest (like violating a safety threshold). A probability
interval is a simpler concept.

There exists a strong relationship between the plausibility measure defined in Sec-
tion 4 and the fuzzy set ]-:’T defined in [5]. In actual fact, we shall prove that, for every
event A, the interval [Bel(A), PI(A)] coincides with the mean value [13] (also called
the average level [31]) of the fuzzy set P;(A). This result implies, for instance, that,
for all x € IR,the interval [F.(z), F*(z)] = [Bel(—o0,z], Pl(—o0, z]] (determined
from our plausibility measure) coincides with the mean value and the average level
of the fuzzy set determined by the nested family of intervals {[Fio (), F;(2)]}acp,]
considered by Ferson and Ginzburg [18]. Before checking these results, we are going
to recall the concepts of “mean value” and“average level” of a fuzzy set. In [13],
Dubois and Prade define the “mean value” of a fuzzy number, 7, as the interval:

M(r) = {E(P): P <TI},

where F/(P) represents the expected value associated to the probability measure P,
and II is the possibility measure associated to the possibility distribution 7. That
interval represents the set of possible values for the expectation of the outcome of
a certain random experiment. Let us recall that 7 represents a set of probability
measures (the set of probability measures dominated by II). So, M (7) represents the
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set of all possible values for the expectation, when we only know that the probability
measure that models the random experiment belongs to this set.

On the other hand, Ralescu defines in [31] the “average level” of a fuzzy number,
7 : IR — [0, 1], as the integral:

A(r) = /0 1[7r]a da.

In this formula, it is considered the Kudo-Aumann integral of the multi-valued
“level” mapping, L, : [0,1] — IR, with respect to Lebesgue measure (the uniform
distribution), over the unit interval. The “level” multi-valued mapping assigns, to
each « in [0, 1], the a-cut of 7,

[T]o ={z € R:7(z) > a}.

This last integral yields an interval of numbers. For example, when the fuzzy number
is trapezoidal, its average level coincides with its 0.5-cut. In the general case, the
author considers a uniform probability distribution over the class of a-cuts and
calculates the “expected” a-cut (it is not a cut, in general).

Let us now prove that, for each event A, the interval [Bel(A), PI(A)] considered

in Section 4 coincides with the average level of the fuzzy set Ps(A) of the second
order model.

Theorem 5.1. Given an arbitrary event A, the interval [Bel(A), P1(A)] coincides
with the average level of the fuzzy set IBT(A).

Proof: First of all, let us prove that the average level of the fuzzy set ]5T~(A)
coincides with the average level of the fuzzy set associated to the nested family of
intervals {[Bely(A), Ply(A)]}acpo,1) : on the one hand, as recalled before, the following
equalities hold:

max Py (A) = Ply(A) and min P; (A) = Bel,(4).

Let us notice that we consider the uniform probability distribution on [0,1] and
it is non-atomic. Hence, although the sets in the family {Pz (A)}acp,) are not
necessarily convex, the Aumann integral of the multi-valued mapping they determine
is indeed an interval. Thus, the Aumann integral of the multi-valued mapping that
assigns the set Py (A) to each a € [0,1], coincides with the Aumann integral of
the multi-valued mapping that assigns, to each v € [0, 1], the set [Bel,(A), P1,(A)].
On the other hand, we can observe that the family of nested sets { Pz (A)}acio,y

determines the fuzzy set PT(A). In other words, the following equations are satisfied:
[Pr(Aa € Pz, (4) C [Pr(A)]a, Ya € [0,1),

where [1]g = {z € R : n(z) > a}; and then P(A)(p) = supfa € [0,1] : p €
Py (A)}. So, we conclude that the average level of the fuzzy set Pj(A) coincides
with the Aumann integral:

/ 1[Bela(A), Pl,(A)] dov.
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Finally, we easily check that this integral coincides with the closed interval:

[ /0 "Bel,(A) da, /0 Pl () da] |

(In this last equation, the Lebesgue integral is considered.) According to equation
(13), the plausibility of an event A, is calculated as follows:

ST S S 13

i:l ]Aﬁwaw

By the commutative property of the sum, we can write it alternatively as:

PI(A):ZVj > opi. (19)

i:AﬂTijf(z)
where vy = oy, vj = ajp1 —ay, j=1,...,¢—1, vy, =1—qa, and p; = P(X =
7;), i=1,...,m. Now, for each j we can calculate the value Pl,,(A) as follows:
Plo,(A) = P{w € Q: To (w)NA# B} = > pi (20)
i:AﬂTi]’;ﬁ@

This way, we easily check that the quantity P1(A) coincides with the Lebesgue
integral fol Pl,(A) do. We should check in an analogous way that Bel(A) coincides
with the integral fol Bel,(A) da. R

This last result improves one in [1], where we only proved that P1(A) ranges be-
tween Pl (A) and Ply(A). Let us provide a direct proof that the interval [Bel(A), P1(A)]
also coincides with the “mean value” of the fuzzy set Pr(A).

Theorem 5.2. Given an arbitrary event A, the interval [Bel(A), P1(A)] coincides
with the mean value of the fuzzy set Py(A).
Proof: The mean value of that fuzzy set is given by the expression:

M(P7(A)) = {/iddp P < HpT(A)},

where Il 4 represents the possibility measure determined by the fuzzy set P (A).
We can easily check that this mean value is a closed interval. Its minimum and
maximum values respectively coincide with the Choquet integrals of the identity
function with respect to Np_(4y and Ip_ ). This pair of dual necessity and possi-
bility measures is associated to the focal sets Pr, (A),...,Pr, (A), with respective
mass assignments vy, ...,1,. We deduce that the Choquet integral of the identity
map with respect to Il 4 coincides with the sum > _j—ovj maxPr, (A). On the
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other hand, as we pointed out above, each value max PTaj (A) coincides with the

plausibility Pl,, (A). This way, we observe that the maximum of the set M (Pz(A))
coincides with the value 3%, v; Ply;(A). Now, according to equations (18), (19)

and (20), we deduce that max M (Pz(A)) coincides with P1(A4). We could check, in

an analogous way, that the minimum of the interval M (Pz(A)) coincides with the

value Bel(A).R

The intuitive meaning of this last result is as follows. As explained before, in the
second order imprecise model we represent our imprecise information by a pair of
order 2 plausibility-necessity measures. The necessity measure appears in a natural
way from confidence levels. Hence, for each «, we assign the lower probability
(degree of necessity) 1 — « to a set of probability measures. This order 2 necessity
measure provides the same information as its dual possibility measure. Both of
them are equivalent to a set of second order probability measures, as we recalled
in Section 5.1. Let us consider a particular second order probability measure, IP,
belonging to this set. Let us also fix an arbitrary event A. In this setting, we can
define a random variable that takes each value Q(A) with probability P({Q})*. If
IP was the “correct” second order probability measure that models the second order
experiment, then we could state that the “true” probability of A should coincide with
the expectation of this random variable. In the last theorem we have shown that
Bel(A) and P1(A) respectively coincide with the lower and upper bounds of the set
containing the possible values of the expectations associated to each second order
probability measure dominated by the pair of (second order) possibility-necessity
measures. As a consequence of this, Bel(A) and P1(A) represent, in the average, the
most precise bounds for the “true” probability of A, under the available information.

The above approach comes down to casting

5.3 Relationship with the “classical” model of fuzzy random
variables

In the last subsection we have compared our plausibility-belief model with the sec-
ond order possibility distribution associated to the fuzzy random variable T: This
second order model associates, to each event (crisp subset of the final space), a fuzzy
set in the unit interval. However, another point of view in the literature leads to
assigning a (crisp) value of probability to each possible (fuzzy) image of T, by con-
sidering a fuzzy random variable as a “classical” measurable mapping. Kratschmer
([23]) reviews all the previous definitions of fuzzy random variables in the literature,
and offers a unified vision. He considers specific topologies defined on a certain class
of fuzzy subsets of IR. A fuzzy random variable is then a measurable function. This
“classical” vision of a fuzzy random variable viewing it as a measurable function
agrees with the interpretation given by Puri and Ralescu ([30]). In that paper, the

'For the sake of clarity, we are assuming that the second order probability measure, IP, is
“discrete”.
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authors consider that the outcomes of some random experiments are not numerical
ones, but they can be vague linguistic terms. In this context, the information pro-
vided by the fuzzy random variable can be summarized by means of the probability
measure it induces in the final space. When the fuzzy random variable takes a finite
number of different linguistic “values”, its induced probability is determined by the
mass function. Therefore, it will suffice to specify which are the different images of
the fuzzy random variable and the probability of occurrence of each one of them.
Thus, different probability values will be assigned to different linguistic labels (for
example, we could generate a model of the following type: the probability that the
result is “high” is 0.5, the probability of being “average” is 0.25 and the probability
of being “low ” is 0.25).

In our particular problem, the fuzzy random variable, T has m different images
(m different fuzzy sets), one per each value of X. As we assume at the beginning
of Section 4, X takes a finite number of different values, x4, ..., x,, with respective
probabilities pi, ..., p,. In other words, X is a “simple” mapping, X = > ", z; I¢,,
where {C1,...,C,,} is a partition of Q and P(C;) = p;,Vi = 1,...,m. For each
ie{l,...,m}, and each w € C;, the fuzzy set T(w) coincides with the fuzzy set 7,
defined from f and 7 as indicated in equation (12). Thus, the fuzzy random variable
T takes its m “values” w!,..., 7™ with respective probabilities pi, ..., pm. These
m fuzzy sets and their respective probabilities uniquely determine the probability
distribution induced by 7', considered as a classical measurable function.

If a question referring to the universe underlying the linguistic values of 7' must
be addressed, of the form “is T" € A?” | then if the knowledge about T is 7, one may
provide the possibility and the necessity degrees of A according to 7*. In the fuzzy
random setting here, the belief and plausibility functions defined in the previous
section :

teA

P1(A) = Zpi sup'(t), V A.
i=1

Bel(A) =) "pi ti;ﬁu — (1)), VA
=1

represent the average possibility and necessity degrees for the event A on the universe
underlying the random fuzzy set T

6 Joint propagation of probabilistic and ill-known
deterministic information

In this section more available information about T is available than in Section 4:
now the value of Y is a constant 1o, which is only partially known, but of course does
not depend on X. according to case (b) of the motivating example, The information

given by the fuzzy random variable T" previously defined from IT and X is compatible
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with our vague knowledge about 7. Nevertheless, the new assumption leads to more
precise results.

The random variable X : € — IR, again takes known values x1,...,z, with
respective known probabilities py,...,p,. Let us consider, on the other hand an
imprecisely known fixed number yy € IR. Let us suppose that our information about
Yo is given by means of subjective “confidence levels”. Thus, we will assume that
there is a family of nested sets, A; O ... D A;, with respective confidence degrees
l1—a; > ... > 1— 0, Asin the previous section, our information about yq is
given by the possibility measure Il in equation (11). Our information about Y
is now more precise than in Section 4: Not only is the information about Y (w)
constant, independent of w but, furthermore we know that the real value of Y is
constant (even if unknown) : Y (w) = yo, Yw € Q. Let us now consider the random
variable T = f(X, o), where f : IR*> — IR is a known mapping. The objective
probability measure Pr attached to T : 2 — IR only depends on X. The random
variable T' satisfies again all the properties of T" Section 4. Thus, we know that its
probability distribution is dominated by the plausibility measure there defined. But
now we know in addition that Y is constant. So, we will look for a more precise
upper probability. In other words, we will find a set function P* that satisfies the
inequalities:

Pr(A) < P*(A) < PI(A), VA.

6.1 Main result

Let us denote by I' the “most precise set we know that contains y,”. It is a random
set that takes the “values” Ap = IR D A; D ... D A, with respective probabilities

m(R) =vo=o1,m(4;) =vi=a;41 —a;,j=1,...,g—1,m(4,) =v,=1—q,

m is the basic mass assignment associated to II. Following [32], each quantity m/(C')
is understood to be the measure of belief that is committed exactly to C, and to
nothing smaller. Note that the conditional probability Pr(A|A;) is the probability
that T" € A, given that all we know about yq is that yo € A;. So we can write
it P(T € Al = Aj). Moreover, Pr(Aly) = P(f(X,Y) € Aly) = P{w € Q :
f(X(w),y) € A}). Thus, for each event A, we have:

Pr(A)=P(T e A) = zq:P(T cAll=A4,) - P(I'=A4;) <

Y osup{P({w € QF(X @) y) € ADly € A} - vy = P'(A), (1)

since, in general Pr(A|B) < sup,.p Pr(Aly), as Y is a constant. This upper proba-
bility P*(A) coincides with the Choquet integral of g4 : IR — [0, 1] with respect to
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II, where ga is given by ga(y) = P({w € Q|f(X(w),y) € A}), as suggested in the
motivating example case (b).

We easily observe that P* is dominated by the plausibility function, Pl defined
in Section 4: As we check in equation (19), Pl can be written as follows:

Pl(A) = Z Vj Z Di s

’i:AﬂTi]‘ #0

Furthermore, for each j € {0, ..., ¢}, the quantity . ANT20 Pi coincides with the
probability
P{w e 9 f(X(w), A) N A £ 0})

And we easily check, for each j =0,...,q, that
P{weQ: f(X(w), 4;) NA#0}) = sup P({weQ: f(X(w),y) € A}),

yEA;

since {w € Q: f(X(w),A;)NA#0} = Upea{w e Q: f(X(w),y) € A}. Hence,
we have found an upper probability measure, P*, that dominates Pr and is more
precise than Pl. In other words,

Pr(A) < P*(A) < PI(4), Y A.

Its dual lower probability measure, P, is given by the formula

q

P.(A) =) mf{P{w e Qf(X(w).y) € A}y € A} - v, (22)

5=0
and it satisfies the inequalities

Bel(A) < P.(A) < Pr(A), YV A.

6.2 Relation with second order models

Let us consider, for each y € IR, the random variable 7}, : @ — IR, given by
T,(w) = f(X(w),y),Yw € Q. We can say that T € S; = {T, : y € A;} with
confidence 1 — «j, Vj = 1,...,¢. Thus, with confidence 1 — «; we know that Pr
belongs to the set

Pj:{PTyZyEAj}.

So, we can describe our information about Pr by a family of nested sets of probability
measures. The class of (meta-) probabilities, IP, satisfying

P(P;))>1—a;,Vi=1,....q

coincides with the set of (meta-) probabilities dominated by the (second order)

possibility distribution, P, given by:
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631 ifQ¢7D1
l—o, tQeP,

This second order possibility measure is dominated by the one considered in
subsection 5.1. (This is easily checked, as each set P; is included in PTaj)-

Furthermore, for a particular event A, the probability value Pr(A) can be de-

scribed by the fuzzy subset of [0, 1], P(A) :

aq 1fp€Bl
P(A)(p): Qj+1 iprBj\Bj+17j:1>"'vq_1 .
l1-o, itpe B,

Where {By, ..., B,} is the family of nested sets defined as:
B ={Pr,(A)lye A} ={galy)ly € A4;}, Vi=1,....q

in the sense that P(A)(p) represents the possibility that Ppr(A) coincides with p,
Vp € [0,1]. We easily observe that this last fuzzy set is included in Ps(A). Moreover,
the (first order) model considered in Section 6 coincides with the mean value of this
fuzzy set. In other words, [P,(A), P*(A)] = M(P(A)), YA, as we prove in the
following theorem.

Theorem 6.1. Given an arbitrary event A, the interval [P.(A), P*(A)] coincides
with the mean value of the fuzzy set P(A).

Proof: Let us consider an arbitrary event, A. First of all, let us notice that the
possibility distribution P(A) is associated to the mass assignment m plA);

mpa([0,1]) = vo = v,
mP(A)(Bj) =V =050 — oy, J=1,...,¢—1,
mpay(Bg) = vg =1 — oy

Furthermore, let us observe that all the focal subsets have maximum and mini-
mum value: By = [0, 1] is a closed interval and B; is finite, for all j € {1,..., ¢} (each
Bj; can be written as a set of elements of the form )., p;, with I C {1,...,m}).

Thus, M(P(A)) has a maximum and a minimum value (the maximum value
is the expected value of the probability measure that associates the mass v; to
max Bj, Vj =0,...,q The minimum is the expectation of the probability measure

that associates the mass v; to min B;, Vj =0,...,¢q. In other words,
. q 3 q
max M(P(A)) = Z vj max B, min M(P(A)) = Z v;min Bj,
§=0 §=0

These two values respectively coincide with P*(A) and P,(A), as we observe in equa-
tions (21) and (22). On the other hand, M (P(A)) is convex (the mean value of any
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fuzzy number is convex.) Hence, it coincides with the closed interval [P.(A), P*(A)].
|

The intuitive meaning of this last result is similar to the interpretation of the
result given in Theorem 5.2.

7 A general setting for joint possibility-probability
propagation

In this section, a more general dependence setting is assumed that encompasses the
third scenario of the motivating example as a particular case. Let us consider again
a random variable X : 0 — IR, that takes the values zq,...,z, with respective
probabilities pi, ..., py,. In other words, X is a “simple” mapping, X = ", z; I¢,,
where {C4,...,C,,} is a partition of Q and P(C;) = p;,Vi=1,...,m. Assume that
we have imprecise information about a random variable Y : €2 — IR and it is also
represented by a possibility distribution 7. But now, this possibility distribution is
obtained as follows: let us consider another partition of €2, {D, ..., D,}. For each
w € Dj, we know that Y (w) belongs to the set A;. Then, the information about Y
is determined by the random set I'y : Q@ — IR defined as I'(w) = A;,Vw € Dj;, j =
0,...,q. (All we know about Y is that it is a measurable selection of I'y'). The upper
probability of I'y is associated to the mass assignment mp,, :

mFY<Aj) :P(D])v j:Oa"~7Q-

If, in addition, the images of I'y are nested sets, Ag = IR O A; D ... D A,, then
this upper probability is a possibility measure. In this case, all we know about Py
is that it is dominated by this possibility measure.

The main assumption in this model is that the pair (X (w), Y (w)) is generated
by a single occurrence w, and the information about it is in the form of a random
set I'xy such that if w € C; N D, then I'x y (w) = {x;} x A;. Let T be the random
variable given by T'(w) = f(X(w),Y (w)), Yw € Q.

Under these conditions, all we know about the random variable 7" = f(X,Y) :
2 — IR is that it is a selection of the random set 'z : 2 — P(IR) defined as

Ir(w) = f(X(w),T'(w)) = {f(X(w),Y(w)) : Y(w) € T'(w), Vw € Q}.
The basic mass assignment of I'y assigns, to each focal T;; = f(z;, D;), the mass
mr,(T;;) = P(C; N D;), Vi,j.
This mass assignment is associated to the plausibility function:
Plr, (A) =) > py (23)
i=1 jif (zi,A;)NAZD
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where p;; = P(C; N D;),Vi,j. Under the available information, Plp,. is the most
precise upper probability that dominates Pr.

Note that > ", pij = mr, (A;), Vj and >°5_,pi; = pi, Vi.. In practice, only the
marginals of the joint mass assignment are known [12]|, because no assumption is
made about the relationship between the observation processes. If, in particular,
observations C; and D; are independent (hence the sets always intersect), V4, j then,
this model reduces to the one given in Section 4. It corresponds to the case where
both pieces of information about X and Y are independent of one another. In any
other case, the plausibility Ply,. does not dominate, neither dominates the plausibil-
ity measure considered in Section 4. Conversely, if C; = D;, Vi, and p; = mr, (4;), Vi,
then we recover the scenario of total dependence of sources of information in case
(c) of the motivating example.

Actually, we used neither the fact that Plp, is a possibility measure, nor that
X is a pure random variable, to build this last propagation model. Thus, when
both pieces of information I'x and I'y about X and Y are arbitrary random sets
(whose respective images are not necessarily nested) the plausibility measure Pl
is still given by formula (23), where the argument of the summation is replaced by
f(Xi, Aj) N A # 0, and X; is an imprecisely perceived realization of X. This is the
framework already proposed by Dubois and Prade [14] for encompassing both the
calculus of random variables (when X and Y are independent random variables) and
the extension principle for fuzzy intervals (when X and Y are ill-known quantities
described by possibility distributions, whose dependence is not known, but that are
informed by fully dependent sources). This is also the framework more recently
adopted by Krieger and Held [25] in the study of climate prediction, using the ter-
minology of belief functions for the propagation of imprecise cumulative distribution
functions.

8 Conclusion and open problems

This paper tries to provide some interpretative and formal foundations to some
techniques of uncertainty propagation that were used in risk assessment by vari-
ous authors (Guyonnet et al [21], Ferson and Ginzburg [19], Baudrit[1], Fetz and
Oberguggenberger [17], Krieger and Held [25], and others) for combining incomplete
and random pieces of information. Our approach encompasses several dependence
assumptions between ill-known quantities. Assuming independence between sources
of information yields a result consisting of a belief function (or a random set) which
averages the fuzzy random variable that is produced from a function having as ar-
guments random variables and fuzzy intervals. The higher order model described in
section 5.1 is more faithful to the actual information and does not keeps imprecision
and randomness separate, since it gives a fuzzy-interval-valued probability. The ag-
gregated model in Section 4 does not destroy all higher order information in the end
since an interval-valued probability still displays information in terms of frequency
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(in the case of objective variability) and amount of subjective ignorance.

We pointed out that using a possibility measure to describe our knowledge about
an ill-known quantity presupposes nothing about the nature of this quantity: it can
be an ill-known random variable as described by an expert or observed from an
imperfect statistical experiment, or it can refer to a fixed ill-known quantity. We
studied the joint propagation of probability and possibility under this multiple-
facetted view. If Y is an ill-known random variable, then the knowledge about Y,
when provided by a human expert, generally does not depend on the occurrences
of other random variables. However, knowing that Y is a fixed quantity has useful
impact on the propagation process: If X is a known random variable and Y a fixed
quantity, then we know that ¥ does not depend on X (as in scenario (b) of the
motivating example), a piece of information that further reduces the uncertainty of
the result.

Future works should try to further formalize notions of independence in the pres-
ence of variability and imprecision. It is clear that in a pure probabilistic approach
it is not very convenient to formally distinguish between independent variables and
independent observations of these variables (unless resorting to very complex higher
order probability approaches). The framework of random sets in the sense of Demp-
ster [9] (in terms of probability bounds) and the notion of uncertain evidence by
Shafer [32] make it possible to lay bare this important distinction. Clarifying these
issues, following the works of Couso et al [7], Ben Yaghlane et al. [37], and Cozman
[8] is an important line of further research.
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