
Making Discrete Sugeno Integrals More
Discriminant

Didier Dubois a and Hélène Fargier a

aIRIT - Université Paul Sabatier -
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Abstract

This paper deals with qualitative evaluation processes when the worth of items is com-
puted by means of Sugeno integral. One limitation of this approach is the coarse ranking
of items it produces. In order to refine this ranking, generalizations of leximin and leximax
to Sugeno integrals are studied. Numerical encodings of such generalized lexicographic
methods are described by means of mappings from the qualitative value scale to the reals.
In some of these transformations Sugeno integral is changed into a Choquet integral. The
issue of refining the capacity at work in Sugeno integral also receives a preliminary ex-
amination. This work relies on a previous similar attempt at refining prioritized minimum
and maximum aggregations (in the setting of decision under uncertainty) into a so-called
big-stepped weighted average, encoding a very refined qualitative lexicographic ordering
of items.

Key words: Sugeno integral, Choquet integral, qualitative decision theory, lexicographic
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1 INTRODUCTION

Qualitative decision theory is a framework that suits situations where the evalu-
ation of complex objects cannot rely on the availability of full-fledged numerical
ratings. This is typical of electronic commerce, or recommender systems (that pro-
vide advice or suggestions) for instance. In many cases, it sounds more satisfactory
to implement a choice method that is fast, and based on rough information about
the user preferences and knowledge. Two research lines can then be followed in
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the qualitative framework: the non-commensurable approach and the absolute ap-
proach.

Following the first approach, the various aspects involved in the evaluation pro-
cess (e.g., uncertainty, utility, importance of criteria) are rated on different value
scales that are unrelated to one another. This view is close to the framework of
voting theories after Arrow [2], Sen [35] etc. It may lead to the same technical dif-
ficulties. In the case of decision under uncertainty, various authors [4,39,6–8,40]
propose to compare the merits of acts on the basis of their tuples of utilities re-
stricted to the set of most plausible states: degrees of utility are never compared to
degrees of plausibility, but only to degrees of utility.

The absolute approach presupposes the existence of a common totally ordered
value scale (typically a finite one), for all kinds of local ratings. For instance grad-
ing both likelihood and utility on the same scale. This is based on the idea that
any decision involving uncertainty can be compared in terms of preference to a
sure gain or a sure loss (involving utility only). In multifactorial evaluation, it cor-
responds to the assumption of adopting a common value scale for various criteria
involved and their importance weights. Decision rules generalizing maximin and
maximax criteria can be defined on this ordinal scale[45,43,16]. They are special
cases of Sugeno integral [37,38], a general qualitative aggregation that can be used
as a decision criterion under uncertainty [18], and a tool for multicriteria aggre-
gation [32]. The rationality of these qualitative aggregation tools was established
using an axiomatic approach in the style of Savage [19], or in the style of conjoint
measurement [25,5].

Such qualitative criteria can be instrumental to solve discrete decision problems
involving finite state spaces, or problems where it is not natural, or very difficult, to
elicitate numerical utility functions or probabilities. Namely,

• when the problem is located in a dynamic environment involving a large state
space, a non-quantifiable goal to be reached, and partial information on the cur-
rent state. This case can be found in robotic planification problems;
• when only a very high level description of a decision problem is available, where

states and consequences of decisions are coarsely defined (for instance in some
kinds of strategic decision-making);
• or yet when there is no time to quantify utilities and probabilities because a fast

advice is requested (like in recommender systems).

A number of natural properties any realistic decision theory should satisfy in
such applications can be laid bare:

(1) Faithfulness to available information supplied by decision-makers, as poor as
it be : an ordinal declarative approach sounds closer to human capabilities.

(2) Cognitive Relevance : The number of levels in the value scale must be small
enough (according to well-known psychological studies, not more than seven).
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(3) Good Discrimination : especially respecting the strict Pareto-dominance.
(4) Decisive Power : avoiding incomparability and favor linear rankings.
(5) Exhaustivity: Taking into account all available information, especially the im-

portance of criteria or the plausibility of states of affairs.

These requirements are often conflicting. Weighted averages are information-de-
manding, and hardly compatible with the limited perception capabilities of human
decision-makers. The maximin criterion is too extreme and neglects available in-
formation. Approaches based on ordinal preference relations either leave room to
incomparability to a large extent, or focus too much on the most important aspects.
Approaches based on an absolute value scale improve the expressivity of maximin
and maximax criteria by accounting for the respective plausibility of states or the
importance of criteria. They provide rankings of decisions but lack discrimination
power because the set of objects to be ranked contains just as many classes of
equally preferred items as the number of steps in the value scale. There is some
inconsistency between the requirement of a fine-grained discrimination (respecting
Pareto-dominance) and the requirement of a total (especially transitive) ranking of
alternatives in the qualitative framework.

In order to cope with this limitation, refinements of the final ranking of decisions
have been devised, in the restricted case of prioritized minimum and maximum
[20]. Following this approach, the final ranking of decisions is not only qualitative
(it relies on the use of leximin and leximax procedures [10]) but it also satisfies
all the properties of a weighted average (like in expected utility theory). And it
can indeed be represented as a weighted average, where the utility functions and
the weight functions are big-stepped, i.e. form superincreasing (or decreasing) se-
quences.

In the present paper, we try to extend this approach to the case where interaction
between criteria exist. The natural criteria aggregation tool is then Sugeno inte-
gral. The idea is to refine Sugeno integral-based rankings using similar leximin and
leximax ingredients. Beforehand it should be noticed that the refinement of the pri-
oritized minimum and maximum by a weighted average is made possible by the
fact that these criteria do not strongly violate the preferential independence axiom
obeyed by the latter: only a blurring effect is observed, which causes the lack of
discrimination. But due to the strong violation of the independence by Sugeno inte-
gral, the latter cannot be refined by means of a weighted average. In fact, due to the
role of comonotonicity in the representation of Sugeno integral, the natural numer-
ical criterion refining the latter is Choquet integral, now used in decision analysis
for some time [23].

Section 2 presents properties of Sugeno integral. Section 3 explains why Sugeno
integral lacks discrimination power. Section 4 recalls basic results on the refinement
of qualitative prioritized maximum and minimum by means of a weighted average.
They are instrumental for the rest of the paper. Sections 5, 6, and 7 contain the main
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results of the paper. First, refinements of Sugeno integral are proposed that preserve
the set-function representing the importance of features. Another approach based
on qualitative Moebius transforms is proposed, where the capacity is changed into
a belief function. Section 7 provides some insight into the problem of refining a
non-additive set-function, since part of the lack of discrimination is due to the non-
additivity of the set-function weighting criteria or states of nature. A preliminary
version of the first six sections was presented at the ECSQARU 2007 conference
and published in its proceedings[13].

2 Sugeno integral as a qualitative decision rule

A decision evaluation problem will be cast in the usual framework: we consider
a set F of n features or criteria (denoted by integers i), and a set Ω of objects or
items to be rated according to these points of view. For rating the merit of objects,
there is a totally ordered value scale (L,≤), supposed to be common to all features,
with top > and bottom ⊥. In the numerical case, L = [0, 1] for instance. In the
qualitative case, it is a finite chain. We will then denote by λj the elements of L,
with λ0 = ⊥ < λ1 < . . . < λm = >. Moreover, L is equipped with its involutive
order-reversing map ν; in particular ν(>) = ⊥, ν(⊥) = >. The rating of objects
ω ∈ Ω according to feature i are denoted by Greek letters αi, βi, · · · ∈ L. The
weight of a feature will be denoted by pi, when numerical, and πi when qualitative.

The set Ω of objects will be identified with the set Ln of n-tuples ~α of values of
L. The idea is that objects having the same description cannot be distinguished. We
denote by λ constant tuples containing the same rating λ for each feature. The top
and bottom tuple are such that λ = > and λ = ⊥, respectively, and denoted by >
and⊥. They are respectively the best rated and the worst rated objects. If ~α, ~β ∈ Ln,
andA is a subset of features, ~αA~β denotes the tuple such that (~αA~β)i = αi if i ∈ A,
and βi otherwise. In particular, a binary tuple is denoted by αAβ and is such that
(αAβ)i = α ∈ L if i ∈ A, and β ∈ L otherwise. A Boolean tuple is of the form
>A⊥.

This framework covers not only multifactorial evaluation but decision under un-
certainty as well. Then F is a set of states of nature, ω is an act, understood as
a mapping from F to a set X of consequences, and αi is the degree of utility of
the consequence of this act when the state is i. Then weight pi is the degree of
probability of a state and weight πi its degree of possibility. Whatever the chosen
framework, the problem is to evaluate and compare tuples of ratings of the form
~α = (α1, α2, . . . , αn) ∈ Ln.

The most usual numerical aggregation rule in multifactorial evaluation (assuming
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L ⊂ [0, 1]) as well as decision under uncertainty is based on the weighted average :

WAp(~α) =
n∑
i=1

pi · αi. (1)

A tuple ~α is then strictly preferred to another tuple ~β if and only if WAp(~α) >

WAp(~β). Such a weigthed average implicitly assumes that the features are prefer-
entially independent with respect to each other. When dependencies between fea-
tures have to be taken into account, the decision making procedure had better rely
on a Choquet integral aggregation:

Chv(~α) =
m∑
j=1

v(Aλj
).(λj − λj−1)). (2)

where Aλj
= {i : 1 ≤ i ≤ n, αi ≥ λj}. In this approach, the importance of groups

of features is assumed to be directly captured by means of a monotonic set-function
v : 2F → [0, 1] (also called a capacity), such that:

v(∅) = 0, v(F) = 1, A ⊆ B ⇒ v(A) ≤ v(B).

The use of such a set-function is very general and natural in this context. It in-
cludes additive measures (hence, the weighted average is a particular Choquet in-
tegral) and most other well-known set-functions (including belief and plausibility
functions, necessity and possibility measures...).

2.1 Sugeno integral and its special cases

In the following, we assume the value scale is qualitative, and a qualitative ca-
pacity is denoted by κ. In this case the most general type of aggregation operation is
Sugeno integral (see [24]). The global evaluation of the merits of an object is based
on the comparison of ratings of the object with respect to the evaluation scale, and
the importance of groups of features is evaluated on the same scale (it is modelled
by their κ values). Sugeno integral is often defined as follows:

Sκ(~α) = max
λ∈L

min(λ, κ(Aλ)), (3)

where Aλ = {i : 1 ≤ i ≤ n, αi ≥ λ} is the set of features having best ratings
for object ω, down to utility threshold λ, and κ(A) is the degree of importance of
feature set A.

If the set of features is rearranged in decreasing order in such a way that α1 ≥
· · · ≥ αn, then denoting Ai = {1, 2, . . . , i}, Sκ(~α) can be expressed in terms of
features as follows:

Sκ(~α) = max
i=1,··· ,n

min(αi, κ(Ai)). (4)
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It turns out that Sκ(~α) is the median of the set {α1, . . . , αn}∪{κ(A1), . . . , κ(An−1)}
whose cardinality is ever odd. For a binary tuple αAβ where α ≥ β, Sκ(αAβ) is
the median value in the set {α, β, κ(A)}. The original definition of Sugeno integral
[37] actually had the following form:

Sκ(~α) = max
A⊆S

min(κ(A),min
i∈A

αi). (5)

This expression shows a trade-off between the degrees of importance of feature sets
and their worst ratings in such sets.

The prioritized maximum and minimum aggregations are particular cases of
Sugeno integrals (e.g. [27]). These aggregations are based on an L-valued possi-
bility distribution π [46] on F measuring the importance of individual features:
the ordinal value πi represents the importance of feature F . The prioritized max-
imum W+

π is retrieved when κ is a possibility measure based on distribution π
(κ(A) = maxi∈A πi):

W+
π (~α) = max

i=1,...,n
min(πi, αi). (6)

This optimistic aggregation proposed in [46,45] is a qualitative counterpart to the
weighted convex sum, where the sum is replaced by a sup (a max in the finite case)
and the product by an inf (a min in the finite case). It is an extension of the maximum
aggregation: W+(~α) = maxi=1,...,n αi.

The prioritized minimumW−
π is obtained when κ is a necessity measure (κ(A) =

mini/∈A ν(πi), where ν is the order-reversing map on L). It is a pessimistic criterion
proposed in [43,17], of the form :

W−
π (~α) = min

i=1,...,n
max(ν(πi), αi). (7)

So, ν(πi) represents the degree of negligibility of feature i. In particular, ν(πi) = >
for fully neglected features. The value of W−

π (~α) is small as soon as there exists
a highly important feature (ν(πi) = ⊥) with low utility rating for the object. This
aggregation is actually a prioritized extension of the Wald maximin criterion

W−(~α) = min
i=1,...,n

αi. (8)

This rule rates objects on the basis of their least preferred marginal ratings. It was
advocated and axiomatized by Arrow and Hurwicz [1]. It is recovered in case of
equally important features, i.e. when πi = > for all i = 1, . . . , n in (7). In the
prioritized version, decisions are made according to the merits of objects using
the worst rated among the most important features. The set of important features
A? = {i : πi ≥ ν(W−

π (~α))}) achieves a trade-off between importance and local
ratings as expressed in the min-max expression.

6



2.2 Properties of Sugeno integrals and the induced ordering

The basic properties of Sugeno integrals exploit disjunctive and conjunctive com-
binations of ratings. Define a tuple ~α∧~β as the one that always gets the worst ratings
of ~α and ~β for each feature, while ~α ∨ ~β always gets the best of them:

(~α ∧ ~β)i = αi if βi ≥ αi and βi otherwise; (9)

(~α ∨ ~β)i = αi if αi ≥ βi and βi otherwise. (10)
They are respectively intersection and union of fuzzy sets viewed as n-tuples of val-
ues. Obviously Sκ(~α∧~β) ≤ min(Sκ(~α), Sκ(~β)) and Sκ(~α∨~β) ≥ max(Sκ(~α), Sκ(~β)).
The first one holds with equality for the possibilistic pessimistic criterion W−

π and
the second one likewise for its optimistic counterpart W+

π . These properties hold
with equality whenever ~α or ~β is a constant tuple, i.e., noticing that Sκ(λ) = λ,

Sκ(~α ∧ λ) = min(Sκ(~α), λ) and Sκ(~α ∨ λ) = max(Sκ(~α), λ).

These properties are in fact characteristic of Sugeno integrals for monotonic aggre-
gation operators (e.g. [27]).

Let us now denote by � a preference relation among objects. Its strict part is
denoted by � and defined by ~α � ~β ⇐⇒ ~α � ~β and ¬(~β � ~α). Finally, '
denotes its symmetric part (~α ' ~β ⇐⇒ ~α � ~β and ~β � ~α). Sugeno integral
defines such a preference relation that is a weak order on Ln (i.e. a complete and
transitive relation):

~α �sugκ
~β ⇔ Sκ(~α) ≥ Sκ(~β). (11)

When there is no ambiguity, we simply use the notation�sug. We also write ~α �P ~β
when ~α weakly dominates ~β in the sense of Pareto, namely:

~α �P ~β ⇐⇒ αi ≥ βi,∀i = 1, . . . , n. (12)

Sugeno integral is weakly Pareto-monotonic, i.e., it obeys:

Axiom WPAR: ∀~α, ~β, ~α �P ~β =⇒ ~α �sugκ
~β.

A tuple ~α is said to κ-dominate ~β whenever ∀λ ∈ L, κ(Aλ) ≥ κ(Bλ). This
is a general form of Stochastic dominance. From its expression as in (3), Sugeno
integral is obviously in agreement with this kind of comparison:

Axiom WGSD : If ~α κ-dominates ~β then then Sκ(~α) ≥ Sκ(~β).

2.3 Null sets

Some features may be considered totally useless in the evaluation process.
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Null Sets A set of features A is said to be null with respect to a preference relation
� on tuples if and only if ∀~α, ~β,~γ ∈ Ln, ~αA~γ � ~βA~γ.

In other words, the preference pattern between two objects does not depend on
ratings according to features inside set A. These features have thus no importance.
If � is defined by a weighted average, null sets A are characterized by pi = 0,∀i ∈
A. This is different when Sugeno integral is used.

Proposition 1 When the preference relation is defined by Sugeno integral Sκ, A is
null if and only if κ(A ∪B) = κ(B),∀B.

PROOF. If A is null, then let ~α = ⊥, ~β = >, and for any set B, ~γ = >B⊥. Then
Sκ(~αA~γ) ≥ Sκ(~βA~γ) reads κ(B \ A) ≥ κ(A ∪ B), hence κ(B) = κ(A ∪ B).
Conversely, assume κ(A ∪B) = κ(B),∀B. Then Sκ(~αA~γ) = max(θ1, θ2) where
θ1 = maxE⊆Ac min(κ(E),mini∈E γi), and
θ2 = maxE 6⊆Ac min(κ(E),mini∈E∩Ac γi,mini∈E∩A αi)
where Ac is the complement of A. When E 6⊆ Ac let C = E∩Ac, D = E∩A 6= ∅,
and notice that by assumption, κ(E) = κ(C); it leads to:
θ2 = maxC⊆Ac,∅6=D⊆A min(κ(C),mini∈C γi,mini∈D αi).
This also writes :
θ2 = min(max∅6=D⊆A mini∈D αi,maxC⊆Ac min(κ(C),mini∈C γi))
= min(max∅6=D⊆A mini∈D αi, θ1) ≤ θ1.
In consequence, Sκ(~αA~γ) = θ1 = maxE⊆Ac min(κ(E),mini∈E γi), which does
not depend on the features of ~α in A. Hence A is null. QED

This characteristic property of null sets was proposed by Murofushi and Sugeno
[30] who proved its equivalence with our definition for Sugeno integral. Remark
that if A and B are null, so is A ∪ B and conversely (as also proved by Murofushi
and Sugeno). If the preference relation � is defined by a Sugeno integral, A null
obviously implies κ(A) = ⊥, but κ(A) = ⊥ does not imply that A is null. For in-
stance assume there are three features and let κ be the necessity measure built on the
possibility distribution πi = >,∀i. Consider the tuples > and ⊥{1}>. Obviously,
κ({1}) = ⊥. But feature 1 is not null; indeed, Sκ(>) = > > Sκ(⊥{1}>) = ⊥ (it
is the median of {⊥,⊥,>}). However, if κ is a possibility measure, then κ(A) = ⊥
implies that A is null.

3 The weak discrimination power of qualitative preference functionals

Sugeno integrals, like other more specialized qualitative criteria, suffer from a
lack of decisiveness and fail to satisfy strict monotonicity, i.e. the Pareto principle
of efficiency:
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Axiom SPAR: ~β, ~α �P ~β implies ~α � ~β, ∀~α.

where �P denotes the strict part of the Pareto dominance: ~α �P ~β if and only if
~α �P ~β, and ∃i not null such that αi > βi. This general principle says that, if ~α is
as least as good as ~β on each feature, and better than ~β on some non null feature 1 ,
then ~α should be strictly preferred to ~β. However, even if ~α �P ~β, it may be that
Sκ(~α) = Sκ(~β), so that SPAR is not satisfied. This lack of discrimination is due to
the so-called drowning effect.

3.1 Several drowning effects

The “drowning effect”, is related to the use of idempotent operations — max and
min. In particular, when two objects have identical good consequences for some
important features, they may globally rate the same, although they may have sig-
nificantly different ratings for the other features. As a consequence the principle of
strict Pareto dominance is not satisfied, as already noticed.

For instance, let n = 2 features, m = 10, λj = j. Let ~α and ~β be two objects
whose ratings according to features 1 and 2 are listed below.

Feature 1 2

αi 7 9

βi 7 8

Consider the capacities

∅ {1} {2} {1, 2}

κ1 ⊥ 8 2 >

κ2 ⊥ > 2 >

κ3 ⊥ 8 ⊥ >

κ1 is a classical probability measure, κ2 and κ3 are respectively the possibility
and the necessity measure built on the possibility distribution π1 = >, π2 = 2. All
these measures contain the same ordinal information with respect to the relative
importance of the features (1 is more important than 2 that is not null).

1 Axiom SPAR does not apply to features forming null sets, which by definition do not
play any role in the preference between acts.
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One can check that, for each κi:

Sκi
(~α) = max(min(9, κi({2})),min(7, κi({1, 2})) = 7;

Sκi
(~β) = max(min(8, κi({2})),min(7, κi({1, 2})) = 7.

So, Sκi
(~α) = Sκi

(~β),∀i, although ~α strictly dominates ~β (as α1 = β1 and α2 > β2).
The drowning effect is here due to the maximum operator: in both Sκi

(~α) and
Sκi

(~β) the external maximum is driven by the term min(7, κi({1, 2}), which is
equal to 7. The second term (min(9, κi({2})) for ~α, min(8, κi({2})) for ~β) is not
taken into account.

A second drowning effect may exist, driven by the minimum operator: suppose
that the rating of both acts on feature 1 is the least possible – ⊥. Then the term
min(7, κi({1, 2}) should be replaced by min(⊥, κi({1, 2}), which is equal to ⊥.
For each of the capacities, the maximal term is the first one, equal to min(9, κi({2})) =
κi({2}) for ~α and min(8, κi({2})) = κi({2}) since κi({2}) < 8. Hence, the Pareto
dominance of ~β by ~α on feature 2 is drowned by the fact that the weight κi({2}) is
very low.

Finally, one should notice that a third drowning effect is present, inherent to the
capacity itself. Indeed, the capacities are not required to satisfy the strict Pareto
principle. Applied to sets of features, this condition writes ∀A,B, κ(B) > ⊥ =⇒
κ(A ∪ B) > κ(A). Probabilities obviously satisfy it. But possibility measures,
and plausibility measures in the sense of Shafer[36] fail to satisfy this property.
Overcoming these drowning effects is the major motivation of the results presented
in the paper.

3.2 Pareto-dominance and preferential independence

The drowning effect is also often understood as an incapacity to obey preferential
independence (a form of Savage’s Sure-Thing Principle):

Axiom PI ~αA~γ � ~βA~γ if and only ~αA~δ � ~βA~δ.

It can be severely violated by Sugeno integral. It is easy to show that there may
exist four tuples such that ~αA~γ � ~βA~γ while ~βA~δ � ~αA~δ. It is enough to consider
Boolean tuples (subsets) and notice that, generally if A is disjoint from B ∪ C,
nothing forbids a fuzzy measure κ to satisfy κ(B) > κ(C) along with κ(A ∪C) >
κ(A ∪ B) (for instance, belief functions are such). The prioritized maximum and
minimum W+

π and W−
π violate independence to a lesser extent since they obey the

following weak form of PI:

Axiom WPI: ∀A,∀~α, ~β,~γ, ~δ, ~αA~γ � ~βA~γ ⇒ ~αA~δ � ~βA~δ.
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It has been shown by Marichal [26] that axiom PI is generally not compatible
with Sugeno integrals. We can moreover prove that Sugeno integrals are almost
incompatible not only with PI, but also with the less demanding principle of Pareto
efficiency.

Theorem 2 Relation �sugκ,u is Pareto-efficient if and only if there exists a unique
feature i∗ such that ∀A, κ(A) = > if i∗ ∈ A, κ(A) = ⊥ if i∗ /∈ A.

PROOF. Suppose i∗ such that ∀A, κ(A) = > if i∗ ∈ A, κ(A) = ⊥ if i∗ /∈ A.
Then, ∀A, i∗ 6∈ A, A is a null set since κ(A ∪ B) = κ(B) = ⊥ if i∗ 6∈ B, and
κ(A∪B) = κ(B) = > if i∗ ∈ B. So, all features are null, but i∗. So, Sκ(ω) = (ω)i∗
satisfies SPAR.

Conversely, suppose ∃A,> > κ(A) = λ > ⊥. Then consider the constant
tuple λ and tuple >Aλ �P λ. Obviously Sκ(λ) = λ = κ(A) and Sκ(>Aλ) =
max(min(λ,>),min(>, κ(A))) = κ(A). Since A is not null, this result constitutes
a violation of the principle of efficiency. Hence we must restrict to Boolean set-
functions such that κ(A) ∈ {⊥,>}. Now let A,B be disjoint subsets such that
κ(A) = κ(B) = >. Consider objects αAβ and α(A ∪ B)β, with α > β. Then
Sκ(αAβ) = Sκ(α(A ∪ B)β) = α while clearly α(A ∪ B)β �P αAβ. So the set-
functions obeying strict Pareto efficiency must be such that κ(A) = κ(B) = >
implies A ∩ B 6= ∅. So the minimal sets A such that κ(A) = > cannot be disjoint.
If one such minimal set A contains at least two features, then consider the n-tuple
~δ such that δi = α for some i ∈ A , δk = β, for k ∈ A, k 6= i, and ⊥ otherwise.
Clearly, ~δ �P βA⊥. It is clear that Sκ(~δ) = Sκ(βA⊥) = min(κ(A), β) = β.
Hence A must be a singleton {i∗}. Hence it is unique. QED

Note that theorem could be reformulated as follows: �sug is Pareto-efficient if
and only if there exists a unique essential feature according to which objects are
compared. This result means that Sugeno integral involving more than one feature
cannot be efficient. Such impossibility results are not necessarily damning. It in-
deed remains possible to look for a refinement of the weak ordering induced by
Sugeno integral, i.e. get a decision rule coherent with Sugeno integral (i.e. fol-
lowing the strict preference induced by latter, if any) but possibly overcoming the
drowning situations, and thus being more discriminant than Sugeno integral.

The problem of refining the weak ordering induced by Sugeno integrals was
actually studied by Murofushi [29]. This author showed a result similar to the one
above considering a weaker condition that SPAR, namely, if αi > βi,∀i = 1, . . . , n
then ~α � ~β. He noticed the lack of discrimination of Sugeno by proving that �sug
satisfies the latter property only if the capacity κ takes values in {⊥,>}. He then
proposed to refine it by means of several capacities κ1, . . . , κq inducing a tuple of
global evaluations (Sκ1(~α), . . . , Sκq(~α)) for each ~α. Murofushi then proposed to
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refine the �sug ordering by a lexicographic use of the tuples of global evaluations,
showing conditions to recover the SPAR axiom.

However, it has been proved more recently [21] that two special Sugeno integrals,
namely those defined from a possibility distribution, can be refined by a weighted
average, which corresponds to a generalization of the leximax and leximin proce-
dures. So there is hope to refine the ordering�sug by exploiting these recent results.

4 Refined qualitative prioritized maximum and minimum

The basic natural way to overcome the lack of discrimination power of Sugeno
integrals consists of refining the ordering �sug. Recall that for any preference re-
lation �, a refinement of � is a different relation �′ on the same universe such
that:

~α � ~β =⇒ ~α �′ ~β. (13)

Lexicographic refinements are a natural way to go in a qualitative setting. They
can refine both the Pareto-ordering and the pessimistic ordering based on Wald
criterion. They were recently successfully extended to overcome the lack of dis-
crimination of the possibilistic qualitative decision rules (i.e. for criteria W−

π and
W+
π ) [21]. Since these results are the basis of the findings in the present paper, they

are recalled in the remainder of the Section.

4.1 Additive refinements of minimum and maximum

When comparing tuples, the drowning effect of the minimum aggregation can be
fixed by the so-called leximin ordering. Symmetrically, the leximax ordering over-
comes the lack of discrimination of the maximax prioritized maximum criterion.
Practically, the leximin procedure (resp. the leximax procedure) consists in order-
ing both tuples in increasing (resp. decreasing) order and then lexicographically
comparing them [10].

Definition 3 (leximax, leximin) Let ~α, ~β ∈ Ln. Then

• ~α �lmax ~β ⇔ ∃i,∀j < i, α(j) = β(j) and α(i) > β(i);
• ~α �lmin ~β ⇔ ∃i, ∀j > i, α(j) = β(j) and α(i) > β(i);
• ~α ∼lmax ~β ⇔ ~α ∼lmin ~β ⇔ ∀j, α(j) = β(j),

where, for any ~w ∈ Ln, w(k) is the k-th greatest element of ~w (i.e. w(1) ≥ . . . ≥
w(n)).
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Both rules conclude to indifference if and only if the corresponding reordered tu-
ples are the same. The leximin-ordering is a refinement of both the Pareto-ordering
and the maximin-ordering [14]: mini=1,...,n αi > mini=1,...,n βi implies ~α �lmin ~β
and ~α �P ~β implies ~α �lmin ~β. leximin optimal decisions are always indeed min-
optimal and Pareto-maximal: �lmin is the most selective among these preference
relations. The leximin ordering can discriminate more than any symmetric aggre-
gation function: for instance, the reordered tuples can be different (and thus the
leximin criterion is capable of discriminating) even when (assuming numbers) the
sum of αi’s equals the sum of βi’s. Similar remarks apply to the leximax ordering
with respect to the maximax criteria.

Interestingly, the qualitative leximin and leximax rules can be simulated by means
of a sum of numerical values provided that the levels in the qualitative (finite) utility
scale L are mapped to values sufficiently far away from one another on a numerical
scale. Consider an increasing mapping φ from L to the reals. It is possible to define
this mapping in such a way as to refine the maximax ordering:

max
i=1,...,n

αi > max
i=1,...,n

βi implies
n∑
i=1

φ(αi) >
n∑
i=1

φ(βi). (14)

For instance, the transformation φ(λj) = N j with N > n achieves this goal. It is a
super-increasing mapping in the sense that φ(λj) >

∑
k<j φ(λk), ∀j = 1, . . . ,m. In

order to map L to [0, 1] so that φ(λ0) = 0 and φ(λm) = 1 just take φ(λj) = Nj−1
Nm−1

.

It can actually be checked that the leximax ordering is retrieved by means of this
refinement, based on the sum:

~α >lmax
~β if and only if

n∑
i=1

φ(αi) >
n∑
i=1

φ(βi). (15)

Function φ(.) is convex, which is in line with the optimistic behavior of W+.

A similar encoding of the leximin procedure can be achieved by means of a sum,
using another super-increasing mapping of the form ψ(λj) = k − φ(ν(λj)), (for
instance, with k = 1, the transformation ψ(λj) = 1−N−j

1−N−m ):

min
i=1,...,n

αi > min
i=1,...,n

βi implies
n∑
i=1

ψ(αi) >
n∑
i=1

ψ(βi). (16)

It can actually be checked that the leximin ordering is retrieved by means of this
refinement, function ψ(.) being concave, which is in line with the pessimistic bel-
havior of W−.

The qualitative pessimistic and optimistic Wald criteria are thus refined by means
of a numerical criterion with respect to a risk-averse and risk-prone utility function
respectively, as can be seen by plotting L against numerical values in φ(L) and

13



ψ(L). Notice that these transformations are not possible when L is not finite [28]
although the leximin and leximax procedures make mathematical sense even in this
case.

4.2 Additive refinements of possibilistic preference functionals

Prioritized maximum and minimum W+
π and W−

π can be refined by by means
of weighted averages, thus recovering Savage’s five first axioms[20]. Consider first
the prioritized maximumW+

π under a given possibility distribution π. We can again
define an increasing mapping χ from L to the reals such that χ(λ0) = 0 and espe-
cially:

maxi=1,...,n min(πi, αi) > maxi=1,...,n min(πi, βi)

implies∑n
i=1 χ(πi) · χ(αi) >

∑n
i=1 χ(πi) · χ(βi).

(17)

A sufficient condition is that:

∀j ∈ {1, . . . ,m}, χ(λj)
2 ≥ Nχ(λj−1) · χ(>), (18)

for N > n. The increasing mapping is such that :

χ(λm) = 1, χ(λ0) = 0, χ(λj) =
N

N2m−j , j = 1,m− 1, (19)

with N = n + 1 can be chosen, with m = |L|. Moreover, let {E0, . . . , Ek} be
the partition of {1, 2, . . . , n} induced by π, such that ∀i, i′ ∈ Ej, π(i) = π(i′) and
whenever j > j′, i ∈ Ej, i′ ∈ Ej′ , π(i) > π(i′).Ek contains the most important fea-
tures, and E0 the null features. Let K = 1∑

l=1,k
|El|·χ(πl)

. Define χ∗(λj) = Kχ(λj),

it holds that:

• p = χ∗(π(·)) is a probability assignment respectful of the possibilistic order-
ing of states. In particular, p is uniform on equi-possible states (the sets Ej).
Moreover, if i ∈ Ej then pi is greater than the sum of the probabilities of all
less probable states, that is, pi > P (Ei−1 ∪ · · · ∪ E0). Such probabilities gener-
alize the linear big-stepped probabilities that form a super-increasing sequence
[3] (recovered when the Ei’s are singletons) and are simply called big-stepped
probabilities here.
• The χ(λj)’s coefficients form a super-increasing sequence of reals rm > · · · > r1

such that ∀m ≥ j > 1, rj > n · rj−1 that can be encoded by a convex real
mapping.
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• The preference functional

WA+
χ(π)(~α) =

n∑
i=1

χ∗(πi) · χ(αi) (20)

is a big-stepped weighted average function (e.g. an expected utility criterion)
for a risk-seeking decision-maker, and W+

π (~α) > W+
π (~β) implies WA+

χ(π)(~α) >

WA+
χ(π)(

~β). Namely this is precisely equation (17) up to the multiplicative con-
stant K. i.e., the weighted average criterion so-obtained refines the prioritized
maximum criterion. As a refinement, it is perfectly compatible with but more
decisive than the latter. Since it is a weighted average, it obviously satisfies pref-
erential independence PI as well as strict Pareto dominance SPAR. Moreover, it
does not use any other information but the original ordinal one. It can be shown
that it is not the only criterion in this family of sound “unbiased” refinements,
but it is the most efficient among them (up to an equivalence relation), since it
refines any unbiased refinement of the prioritized maximum criterion (see [21]
for more details).

The prioritized minimum criterion can be similarly refined. Notice that W−
π (~α) =

ν(W+
π (ν(~α))), with ν(~α)i = ν(αi) using the order-reversing map ν of L. Then,

choosing the same mapping χ∗ as above, one may have that

mini=1,...,n max(ν(πi), αi) > mini=1,...,n max(ν(πi), βi)

implies∑n
i=1 χ

∗(πi) · φ(αi) >
∑n
i=1 χ

∗(πi) · φ(βi),

(21)

where φ(λj) = 1 − χ(ν(λj)) (it is equal to 1 − N

N2j , for j < m, and 1 if j =

m, with the same value of N as for the prioritized maximum). Coefficients φ(λj)
form a super-increasing sequence that can be encoded by means of a concave real
mapping, and the weighted average criterion

WA−χ(π)(~α) =
n∑
i=1

χ∗(π(i)) · φ(αi) (22)

is a risk-averse one, that refines W−
π in the sense that W−

π (~α) > W−
π (~β) implies

WA−χ(π)(~α) > WA−χ(π)(
~β).

4.3 Weighted leximax / leximin criteria

The orderings induced by WA+
χ(π)(~α) and WA−χ(π)(~α) actually correspond to gen-

eralizations of leximin and leximax to prioritized minimum and maximum aggre-
gations, thus bridging the gap between prioritized maximum and minimum and

15



classical decision theory. To make this generalization clear, let us simply consider
that leximin and leximax orderings are defined on sets of tuples whose components
belong to a totally ordered set (Λ,�), say leximin(�) and leximax(�). Now,
suppose (Λ,�) = (Ll,≥lmin) or (Λ,�) = (Ll,≥lmax), with any l ∈ N. Then,
nested lexicographic ordering relations can be recursively defined by nesting pro-
cedures such as leximin(≥lmin), leximax(≥lmin), leximin(≥lmax), and finally
leximax(≥lmax), that can compare L-valued matrices.

Consider the procedure leximax(≥lmin) defining the relation �lmax(�lmin), for
instance. It applies to matrices [α] of dimension q1 × q2 with coefficients αij in
(L,≥). These matrices can be totally ordered in a very refined way by this rela-
tion. Denote by αi· row i of [α]. Let [α?] and [β?] be rearranged matrices [α] and
[β] such that terms in each row are reordered increasingly and rows are arranged
lexicographically top-down in decreasing order. [α] �lmax(�lmin) [β] is defined as
follows :

∃k ≤ q1 s.t. ∀i < k, α?i· =lmin β
?
i· and α?k· >lmin β

?
k·

Relation �lmax(�lmin) is a complete preorder. [α] 'lmax(�lmin) [β] if and only if
both matrices have the same coefficients up to the above described rearrangement.
Moreover, �lmax(�lmin) refines the ranking obtained by the prioritized maximum
criterion:

max
i=1,...,q1

min
j=1,...,q2

αij > max
i=1,...,q1

min
j=1,...,q2

βij implies [α] �lmax(�lmin) [β].

and especially, if [α] Pareto-dominates [β] in the strict sense (∀i, j, αij ≥ βij and
∃i∗, j∗ such that ai∗j∗ > bi∗j∗), then [α] �lmax(�lmin) [β].

Comparing tuples ~α and ~β in the context of a possibility distribution π can be
done using relations �lmax(�lmin) applied to n × 2 matrices with coefficients in
(L,≤), n being the number of features, namely on the matrices [απ] and [βπ] with
coefficients απi1 = πi and απi2 = αi, βπi1 = πi and βπi2 = βi.

The weighted average WA+
χ(π)(~α) defined in the previous section precisely en-

codes the relation �lmax(�lmin) :

Theorem 4 [20]: WA+
χ(π)(~α) ≥ WA+

χ(π)(
~β) if and only if [απ] �lmax(�lmin) [βπ].

In other terms, WA+
χ(π) applies a leximax procedure to utility degrees weighted by

possibility degrees. Similarly, WA−χ(π) applies a leximin procedure to utility degrees
weighted by “impossibility degrees”:

Theorem 5 [20]: WA−χ(π)(~α) ≥ WA−χ(π)(
~β) if and only if [αν(π)] �lmin(�lmax) [βν(π)].

i.e., the weighted average WA−χ(π)(~α) just encodes the application of a procedure
leximin(leximax) not directly on [απ] and [βπ] but on the corresponding matrices
[αν(π)] and [βν(π)] with coefficients [αν(π)]i1 = ν(πi) and [αν(π)]i2 = αi, [βν(π)]i1 =
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ν(πi) and [βν(π)]i2 = βi.

As a consequence, the additive preference functionals WA+
χ(π)(~α) and WA−χ(π)(~α)

refining the prioritized maximum and minimum are qualitative despite their numer-
ical encoding. Moreover, the two orderings �lmax(�lmin) and �lmin(�lmax) of acts
are defined even on coarse ordinal scales L while obeying preferential indepen-
dence.

The two relations coincide if the utility functions are Boolean. This is not surpris-
ing since�lmin and�lmax are conjugate (~α�lmin ~β if and only if (ν(β1), . . . , ν(βk))
�lmax (ν(α1), . . . , ν(αk)). Another formulation of this result consists in noticing
that WA+

χ(π)(~α) and WA−χ(π)(~α) share the same big-stepped probability function.
This representation is probabilistic, although qualitative, and is precisely the lexi-
refinement of both possibility and necessity orderings identified by [15]:

A �ΠLex
B if and only if ~πA �lmax ~πB, (23)

where ~πA is the tuple (a1, . . . , an) such that ai = πi if i ∈ A and ai = ⊥ oth-
erwise. This importance relation among sets of features is called “leximax” likeli-
hood [15,12]. It is a complete preordering which refines the possibilistic ordering
of sets (A �Π B ⇐⇒ Π(A) ≥ Π(B), where ∀A ⊆ S,Π(A) = maxi∈A πi)
together its conjugate necessity ordering (A �N B ⇐⇒ N(A) ≥ N(B), where
∀A ⊆ S,N(A) = ν(Π(Ac))). The leximax refinement �ΠLex

of a possibility or-
dering induced by a uniform possibility distribution on features coincides with the
comparative probability relation induced by the uniform probability distribution.
This is not surprising in view of the fact that the leximax likelihood relation is
really a comparative probability relation in the usual sense, representable by a big-
stepped probability function.

4.4 Lessons learnt for refining Sugeno integral

The results presented above obviously suggest that Sugeno integral could be re-
fined in a similar way. Some preliminary remarks provide some insight on the pos-
sible extension of this criterion.

First, the reason why the prioritized maximum and minimum could be refined by
means of a weighted average is because these qualitative aggregation rules satisfy a
weak form of preferential independence, namely WPI. However, there is no hope of
refining Sugeno integral by means of a weighted average since the former strongly
violates axiom PI. However the form of Sugeno integral:

Sκ(~α) = max
j=1,...,m

min(λj, κ(Eλj
))

strongly suggests to refine a Sugeno integral by means of a Choquet integral with
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respect to a numerical capacity v encoded by the qualitative one κ:

Chv(~α) =
m∑
j=1

v(Eλj
).(uj − uj−1)

where uj is a numerical encoding of λj . Choquet integral is additive on co-
monotonic tuples ~u and ~u′, and, for such tuples, the sure-thing principle is valid
[34,26]. Sugeno integral is minitive and maxitive for co-monotonic tuples and
obeys, for such acts, the weak form of independence (WPI) satisfied by the pri-
oritized minimum and maximum:

Proposition 6 If ~αA~γ, ~βA~γ, ~αA~δ and ~βA~δ induce the same ordering of features,
then the following property holds: Sκ(~αA~γ) > Sκ(~βA~γ) implies Sκ(~αA~δ) ≥
Sκ(~βA~δ).

PROOF. Let {1, . . . , n} be the joint ordering of features induced by the four tu-
ples. Then let Ai = {1, . . . , i} and πi = κ(Ai),∀i = 1 . . . , n. The one can write
Sκ(~αA~γ) = W+

π (~αA~γ), Sκ(~βA~γ) = W+
π (~βA~γ), Sκ(~βA~δ) = W+

π (~βA~δ), and
Sκ(~αA~δ) = W+

π (~αA~δ). Hence WPI holds for such four acts.

Sugeno integral also respects stochastic dominance in the wide sense, which is one
of the key axioms proposed in [33] to axiomatize Choquet integral in Savage style.

Actually, restricting to tuples of utilities that rank features in a prescribed order,
Choquet integral behaves like a weighted average and Sugeno integral behaves like
a prioritized minimum or maximum. So refining a Sugeno integral by means of a
Choquet integral looks like the right way to go, relying on the method for refining
the prioritized minimum and maximum by means of a weighted average.

However, as Sugeno integral takes various equivalent forms, the result of the
refinement will depend on the chosen form to which a big-stepped transformation
is applied. Hence, there are two approaches one might think of for achieving this
program.

• Applying a super-increasing transformation directly on the original definition
of Sugeno integral, thus preserving the nature of the original capacity. This ap-
proach preserves the potential lack of discrimination due to the set-function. The
latter can be refined in turn if needed. This approach can be used on the forms
(3) or (4) of Sugeno integral.

• Applying a super-increasing transformation to the expression (5) of Sugeno inte-
gral, involving all subsets of features. A representation of the capacity by means
of an ordinal counterpart to the Moebius transform is used to reduce the redun-
dancy of expression (5). The questionable point in this method is that the nature
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of the capacity changes in the transformation since it becomes a belief function.
But the method retrieves the weighted average refinement of the prioritized max-
imum criterion as a special case.

5 Capacity-preserving refinements

In its standard expression Sκ(~α) = maxλj∈L min(λj, κ(Aλj
)), the two operators

max and min are monotonic but not strictly, hence two nested drowning effects. The
simplest idea to refine Sugeno integral is to consider a leximax(≥lmin) refinement
of this maxmin expression. However we can also use expression (4) of Sugeno
integral where we maximize over the feature set, yielding another refinement. The
reconciliation of the two approaches is discussed.

5.1 Refinements respecting stochastic dominance

Consider the following decision rule, based on a straightforward lexicographic
refinement of the standard expression (3):

~α �lsugL
~β ⇐⇒ [~ακ]L �lmax(�lmin) [~βκ]L, (24)

where [~ακ]L is a m × 2 matrix on (L,≤) with coefficients ~ακj1 = λj and ~ακj2 =
κ(Aλj

), i = 1, . . . ,m. Note that κ(Aλ0) = > always, and we do not need row(⊥,>)
in the matrix. The properties of �lmax(�lmin) are thus inherited:

Corollary 7
�lsugL is a complete and transitive relation.
It refines the ranking of acts �sug provided by Sugeno integral Sκ.

Moreover, since the maximum operator in the standard expression is taken over
elements of the scale L, we are fully in agreement with stochastic dominance:

Proposition 8
~α ∼lsugL

~β ⇐⇒ ∀λ, κ(Aλ) = κ(Bλ);
If ~α κ-dominates ~β (∀λ, κ(Aλ) ≥ κ(Bλ) and κ(Aλ) > κ(Bλ) for some λ) then

~α �lsugL
~β.

Example 9 Consider tuples ~α such that αi = 5 if i ∈ A and 2 otherwise, and ~β
such that βi = 7 if i ∈ B, 4 if i ∈ C and 2 otherwise, where B and C are disjoint
sets of features. Assume κ(A) = 4, κ(B) = 2, κ(B ∪ C) = 5. Then the following
matrices [~ακ]L and [~βκ]L with rows (λj, κ(Aλj

)) and (λj, κ(Bλj
)) can be devised:
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[~ακ]L =



> ⊥

7 ⊥

5 4

4 4

2 >


; [~βκ]L =



> ⊥

7 2

5 2

4 5

2 >


.

It is clear that Sκ(~α) = Sκ(~β) = 4, but ~α �lsugL
~β since the maximal leximin-

pair on each side is (4, 5) ∼lmin (5, 4) and then (4, 4) is the next dominating pair.

Now, being a leximax(≥lmin) procedure,�lsugL can be encoded by a sum of prod-
ucts. We can for instance use a super-increasing function χ similar to the previous
one, built with respect to the number of levels in the scale L rather than with respect
to the number of features. Here, the max operator applies to the m positive levels
in L rather than to the n features of F , hence we choose constant N = m + 1 in
the definition (19) of function χ. We can now immediately derive:

Theorem 10 ~α �lsugL
~β ⇐⇒ ∑

λ∈L χ(λ) · χ(κ(Aλ)) ≥
∑
λ∈L χ(λ) · χ(κ(Bλ)).

So, we define a new evaluation function Elsug
L , that refines the ranking provided by

Sκ, in agreement with �lsugL :

Elsug
L (~α) =

∑
λ∈L

χ(λ) · χ(κ(Aλ)). (25)

It should be noticed that Elsug
L (>A⊥) is proportional to χ(κ(A)) i.e. when utility

degrees are Boolean, the comparison of tuples in terms of Elsug
L is perfectly equiv-

alent to the comparison in terms of κ — that is why we say that this refinement
preserves the capacity. However, the aggregated evaluation Elsug

L is not idempo-
tent since Elsug

L (λj) =
∑
k≤j χ(λk) 6= λj . The numerical representation we look

forward to is a Choquet integral (2), which preserves idempotence.

Notice that Sugeno integral is of the form maxmj=1 min(λj, γj) with > ≥ γ1,≥
. . . ,≥ γm ∈ L, letting γj = κ(Aλj

). Then the following result is instrumental:

Lemma 11 Consider three groups of coefficients > ≥ γ1 ≥ · · · ≥ γm ∈ L,
> ≥ δ1 ≥ · · · ≥ δm ∈ L, and λ1 < · · · < λm = > ∈ L, there exists an increasing
mapping Φ : L→ [0, 1] such that Φ(⊥) = 0,Φ(>) = 1 and:

max
j=1,...,m

min(λj, γj) > max
j=1,...,m

min(λj, δj)

implies
m∑
j=1

Φ(γj) · (Φ(λj)− Φ(λj−1)) >
m∑
j=1

Φ(δj) · Φ(λj).
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PROOF. Increasing mapping Φ : L → [0, 1] such that Φ(⊥) = 0,Φ(>) = 1
clearly exist. The most demanding situation for ensuring that the above strict in-
equality between maxmin qualitative expressions enforces the other quantitative in-
equality side is when maxj=1,...,m min(λj, γj) = λk and maxj=1,...,m min(λj, δj) =
λk−1, with moreover, γj = ⊥,∀j > k and γj = λk,∀j ≤ k, while δj = >,∀j <
k − 1, and δj = λk−1, ∀j ≥ k − 1. Then the quantitative inequality reads:

∑k
j=1 Φ(λk) ·(Φ(λj)−Φ(λj−1)) >

∑k−2
j=1 Φ(>) ·Φ(λj)+

∑m
j=k−1 Φ(λk−1) ·Φ(λj)

In order to ensure the above inequality, noticing that

• ∑k
j=1 Φ(λk) · (Φ(λj)− Φ(λj−1)) = Φ(λk)

2

• ∑k−2
j=1 Φ(>) · Φ(λj) +

∑m
j=k−1 Φ(λk−1) · Φ(λj) < Φ(λk−1) · ((k − 2)Φ(>) +∑m

j=k−1 Φ(λj)) < NΦ(>)Φ(λk−1),

we can require a stronger sufficient condition : Φ(λk)
2 ≥ NΦ(>)Φ(λk−1) with

N > m. It is thus sufficient to define Φ such that Φ(λk−1) ≤ Φ(λk)2

N+1
,∀k = 1, . . . ,m,

since Φ(>) = 1. QED

However the above results show the existence of Choquet-integral-based refine-
ments of Sugeno integral orderings, but not their unicity. This lemma implies that
Sugeno integral can be refined by a Choquet integral using the same mapping as the
one used in (25) for representing�lsugL by a sum of products, choosing the constant
N large enough (as shown in the above proof). Hence the following result:

Theorem 12 ~α �sug ~β implies ChΦ◦κ(Φ(~α)) > ChΦ◦κ(Φ( ~β)), where Φ(~α) is the
tuple with components Φ(αi).

PROOF. Suppose that
Sκ(~α) = maxj=1,...,m min(λj, κ(Aλj

)) > Sκ(~β) = maxj=1,...,m min(λj, κ(Bλj
)).

Using the above lemma, it follows that
∑m
j=1 Φ(κ(Aλj

)) · (Φ(λj) − Φ(λj−1)) >∑m
j=1 Φ(κ(Bλj

)) · Φ(λj) The latter term is clearly larger than
∑m
j=1 Φ(κ(Bλj

)) ·
(Φ(λj)− Φ(λj−1)). QED

Denote this refinement of Sugeno integral ordering as �ch. It is clear that :

Corollary 13 �ch satisfies weak preferential independence (WPI) restricted to co-
monotonic tuples.

The pending question is then whether the latter refinement �ch defined by a
Choquet integral coincides with �lsugL . The answer is no in the general case. It may
happen that ~α �lsugL

~β while ~β �ch ~α. For instance in the above example note that
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• ChΦ◦κ(~α) = Φ(>) · Φ(2) + Φ(4) · (Φ(4) − Φ(2)) + Φ(4) · (Φ(5) − Φ(4)) =
Φ(2) + Φ(4) · (Φ(5)− Φ(2))

• ChΦ◦κ(~β) = Φ(2)+Φ(5) ·(Φ(4)−Φ(2))+Φ(2) ·(Φ(5)−Φ(4))+Φ(2) ·(Φ(7)−
Φ(5)) = Φ(2) + Φ(4) · (Φ(5)− Φ(2)) + Φ(2)(Φ(7)− Φ(5)) > ChΦ◦κ(~α).

while ~α �lsugL
~β. The point is that the original expression (3) of the Sugeno inte-

gral involves redundant pairs of the form (λi, κ(Aλj
)) and (λj+1, κ(Aλj+1

)), with
κ(Aλj

) = κ(Aλj+1
) (like pairs (4, 4) and (5, 4) in the example). The quantity Elsug

L

(likewise �lsugL ) can be seen as problematic for the following reasons:

• It depends on the number of elements in the scale L we consider. Namely, if we
introduce an additional level λ, between λj and λj+1, all other things being the
same, Elsug

L (~α) will change (the term Φ(κ(Aλj
)) ·Φ(λj)+Φ(κ(Aλj+1

)) ·Φ(λj+1)
becomes Φ(κ(Aλj

)) · Φ(λj) + Φ(κ(Aλj
)) · Φ(λ) + Φ(κ(Aλj+1

)) · Φ(λj+1) (as
κ(Aλj

) = κ(Aλ)).
• It counts the contribution of the same set twice (computing χ(κ(Aλj+1

))·(χ(λj)+
χ(λj+1)), when κ(Aλj

) = κ(Aλj+1
)), while the Choquet integral avoids such a

double counting (using a single term χ(κ(Aλj+1
)) · (χ(λj+1 − χ(λj−1)).

So, it seems reasonable to strip matrices [~ακ]L from all pairs (λi, κ(Aλj
)) which

never affect the value of Sugeno integral (3). These are pairs where κ(Aλj
) =

κ(Aλj+1
) and likewise rows (λi, κ(Aλj

)) for which Aλj
= ∅. Let J(~α) = {j :

Aλj
6= ∅, κ(Aλj

) 6= κ(Aλj+1
), j = 1,m} be the set of non-redundant indices for ~α.

Sugeno integral can be equivalently expressed as Sκ(~α) = maxj∈J(~α) min(λj, κ(Aλj
)).

Let [~ακ] and [~βκ] be the non-redundant matrices so-constructed. They have re-
spectively |J(~α)| and |J(~β)| rows, and missing rows of the form (⊥,⊥) can be
artificially added to the smallest matrix so as to let them have the same size. A
new relation �lsug is defined by comparing such matrices [~ακ] and [~βκ] using
leximax(�lmin).

In the above example, it comes down to removing rows (4, 4), (7,⊥), (>,⊥)

from [~ακ]L and (5, 2), (>,⊥) from [~βκ]L. Namely:

[~ακ] =

 5 4

2 >

; [~βκ] =


7 2

4 5

2 >

 .

Then, with such reduced matrices, ~β �lsug ~α because (7, 2) �lmin (2,⊥), and
~β �ch ~α as well.

Note that this deletion process does not affect the result of the Choquet inte-
gral transform, as can be checked on the example, by recomputing ChΦ◦κ(~α) and
ChΦ◦κ(~β) on the above matrices. However, even after deletion of redundant pairs
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as proposed above, both orderings�lsug and�ch do not coincide. In particular, one
may have [~ακ] ∼lmax(lmin) [~βκ] while ~β �ch ~α. To see it consider tuples of the
form ~α = λAγ and ~β = µBγ with > ≥ λ > γ and > ≥ µ > γ, κ(A) = µ and
κ(B) = λ. The corresponding matrices are :

[~ακ] =

λ µ

γ >

; [~βκ] =

µ λ

γ >



(e.g. delete row (7, 2) in the previous example matrix [~βκ]). It is clear that ~α ∼lsug
~β. However, ChΦ◦κ(~α) = Φ(µ) · (Φ(λ)−Φ(γ)) + Φ(γ), while ChΦ◦κ(~β) = Φ(λ) ·
(Φ(µ) − Φ(γ)) + Φ(γ) > ChΦ◦κ(~α) if and only if µ > λ. The issue of whether
�ch refines �lsug or disagrees with it on the big-stepped quantitative scale remains
open, even if it is possible to find matrices of real numbers where ~α ∼ch ~β while
~α ∼lsug ~β does not hold. For instance consider the last example above where matrix
[~βκ] has first line (µ, δ) such that Φ(δ) = Φ(µ)Φ(λ)−Φ(γ)

Φ(µ)−Φ(γ)
. It ensures ~α ∼ch ~β but

~α ∼lsug ~β does not hold since δ 6= λ, generally. However the existence of such a
super-increasing mapping and a value δ in a finite scale is not guaranteed since if
Φ(γ) is very small in front of Φ(λ), then Φ(δ) and Φ(λ) should be of a similar order
of magnitude even if not equal. This possibility makes sense on a continuous value
scale. This is not what is assumed with discrete qualitative scales were successive
steps are far away for one another. At this stage one should either prove that �ch
refines �lsug or find a pair of tuples where the two orderings are conflict. This is
left for further investigation.

It should be noticed that, when the capacity is a possibility measure Π (resp. a
necessity measure N ), none of the above refinements recovers the ranking of tu-
ples provided by weighted average WA+

χ(π) (resp. WA−χ(π)). Hence none of them is
the generalization of the WA+

χ(π) ranking nor of the WA−χ(π) ranking. Actually,�lsugL

can be viewed as using the leximax(≥lmin) refinement on the standard expression of
Sugeno integral (3) while�(WA)+ applies it to an expression involving a possibility
distribution (since SΠ(~α) = maxi=1,...,n min(αi, πi)), which is turned into a proba-
bility distribution. So,�lsugL and�ch preserve the capacity while�(WA)+ refines it.
It should be noticed that for Boolean tuples of the form>A⊥whereA is a subset of
features, ChΦ(κ)(>A⊥) = Φ(κ(A)) and Elsug

L (>A⊥) = Φ(κ(A)) · (∑λ>⊥Φ(λ)) ,
which shows that, when κ = Π, >A⊥ �ch >B⊥ ⇐⇒ >A⊥ �lsugL >B⊥ ⇐⇒
Π(A) ≥ Π(B), while it was shown that WA+

χ(π)(>A⊥) ≥ WA+
χ(π)(>B⊥) ⇐⇒

A �Πlex
B. In other terms, WA+

χ(π) purposedly overcomes the drowning effect in-
herent to the capacity, while neither�lsugL nor�ch do, considering that the capacity
supposedly contains all the information about the importance of features.
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5.2 A refinement based on feature ratings

The formulation (4) of Sugeno integral, i.e., Sκ(~α) = maxi=1,...,n min(αi, κ(Ai))
where Ai = {1, 2, . . . , i}, presupposes that the feature ratings αi are ranked in
decreasing order. It leads to a different refinement. In this case the maximum is
performed over features, not levels in the scale L. We can still use the transforma-
tion refining the prioritized maximum (with n features, instead of the m levels of
the scale L). If the αi’s are totally ordered (α1 > ... > αn), the following expression
is obtained:

EF lsug(~α) =
n∑
i=1

χ(αi) · χ(κ(Ai)). (26)

When some αi’s are equal, it is no longer well-defined and the following equivalent
formulation is a natural way of extending it, rewriting (4) under the form Sκ(~α) =
maxi=1,...,n min(αi, κ(Aαi

)):

EF lsug(~α) =
n∑
i=1

|{j : αi = λ}| · χ(λ) · χ(κ(Aλ)). (27)

Let �lf be the preference ordering induced by EF lsug. It is a refinement of �sug.
EF lsug also refines the ordering encoded by κ. Indeed, EF lsug(>A⊥) is propor-
tional to |A|.χ(κ(A)). So, A ∼lf B ⇐⇒ (κ(A) = κ(B) and |A| = |B|), and
A �lf B ⇐⇒ κ(A) > κ(B) or (κ(A) = κ(B) and |A| > |B|). We get a refine-
ment of the κ-ordering of sets by their cardinality. It is clear that comparing tuples
by means of�lf comes down to comparing matrices [~ακ]f with n rows (αi, κ(Aαi

))
by means of the leximax(�lmin) ordering.

Moreover, it turns out that �lsug and �lf are not comparable: �lf is not a re-
finement of �lsug, nor is �lsug a refinement of �lf , as shown by the following
counterexample.

Example 14
Let κ = Π be a possibility measure on three features denoted by 1, 2, 3. Consider
two objects ~α and ~β, and the following possibility distribution π:

Features ~α ~β π

1 8 8 8

2 6 8 2

3 7 6 >

Then SΠ(~α) = SΠ(~β) = 8. The tuples of pairs (λj,Π(Aλj
)), j > 0 are:

(6,>), (7,>), (8, 8), (>,⊥) for ~α and (6,>), (7, 8), (8, 8), (>,⊥) for ~β. The non-
redundant pairs are (7,>), (8, 8) for ~α and (6,>), (8, 8) for ~β. Hence ~α �lsug
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~β. Now use pairs (αi,Π(Aαi
)), i = 1, 2, 3. We get (8, 8), (7,>), (6,>) for ~α and

(8, 8), (8, 8), (6,>) for ~β. Hence ~β �lf ~α. Opposite rankings are found.

On this example, the choice of �lsug is closer to the intuition than the one of �lf ,
because ~β is better than ~α only on one feature of low importance (it could even be
a null feature), while ~α is better than ~β on each important feature. The questionable
point about �lf is that it again involves redundant information. Namely, it is clear
that κ(Aαi

) = κ(Aαk
) may occur when αi 6= αk and moreover, identical rows

appear when αi = αk. The following algorithm constructs reduced non-redundant
matrices [~ακ]∗:

Algorithm: Constructing [~ακ]∗ from [~ακ]f

(1) Rank features such that i < k implies αi ≥ αk;
(2) For i = 2, . . . , n do :
• If αi = αi−1, then delete row i− 1 (it is the same as row i),
• else if κ(Aαi

) = κ(Aαi−1
) then delete row i.

Matrices [~ακ]f and [~βκ]f in the example again contain redundant rows. For in-
stance, Π({1, 3}) = >, so that line (6,>) is redundant in [~ακ]f , while (8, 8) is once
too many in [~βκ]f . Now the remaining matrices are [~ακ]∗ �lmax(lmin) [~βκ]∗. These
matrices [~ακ]∗ and [~βκ]∗ are the same as [~ακ] and [~βκ] after deletion of redundant
rows. This is no coincidence.

Proposition 15 [~ακ]∗ = [~ακ].

PROOF. To form matrix [~ακ], all rows (λ, κ(Aλ)) such that κ(Aαi
) = κ(Aλ), λ <

αi and Aλ = ∅ are deleted from [~ακ]L. Remaining rows are thus of the form
(αi, κ(Aαi

)) for some feature i and, by construction, all remaining αi’s are dis-
tinct and such that if αk < αi then κ(Aαk

) > κ(Aαi
). They belong to [~ακ]f .

The above algorithm applied to [~ακ]f first keeps only one row among the identical
ones. The matrix obtained at this point still contains all rows in [~ακ]. Next, all rows
(αk, κ(Aαk

)) such that there is a feature i, for which αk > αi and κ(Aαk
) = κ(Aαi

)
are deleted. So [~ακ]∗ contains all rows of [~ακ]. But converse is true as well since if
not then the corresponding row of [~ακ]∗ not in [~ακ], say (αk, κ(Aαk

)) would be such
that if αk < αi then κ(Aαk

) > κ(Aαi
). By construction, this row is present in [~ακ]L

and would never be deleted when constructing [~ακ]. So this case is impossible.

So the relation �lsug is the same whether we use features or steps in the value
scale, after deleting redundant rows.
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6 Refinement of Sugeno integral based on qualitative Moebius transforms

The information contained in a capacity κ can be expressed in a non redundant
way by means of its qualitative Moebius transform; it is another set-function κ#

defined in [22] by κ#(A) = κ(A) if κ(A) > max{κ(B) : B ⊂ A} and κ#(A) = ⊥
otherwise. It is clear that κ# contains the minimal information to reconstruct κ as:

κ(A) = max
B⊆A

κ#(B). (28)

Function κ# plays the role of a “qualitative” basic probability assignment instru-
mental in Shafer’s theory of evidence and obtained via Moebius transform. The
subsets B that receive a positive support in terms of κ# play the same role for κ as
the focal elements in Shafer’s theory of evidence[36]: they are the primitive items
of knowledge. Equation (28) appears as the qualitative counterpart of the definition
of a belief function (even if κ may fail to satisfy axiom BEL) or an inner measure.
The set-function κ# can also be viewed as a possibilistic mass assignment, a pos-
sibility distribution over the power set 2F . Indeed, (28) is also a generalization of
the definition of the degree of possibility of a set in terms of a possibility distribu-
tion on F . Indeed, the function Π#(E) = ⊥ as soon as E is not a singleton, and
Π#({i}) = πi,∀i ∈ F .

In the third expression (5) of Sugeno integral, the set-function κ can be replaced
without loss of information by κ#. We now get another expression of Sugeno inte-
gral, maximizing over the family P#(F) of subsets of featuresA with κ#(A) 6= ⊥:

Sκ(~α) = max
A∈P#(F)

min(κ#(A), αA), (29)

where αA = mini∈A αi. The above expression of Sugeno integral has the standard
maxmin form viewing κ# as a possibility distribution over the power set ofF , since
maxA⊆F κ#(A) = >. Moreover the use of κ# instead of κ avoids a lot of poten-
tial redundant terms that appear in the other formulations and created difficulties
when refining Sugeno integral. The above expression is optimally non-redundant
in this sense. Moreover, the form (29) is very similar to the optimistic possibilistic
criterion W+

π because κ# is an extension of the possibility distribution explicitly
appearing in (6). Hence it is tempting to apply the super-increasing transform χ to
(29). Doing so changes a maxmin form into a sum of products :

Elsug
# (~α) =

∑
A∈2F

χ(αA) · χ∗(κ#(A)).

Ranking tuples byElsug
# (~α) comes down to a leximax(≥lmin) comparison of (2n×2)

matrices with rows of the form (κ#(A), αA). Notice that here the referential is not
F nor L, but 2F and κ#(∅) = ⊥; so, in the definition of χ, we set N = 2|F|.
Function χ∗ is the normalization of χ in such a way that

∑
A∈2F χ

∗(κ#(A)) = 1.
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So, the function m# : 2F 7→ [0, 1]:

m#(A) = χ∗(κ#(A))

is a mass assignment in the sense of Shafer[36]; in particular, m#(∅) = 0. Note
that m# is a big-stepped mass function in the sense that:

m#(A) > 0 =⇒ m#(A) >
∑

B⊆F , s. t.m#(B)<m#(A)

m#(B).

A consequence of this property is that if κ#(A) > ⊥ thenm#(A) > maxB⊂Am#(B)
since when A ⊂ B and κ#(A) > ⊥, κ#(B) > ⊥, then κ#(A) < κ#(B). Now, it
is easy to show that χ(αA) = χ(mini∈A αi) = mini∈A χ(αi). Then:

Elsug
# (~α) =

∑
A⊆F

m#(A) ·min
s∈A

χ(αi)

is a Choquet integral with respect to a belief function which refines the original
Sugeno integral, noticing that the expression of a Choquet integral of a tuple of
ratings in terms of the Moebius transform mv of a numerical capacity v is of the
form

Chv(~α) =
∑
A⊆F

mv(A) ·min
s∈A

χ(αi).

Letting Bel#(A) =
∑
B⊆Am#(B) be the belief function induced by m#, the

Choquet integral Elsug
# also reads :

Elsug
# (~α) = ChBel#(~α) =

m∑
j=1

Bel#(Aλj
) · (χ(λj)− χ(λj−1)).

This shows that any Sugeno integral can be refined by a Choquet integral w.r.t a
belief function. In summary:

Theorem 16 For any Sugeno integral Sκ, there exist a Choquet integralChBel with
respect to a belief function Bel and a utility function u such that:

Sκ(~α) > Sκ(~β) =⇒ ChBel(u(~α)) > ChBel(u(~β)).

Contrary to the solution obtained in the previous section, the capacity κ is gener-
ally not preserved under the present transformation. The resulting Choquet integral
is always pessimistic, and sometimes not more discriminant than the original crite-
rion.

Two particular cases are interesting to consider:

• If κ is a possibility measure Π, then κ#(A) is positive on singletons of positive
possibility only. In other words, κ# coincides with the possibility distribution
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of Π and the mass function obtained by the super-increasing transformation is a
probability assignment on F . Then the Moebius expression of Sugeno integral
coincides with the expression of the prioritized maximum. So m# is a regu-
lar big-stepped probability function and Choquet integral reduces to a regular
weighted average. We retrieve the maximal refinement WA+

χ(π) of the prioritized
maximum presented in Section 4.2.
• On the contrary if κ is a necessity measure N , ChBel# does not collapse at all

with the pessimistic expected utility WA−χ(π). Indeed, if κ is a necessity measure
N , κ#(A) is positive on alpha-cuts of the possibility distribution only. So the
mass assignment m# is positive on the nested family of sets Ai, and the belief
function Bel# is a necessity measure ordinally equivalent to the original one. In
this case, the resulting Choquet integral is one with respect to a necessity mea-
sure. Only the “max-min” framing of Sugeno integral has been turned into a
“sum-product” framing: the transformation has preserved the nature of the origi-
nal capacity and the capacity-preserving refinement �ch identified in first part of
Section 5 is retrieved.

7 Refining capacities

The above results motivate an investigation into the conditions under which a
capacity can be refined. When utility tuples are of the zero-one type, capacity-
preserving refinements are totally useless since Sugeno integral then coincides with
κ(A) for some setA. In some situations, the full-fledged refinement of a Sugeno in-
tegral should refine the capacity itself, as shown in the case of prioritized minimum
and maximum. In this section, some preliminary definitions and results are pre-
sented to this aim. The ultimate goal is to get as close as possible to enforcing strict
Pareto dominance (Axiom SPAR). Examples of likelihood ordering achieving this
goal are discrimin and leximin lexicographic refinements of possibility measures
[15,12]. We show how to extend these types of refinements to capacities.

7.1 Coping with the strict Pareto principle

Axiom SPAR in the Boolean setting reads: ∀A,B disjoint: B not null implies
κ(A ∪ B) > κ(A). Indeed, as the set A, viewed as a tuple, is Pareto-dominated by
A ∪ B, the latter should be more important than B. When there are no non-empty
null sets, it comes down to requiring κ(A) > κ(B) whenever the strict inclusion
B ⊂ A holds. A weaker requirement is as follows

S: ∀A,B disjoint: κ(B) > ⊥ =⇒ κ(A ∪B) > κ(A) (Strictness)

since κ(B) > ⊥ implies that B is not null. A capacity exhibits limited dis-
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crimination power if there exist two disjoint sets A,B such that κ(B) > ⊥ and
κ(A ∪ B) = κ(A). So, we aim at defining for any original capacity κ, another
capacity κ′ refining the ordering induced by the former, and satisfying axiom S, at
least. This axiom seems to have been first proposed by Z. Wang[42] under the name
converse null-additivity. The converse of axiom S is :

NA : ∀A,B disjoint: κ(A ∪B) > κ(A) =⇒ κ(B) > ⊥

This axiom also writes κ′(B) = ⊥ =⇒ κ′(A ∪ B) = κ′(A) and is called null-
additivity by Z. Wang [41] (see also Pap[31]). When NA or S holds with equiva-
lence, the corresponding property is denoted by NAS.

Proposition 17 For capacities, NAS implies SPAR

PROOF. Assume that ∀A,B disjoint: κ(A ∪ B) > κ(A) ⇐⇒ κ(B) > ⊥. If
κ(B) > ⊥ then B is not null and κ(A∪B) > κ(A). If κ(B) = ⊥, then ∀A disjoint
from B, κ(A ∪B) = κ(A), hence B is null, and SPAR does not apply.

Notice that axiom S is a weak form of a property of the ordering induced by
Shafer’s belief functions [44], namely:

BEL: ∀A,B,C disjoint sets: κ(A∪B) > κ(A) =⇒ κ(A∪B∪C) > κ(A∪C)

In fact likelihood relations that are monotonic with inclusion and obey this prop-
erty can always be represented by belief functions Bel [44]. In particular, necessity
measures satisfy it. Axiom S is retrieved when assuming A = ∅. The converse
implication is a property of the ordering induced by Shafer’s plausibility functions
Pl(A) = 1− Bel(Ac), hence also satisfied by possibility measures (even if A and
B are not disjoint):

PL: ∀A,B,C disjoint sets: κ(A∪B ∪C) > κ(A∪C) =⇒ κ(A∪B) > κ(A).

Note that BEL and PL are just slight reinforcements of the property ∀A,B,C
disjoint sets: κ(A ∪ B) > κ(A) =⇒ κ(A ∪ B ∪ C) ≥ κ(A ∪ C), which trivially
holds whenever κ is monotonic with inclusion. Joining BEL and PL, the following
property stronger than NAS can be considered:

BELPL: ∀A,B,C disjoint : κ(A∪B) > κ(A) ⇐⇒ κ(A∪B∪C) > κ(A∪C).

Axiom BELPL is a weak form of the classical preadditivity axiom, denoted by
PRAD, restricting preferential independence to sets, that underlies comparative
probabilities.

PRAD : ∀A,B, and C disjoint from A ∪ B: κ(B) ≥ κ(A) ⇐⇒ κ(B ∪ C) ≥
κ(A ∪ C).
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PRAD implies BELPL that implies SPAR. The converse is not true. Remem-
bering that due to the strong violation of independence PI, not all capacities can
be refined by a comparative probability; capacities whose induced orders could be
refined in this way are the ones such that

∀A,B, and C disjoint from A ∪B: κ(B) ≥ κ(A) =⇒ κ(B ∪ C) ≥ κ(A ∪ C).

These functions are studied by Dubois[11] and Chateauneuf [9]. They are de-
composable measures in the sense that there exists an operation ? on L such that if
A ∩B = ∅ then κ(A ∪B) = κ(A) ? κ(B).

A straightforward way to construct an ordering on events satisfying BELPL,
hence Pareto-dominance, in the absence of null elements, is to refine the ranking
induced by κ by means of the inclusion relation:

B �⊂κ A ⇐⇒ κ(B) > κ(A) or A ⊂ B.

�⊂κ is obviously a transitive but partial ordering. Basically, each equivalence class
Cκ of equally important sets in the sense of κ is internally partially ordered by
the relation ⊂. The partial ordering �⊂κ restricted to each Cκ can be embedded
into a weak order, for instance considering cardinality (as obtained earlier in the
refinement of Sugeno integral based on feature ratings of Section 5.2):

B �cardκ A ⇐⇒ κ(B) > κ(A) or (κ(B) = κ(A) and |A| < |B|.)

This relation can be represented by a capacity κcard refining κ (e.g. κcard(A) =
|A| · χ(κ(A)), as already done in Section 5.2). For any capacity κ, the relations
�⊂κ and �cardκ satisfy axiom BELPL. Indeed, by construction, B �⊂κ ∅ always
holds if B 6= ∅, and so does A ∪ B �⊂κ A. The capacity κcard is one among other
possible refinements of κ. Since it satisfies BELPL, we get a ranking that can be
represented by both a plausibility and a belief function. The study of such measures
of uncertainty characterized by Axiom BELPL is out of the scope of the present
paper.

7.2 Discri- and Lexi- refinements of capacities

A natural refinement of a possibility measure Π is called discrimax refinement
[15], and it is defined by A �Π

dmax B ⇐⇒ Π(A \B) > Π(B \A). The discrimax
refinement of a capacity κ is then defined likewise using the qualitative Moebius
transform κ# of κ introduced in Section 6 :

A �κdcap B ⇐⇒ max
E,E⊆A,E 6⊆B

κ#(E) > max
E,E⊆B,E 6⊆A

κ#(E). (30)

In this definition, all subsets common to A and B play the same role in the expres-
sions of κ(A) and κ(B) and are cancelled since they cannot discriminate between
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them. It is easy to check that this partial order refines the ranking induced by κ,
since if κ(A) > κ(B), there is a set E ⊆ A such that κ#(E) > maxF⊆B κ#(F ).
Moreover the dcap relation is also of the BEL type:

Proposition 18 Relation �κdcap satisfies BEL.

PROOF. Suppose A ∩ B = ∅. Then suppose A ∪ B �dcap A. Since {E : E ⊆
A,E 6⊆ A ∪ B}) = ∅, it comes down to maxE⊆A∪B;E 6⊆A κ#(E) > ⊥. So there
is E∗ ⊆ A ∪ B;E∗ 6⊆ A with κ#(E∗) > ⊥. Now {E : E ⊆ A ∪ B,E 6⊆
A ∪ B ∪ C) = ∅ again. But clearly E∗ ∈ {E : E ⊆ A ∪ B ∪ C,E 6⊆ A ∪ C}, so
maxE⊆A∪B∪C;E 6⊆A∪C κ#(E) > ⊥. So A ∪B ∪ C �dcap A ∪ C.

Note that when κ is a possibility measure, then�Π
dcap satisfies even axiom PRAD

(hence BELPL), and is self-conjugate (A �Π
dcap B ⇐⇒ Bc �Π

dcap A
c). It refines

the conjugate necessity measure as well. However, in general �κdcap is not self-
conjugate, and is generally not of the PL type as the existence of E∗ ⊆ A∪B ∪C
while E∗ 6⊆ A ∪ C does not ensure that E∗ ⊆ A ∪ B and E∗ 6⊆ A (for instance if
E∗ = A ∪B ∪D with D ⊆ C not empty).

The lexicographic refinement �κlcap of �κdcap is a ranking defined likewise:

A �κlcap B ⇐⇒ ~A �lmax ~B, (31)

where ~A (resp. ~B) is the tuple with size 2F containing all values κ#(E), ∀E ⊆ A
(resp. ∀E ⊆ B), and ⊥ if E 6⊆ A. It is clear that if κ is a possibility measure,
then �κlcap boils down to the leximax possibility ordering �ΠLex

, encountered in
previous sections. It is possible to construct a capacity κlmax on a refined ordinal
scale Λ encoding this refinement. Using a super-increasing transformation, it is
possible to turn it into a big-stepped belief function with mass function χ(κ#(·)),
as shown in the previous section. So, �κlcap is also a complete preordering of the
BEL type.

However the above refinements are ineffective on necessity measures. Indeed,
consider a possibility distribution π such that π1 > · · · > πn ≥ πn+1 = ⊥. Then
let Ei = {1, . . . , i}. The qualitative Moebius transform of a necessity measure
N based on π is of the form N#(A) = ν(πi+1) if A = Ei and ⊥ otherwise.
Moreover, N(A) = maxEi⊆AN#(Ei). Suppose N(A) = N(B). It means that
N(A) = N(B) = N#(Ei) for some Ei ⊆ A ∩ B. But clearly, {E : N#(E) >
⊥, E ⊆ A,E 6⊆ B} = ∅ since if not, then it is Ej for some j > i, but then it would
mean N(A) = ν(πj+1) > ν(πi+1). So the sets E ⊆ A while E 6⊆ B are such that
N#(E) = ⊥, and likewise exchanging A and B. So, none of the relations �Ndcap
nor�Nlcap can refine a necessity measure. As a consequence, relation�Ndcap does not
refine �N .
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7.3 Outer Qualitative Moebius transforms

In order to directly refine a necessity measure, another qualitative representation
of a capacity κ, a set function denoted by κ#, can be used, the knowledge of which
is enough to reconstruct the capacity:

κ#(A) = κ(A) if κ(A) < min{κ(F ) : A ⊂ F}

and κ#(A) = > otherwise. The original capacity is then retrieved as κ(A) =
minA⊆F κ

#(F ), which reminds of outer measures. Function κ# can be called outer
qualitative mass function of κ, as κ(A) is recovered from κ# via weights assigned
to supersets of set A, while κ# stands for an inner qualitative mass function. So we
could consider refining the κ ordering as follows:

A �dcapκ B ⇐⇒ min
E:A⊆E,B 6⊆E

κ#(E) > min
E:B⊆E,A 6⊆E

κ#(E). (32)

Proposition 19 Relation �dcapκ satisfies PL.

PROOF. Suppose A,B,C disjoint. Then suppose A ∪B ∪C �dcapκ A ∪C. Since
{E : A ∪ B ∪ C ⊆ E,A ∪ C 6⊆ E} = ∅, it comes down to the inequality
minA∪C⊆E;A∪B∪C 6⊆E κ#(E) < >. So there is E∗, A ∪ C ⊆ E∗;A ∪ B ∪ C 6⊆ E∗

with κ#(E∗) < >. Now {E : A ∪ B ⊆ E,A 6⊆ E} = ∅ again. But clearly
E∗ satisfies A ⊆ E∗ and A ∪ B 6⊆ E∗, so minEA⊆E;A∪B 6⊆E κ#(E) < >. So
A ∪B �dcapκ A.

However, this relation is generally not of the BEL type. Interestingly, the inner
qualitative mass function κc# of κc is related to the outer qualitative mass function
κ#:

κ#(A) = ν(κc#(Ac)).

Indeed, κ(A) < min{κ(F ) : A ⊂ F} also writes κc(Ac) > max{κc(F c) : F c ⊂
Ac}. For instance, N#(E) 6= > only if E = F \ {i} for some i ∈ F , and then
N#(F \ {i}) = ν(πi). As a consequence,

A �dcapκ B ⇐⇒ min
E:A⊆E,B 6⊆E

ν(κc#(Ec)) > min
E:B⊆E,A 6⊆E

ν(κc#(Ec)).

But E ⊆ B,E 6⊆ A also write Bc ⊆ Ec, Ac 6⊆ Ec, so,

A �dcapκ B ⇐⇒ max
E:E⊆Ac,E 6⊆Bc

κc#(E) < max
E:E⊆BcE 6⊆Ac

κc#(E) ⇐⇒ Bc �κc

dcap A
c.

If κ is a necessity measure, then we get A �dcapN B ⇐⇒ Bc �Π
dcap A

c which
is equivalent to A �Π

dcap B. However this is not true in general so that the four
relations made of �dcapκ , �dcapκ and their conjugates will differ from one another.
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Relation is the same as Type Case κ = Π

A �κdcap B Bc �dcapκc Ac BEL �Π
dmax

A �κc

dcap B Bc �dcapκ Ac BEL does not refine N

Bc �κdcap Ac A �dcapκc B PL �Π
dmax

Bc �κc

dcap A
c A �dcapκ B PL does not refine Π

Table 1
Comparison of refined capacities

Altogether this study lays bare two possible lines of refinements of a capacity
κ and its conjugate, using the outer and inner Moebius transforms. There is no
unique capacity which refines both a prescribed capacity and its conjugate, except
for special cases like probability measures. In the case of possibility measures,
Π(A) > Π(B) does imply Π(Bc) ≥ Π(Ac) which allows for such a conjoint
refinement : �κdcap and �dcapκc coincide when κ (resp. κc) is a possibility (resp. a
necessity) measure. However in the general case, we may have κ(A) > κ(B) and
κc(B) > κc(A). Moreover, �κdcap and �dcapκ may produce conflicting rankings (if
κ(A) = κ(B) one may get A �κdcap B and B �dcapκ A as each ordering is ob-
tained from distinct sets of values). So one may get up to four refinements, two
obeying axiom BEL, the others obeying the axiom PL (see Table 1). A complete
comparison of these variants is a matter of further research.

8 Conclusion

This paper tries to bridge the gap between qualitative and quantitative criteria for
decision-making with a view to increasing the discrimination power of the latter,
especially to respect Pareto-dominance in the strict sense. We provide preliminary
results when the weight function, expressing the importance of features or the like-
lihood of states, is encoded by a qualitative capacity or fuzzy measure and the
aggregation is performed by means of a Sugeno integral. The paper shows how to
refine weak orders induced by Sugeno integral by mean of lexicographic schemes
extending leximin and leximax. It also shows the existence of Choquet integrals
that characterize refined rankings. Two approaches have been proposed: one that
preserves the capacity at work in Sugeno integral, the other focusing on the basic
information sufficient to generate the capacity. Moreover, we show that the issue of
addressing the lack of discrimination due to the max-min form of Sugeno integral
is distinct from the problem of enhancing the discrimination power of the capac-
ity itself. The possibility of refining the rankings of decisions induced by Sugeno
integral enhances its applicability in identification problems where the underlying
capacity must be learned from preference data containing more classes than the
qualitative value scale can allow.
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Note that these results rely on the finiteness of the setting. Extending these re-
sults to infinite spaces looks hopeless because lexicographic schemes cannot be
simulated by continuous operations, generally. Several questions remain open.

(1) More work is needed to compare the the leximax(�lmin) ranking refining
Sugeno integral in its standard form with the Choquet integrals refinements.

(2) A detailed study of lexicographic refinements of a capacity is needed. The re-
fined capacity can be used so as to improve capacity-preserving refinements
of Sugeno integral, in case of a tie with respect to stochastic dominance. The
qualitative Moebius transform approach could also benefit from the obtained
results on capacity refinement, especially the use of outer qualitative mass
functions looks promising to fully retrieve the canonical refinement of the
prioritized minimum in the qualitative Moebius transform approach to the re-
finement of Sugeno integral.

(3) Lastly, one may consider finding a system of axioms characterizing the refined
decision rules proposed here, by putting together Savage axioms and Sugeno
integral axioms in some way.

Acknowledgements : The authors are extremely grateful to referees for their
careful check of the manuscript, especially one of them who pointed out some
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