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ABSTRACT :  Uncertainty is a major aspect of the estimation, using models, of the risk of
human exposure to pollutants. The Monte Carlo method, which applies probability theory to
address model parameter uncertainty, relies on a statistical representation of available
information. In recent years, the theory of possibilities has been proposed as an alternative
approach to address model parameter uncertainty in situations where available information are
insufficient to identify statistically representative probability distributions, due in particular to
data scarcity. In practice, it may occur that certain model parameters can be reasonably
represented by probability distributions, because there is sufficient data available to substantiate
such distributions by statistical analysis, while others are better represented by fuzzy numbers
(due to data scarcity). The question then arises as to how these two modes of representation of
model parameter uncertainty can be combined for the purpose of estimating the risk of exposure.
In this paper an approach (termed a hybrid approach) for achieving such a combination is
proposed, and applied to the estimation of human exposure, via vegetable consumption, to
cadmium present in the surficial soils of an industrial site located in the north of France. The
application illustrates the potential of the proposed approach, which allows the uncertainty
affecting model parameters to be represented in a fashion which is consistent with the
information at hand. 



INTRODUCTION

As risk assessments have become important aids in the decision-making process related to the
management of sources of contamination, the issue of uncertainty with respect to model
parameter values is of primary importance. Uncertainty affecting parameters in risk assessments
can be of different nature (ambiguity, vagueness, imprecision, ignorance, etc.) and can be
represented in various fashions (probability density functions, fuzzy numbers, uncertainty
intervals, etc.). While different types of uncertainty may warrant different modes of uncertainty
representation, the question arises as to how several modes of representation can be
accommodated in the same estimation of risk ? Many researchers have addressed uncertainty
using either one or the other of these modes of representation. For example Labieniec et al.
(1997) used probability distribution functions to address uncertainty in the estimation of the risk
of human exposure due to the presence of contaminated land. Prado et al. (1999) applied
probability theory in risk assessments related to the underground disposal of nuclear waste. Dou
et al. (1995), Bardossy et al. (1995), Freissinet et al. (1998), Cazemier (1999) present applications
of fuzzy theory to environmental problems.

Comparatively few researchers have addressed the issue of combining different modes of
representation of uncertainty in a same calculation (see for example Wonneberger et al., 1995).
Yet this problem is of particular relevance in a risk assessment context, because in practice there
is a very contrasted detail of information regarding the various parameters which influence the
exposure to pollutants. This paper proposes a method (termed «hybrid») for combining
probability distribution functions and fuzzy numbers in a same estimation of risk. The method is
first explained, and then applied to estimate the risk of human exposure to cadmium present in
the surficial soils of an industrial site located in the north of France. It should be noted that the
proposed method is one among several possible alternatives, the relative advantages of which are
currently being investigated. The primary purpose of this paper is to promote a methodology
which is consistent with the information at hand. As shown below, the proposed methodology
might also be consistent with a “reasonable” application of the precautionary principle. 

THEORY

Although it is not the purpose of this paper to provide a detailed presentation of the theories of
probability and possibility, for the sake of clarity some basic principles are presented below. For
illustration purposes we consider a variable X which will be represented on the one hand using
probabilities, and on the other hand using fuzzy theory. If X is considered as a random variable,
and the probabilities that X should be less or equal than values x of X are known, a probability
distribution function F(x) can be defined as : 

)()( xXPxF �� (1)

If variable X is continuous, i.e. it can take any value within a defined range, a probability
density function f(x) can be defined as : 
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These functions are illustrated graphically in Fig. 1(a), where a Gaussian probability
distribution is assumed for variable X (in this case soil porosity). The distribution is defined by its
mean (0.3) and its standard deviation (0.05). Ideally in true situations, the definition of such a
distribution would rely on the collection of a sufficient number of porosity measurements, so that
meaningful statistical moments could be derived by fitting the theoretical distribution to a
histogram of measured data relative frequencies. When dealing with risk assessments, however, it
often occurs that for some parameters there is insufficient data to perform such a frequential
analysis. In recent years there has been a large amount of research, especially from the nuclear
industry, regarding how probability distribution functions can be derived using expert judgement
(see for example Bonano et al., 1990). So-called “a priori”, or subjective probability distribution
functions can be defined using Bayesian probability theory  (see for example Cullen and Frey,
1999). A fundamental postulate of this theory is that for any quantity, there exists a unique
function which describes its probability distribution. In the estimation of risk, the probability
distribution functions are sampled a large number of times, in a random fashion, using the Monte
Carlo method (see for example Vose, 1996).

Some researchers (for example Wonneberger et al., 1995) have questioned the validity of
deriving statistical moments or probability distribution functions from guesswork, even though
based on expert knowledge. An alternative could be to consider values x of variable X as
“possible”, rather than “probable”. According to the theory of possibilities (Zadeh ,1965, 1978 ;
Dubois & Prade,1988), variable X can be represented by a “fuzzy number”, which describes the
relationship between X and a membership function (noted �). This function, the values of which
are comprised between zero and one, describes the likelihood that variable X may take a certain
value x. Figure 1(b) illustrates this concept for the same case as previously (soil porosity). Figure
1(b) informs us that it is considered most likely that porosity lies between 0.25 and 0.4, with no
preference being expressed within this range, while values as low as 0.15 or as high as 0.5 cannot
be totally excluded, and values outside this range are considered impossible. Possibility theory
(see Dubois & Prade, 1988) provides the mathematical basis for performing calculations with
fuzzy numbers. 

Note that although a probability density function could be defined with exactly the same shape
as the membership function in Fig. 1(b), a fundamental difference between a fuzzy number and a
probability density function is that in the former case, the integral below the function need not be
equal to unity. Compared with a probability density function, a fuzzy number is very “poor” in
terms of intrinsic information. A probability density function defines a variable entirely, but
applies best to systems which are “closed” (such as the throw of a dice). But the systems of
interest in an environmental context are “open” (Oreskes et al., 1994), and possibility theory may
be seen as a viable alternative for representing some of the uncertainty pertaining to such
systems. 

One question which was addressed in part by Guyonnet et al. (1999) is : “well what does it
change in practice ?”. An important consequence in an environmental or health context is that the
a priori assumption of probability distribution functions (noted hereafter PDF’s), without
justification by available information, may lead to an unconservative estimation (minimisation)
of risk. In order to understand this one must recall that the probability that two independent
events, A and B, should occur simultaneously, is the product of the probabilities of both events.



Therefore, during Monte Carlo random sampling, scenarios that combine low probability
parameter values have all the less chance of being selected. If a very large number of iterations is
used, these scenarios will be realised, but with very low relative frequencies. When the results of
the Monte Carlo analysis are compared with an acceptance criterion (for example a reference
dose), for a certain level of probability (for example 95%), these scenarios will be eliminated
because they fall within the 5% high outliers. Had model parameter uncertainty been considered
in terms of possibilities rather than probabilities, these low-likelihood scenarios might not have
been discarded, because fuzzy calculus does not transmit through multiplication the uncertainty
of the parameter values onto that of the calculation result. 

In the event that a given model involves some parameters which are justifiably represented by
PDFs (in particular because there is sufficient data to substantiate these PDFs), while others are
considered to be better represented by fuzzy numbers, a method should be derived to combine
these two modes of representation of uncertainty in the estimation of risk. There are different
ways by which this might be achieved. For example Wonneberger et al. (1995) suggest using
possibility/probability transformations (Dubois & Prade, 1993, 1992). Another approach would
be to treat both types of uncertainty within a single framework, using the “belief functions”
proposed by  Shafer (1976) (see also Smets and Kennes, 1994). While different alternatives exist,
the approach described below (called the “hybrid approach”) is believed to be more intuitively
amenable to the practising environmental engineer. The respective advantages (and degrees of
validity) of different alternatives to this problem are currently being investigated.

In order to illustrate the hybrid approach, we will consider the estimation of a dose resulting
from the exposure of a human target to soil pollutants. This dose is calculated using a  “model”,
M, which is a function of a certain number of parameters :

Dose = M(P1, …, Pn, F1, ..., Fm), (3)

where M = model; P1, …, Pn = n model parameters each represented by a PDF; F1, …, Fm = m
model parameters each represented by a fuzzy number. Note that the model can also involve
precise (i.e. “crisp”) parameter values. Calculation of the dose is performed by combining the
Monte Carlo random sampling technique, with the method of �-cuts (Dubois and Prade, 1988)
for fuzzy calculus. An �-cut (see Fig. 2) is the ensemble of parameter values for which the
likelihood of occurrence is greater or equal to �. In the application presented here, fuzzy calculus
can be thought of as an interval analysis for different levels of likelihood. The combination
procedure is summarised below, where steps have been indented to emphasise the iterative
character of the calculations :

1. Generate n random numbers (�1, …, �n) from a uniform distribution and sample the n
PDF’s to obtain a realisation of the n random variables : p1, … pn (Fig. 3A)

2. Select a value � of the membership function (a level of likelihood).
3. Calculate the Inf (smallest) and Sup (largest) values of M(p1, …, pn, F1, ...,

Fm), considering all values located within the �-cuts for each fuzzy number
(see Fig. 3.B).

4. Affect these Inf and Sup values to the lower and upper limits of the �-cut of
M(p1, …, pn, F1, ..., Fm).

5. Return to step 2 and repeat steps 3 and 4 for another �-cut (note : � can be increased
stepwise from 0 to 1 every 0.1 increments). The fuzzy result of M(p1, …, pn, F1, ...,



Fm) (the fuzzy dose) is obtained from the Inf and Sup values of M(p1, …, pn, F1, ...,
Fm) for each �-cut.

6. Return to step 1 to generate a new realisation of the random variables.

If steps 2 through 5 are repeated � times, � fuzzy doses are calculated (Fig. 3.C). For each
value of the membership function (each value of �), the spread between the Inf and Sup values of
the fuzzy results (see Fig. 3.C) is entirely a consequence of the Monte Carlo random sampling. It
is therefore proposed to select the final Inf and Sup values of M(P1, …, Pn, F1, ..., Fm), for each
value of �, by building a histogram of cumulative relative frequencies of the Inf and Sup values,
and extracting the final Inf and Sup values for a certain level of probability. This is illustrated in
Fig. 4. For each level of the histograms reproduce the spread of the Inf and Sup values. The final
Inf and Sup values are taken such that there is a 5% probability of having values lower of higher
respectively. This final fuzzy dose can be compared to an acceptance criterion, using the tools
provided by possibility theory, as illustrated in the next section. Note that in the general case, step
4 of the procedure above can be performed using a minimisation and maximisation algorithm.
However, if the model is an equation involving simple operations such as multiplication and
substraction, the Inf and Sup values can be identified directly.

One important consequence of combining probability distributions with fuzzy numbers is that
the net result is a fuzzy number : as the information conveyed by a fuzzy number is “poor”
compared to a probability distribution, no mathematical procedure can compensate for this
paucity and achieve the degree of system definition required by a probabilistic representation.
The proposed hybrid approach takes advantage of the “rich” information provided by the PDF’s,
but retains the conservative character of fuzzy calculus to account for those parameters for which
a representation by PDF’s is not justified by available data. As will be shown in the closing
section, if all parameters were assumed to be PDF’s, the range of results would be narrowed and
insufficient weight would be given to outlier scenarios which might have important implications
in the decision-making process. On the other hand, if all parameters were represented by fuzzy
numbers, despite the fact that some of them could be justifiably represented by PDF’s, the range
of results would be too conservative. Thus the proposed hybrid approach might hold some value
in terms of consistency with a reasonable application of the precautionary principle.

APPLICATION TO AN INDUSTRIAL SITE

The proposed method is applied to a metallurgical industrial site located in the north of
France. The surficial soils of this site are contaminated by a number of metallic pollutants among
which cadmium, which have been deposited by the smoke emanating from a chimney located on
the site. The quality of the surficial soils (upper ten centimeters) has been monitored in detail, and
there is a relatively large amount of data available. These data are primarily total soil metal
contents measured by atomic absorption spectrophotometry after extraction by fluorhydric acid.
No selective extraction data (see for example Tessier et al., 1979) were available for this study.
This detail is of importance since we are interested here in the exposure of a human target to
cadmium in the soil via the consumption of vegetables. A large body of scientific evidence shows
that there is poor correlation between the amount of cadmium absorbed by plants, and the total
amount present in the soil (see for example Jopony and Young, 1993, Lorenz et al., 1997). Metal
uptake by plants depends on a variety of factors among which metal speciation, plant specie, pH



(Dijkshoorn et al., 1983, Singh et al., 1995), redox conditions, humidity, temperature (Chang et
al., 1987), competition with other metals (Smilde et al., 1992, Chaney et al., 1999), etc. The
variety of these factors explains why it is difficult in practice to develop a model of metal uptake
by plants based on total soil concentrations, and therefore preferable to have direct site-specific
measurement of metal uptake by plants. This is fortunately the case for this industrial site :
measurements of cadmium content were performed (Luttringer & de Cormis, 1979) for a limited
number of vegetables (in particular leeks), grown in the immediate vicinity of the soil sampling
points. Measurements were performed on the edible vegetable parts, after they had been washed
to eliminate the metal fraction present in the dust at the surface of the leaves. Cadmium was
analysed by atomic absorption after plant calcination and attack by chlorhydric and fluorhydric
acid. 

The first step in the analysis was to generate a map of soil cadmium content based on the
measured data. Due to the relatively large number of surficial soil analyses (124), the spatial
distribution of cadmium in the soils could be investigated using geostatistics (see Chilès and
Delfiner, 1999). Geostatistics is a special branch of statistics which applies to data which display
a spatial structure. Its use is not compulsory for the hybrid approach proposed in this paper, but
served here to provide statistically representative estimators of soil cadmium concentrations
outside measurement point locations. As could be expected, the data display a decrease in soil
cadmium concentrations with increasing distance to the chimney (see Fig. 5 where Cd
concentrations are in logarithm). In order to apply the classical geostatistical tools (the variogram
and kriging), the data were first transformed into logarithm and then decomposed into a trend and
a residual around this trend, according to : 

� � � � R�� Tss CdlnCdln (4)

where � �sCdln  = logarithm of measured soil cadmium concentrations; � �TsCdln = predicted
values of � �sCdln  according to the trend; R = residual around this trend. A correlation equation
which describes the trend is  :

� � � �2/exp 2.43.0Cdln Ts d���� (5)

where d = distance to the chimney. The spatial distribution of the residual is then examined using
the variogram. As directional variograms did not reflect any anisotropy in the spatial distribution,
an omnidirectional variogram was used. It was fitted with a linear variogram model and a nugget
effect which accounts for microstructures and/or measurement errors (Fig. 6). The next step
consisted in using this variogram model to interpolate the residual R, by kriging, which ensures
that the interpolation is not biased (on average the kriging error is zero) and that it is optimal (the
kriging variance is minimum). Noting the kriged residual as RK, we obtain the soil cadmium
concentration from :

� �� �Ts
*
sM CdlnexpCd �� KR (6)

where *
sMCd  is a median estimator of soil cadmium concentration since kriging of R yields a

median estimator of R (i.e., the true value has a 50% probability of being lower than the kriged
value). Results depicted in Fig. 7 show relatively high values of soil cadmium concentrations



close to the chimney (up to around 25 ppm), and a gradual decrease to values below 1 ppm at a
certain distance from the chimney. Since kriging achieves the minimisation of the estimation
variance, a by-product is the kriging variance, or its square root ; the kriging standard deviation
�K. If the kriging error (i.e., the difference between the kriged and true values) is assumed
Gaussian, confidence intervals can be deduced from �K. We write : 

KKKK tRRtR �� ���� (7)

where t is a factor which depends on the level of confidence assigned to R. For a level of
confidence of 95%, for example, t = 1.65 : R has 95% chances of being lower than RK + 1.65 �K.
An estimation of soil concentration is obtained by combining Equations (4), (6) and (7) : 
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KK

t
KK RR  
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- 

Ts )exp(CdlnexpCd)exp(Cdlnexp �� ������ (8)

Since the first term in Equation (8) is the median estimator for Cds (Equation 6), exp(�K) can
be considered as a multiplicative standard deviation. It is called here an “error factor” for short.
The calculated error factor has values up to 1.3 with hollows centred around measurement points.
At these points, the remaining uncertainty is due to measurement errors. The statistical soil
cadmium concentrations which result from this analysis are combined below with fuzzy
uncertainties related to the uptake of cadmium by vegetables and to the absorption of a dose by a
human target.

Measured values of cadmium in leeks are plotted in Fig. 8 as a function of measured soil
concentrations at the locations where the leeks were grown. As seen in this figure, the small
number of  measurements (five) hardly warrants a statistical analysis. They nevertheless provide
very valuable information as they represent site-specific values of metal uptake by vegetables.
This information can be analysed using a fuzzy correlation. Based on the shape displayed by the
measured data, it was chosen not to address plant uptake through the use of a  “bioconcentration
factor”  such as appears in several risk analysis tools (for example HESP ; Poels et al., 1990).
Such a factor assumes that as soil concentration increases, plant uptake must increase
proportionally. But agronomists argue that plant uptake cannot increase indefinitely, and that it
will not exceed a certain level. Therefore a log-shaped correlation seemed more appropriate, and
consistent with the data depicted in Fig. 8. The following correlation equation is defined : 

� �� �s
*
pl Cd exp1 )(Cd kOrAsOr ����� (9)

where Cdpl
*
 = estimated cadmium concentration in the plant (mg Cd / kg dry plant); Cds =

measured cadmium concentration in the soil (mg Cd / kg dry soil); Or = Cdpl
* at the origin (Cds =

0); As = Asymptote (Cdpl
* at large values of Cds); k = parameter which controls the rate of

increase. Parameters Or, As and k in Equation (9) are represented by fuzzy numbers, while the
Cds values are represented by probability density functions derived from the geostatistical
analysis. In Fig. 8, the dashed lines (from Equation 9) represent “likely”  boundaries for cadmium
uptake by leeks. These boundaries imply that if someone were to go and measure the
concentration in leeks cultivated on this site, it is likely that he/she would obtain a value which
falls within these boundaries. The full line represents what is considered as a reasonably
conservative upper boundary for cadmium concentration in leeks grown on this site. While one



could argue regarding the precise positions of these curves, it should be noted that this
representation is at least consistent with the measured data, and that it can be easily adjusted to
accommodate input from agronomic experts. The fuzzy numbers for parameters Or, As and k are
presented in Fig. 9 (along with another parameter discussed below). The limits of these fuzzy
numbers are deduced directly from Fig. 8. For example Or ; the cadmium content of the plant at
the origin (Cds = 0), is considered likely to be between 0 and 0.3 (these values have a likelihood
of 1 in Fig. 9.A) while a value of 0.6 is considered as a possible upper boundary (in Fig. 9.A, the
likelihood of values above 0.6 is considered nil). 

The objective of the calculation is to estimate a dose of cadmium absorbed by a human target.
In fact, doses are calculated along a grid which covers the site in order to examine the spatial
distribution of absorbed dose. The dose is calculated from : 

BW
DMCCon

Dose
���

�

 1000Cd*
pl (10)

where Dose = Absorbed dose (�g Cd per day per kg body weight); Con = Leek daily
consumption (kg leek per day); DMC = Leek dry matter content (weight percent); BW = Human
target body weight (kg). The leek dry matter content (DMC) accounts for the fact that daily
consumption is provided with respect to wet weight while the cadmium concentration in the leeks
(Cdpl

*) is relative to dry weight. The cadmium concentration in the leeks is obtained from the
fuzzy correlation equation (Equation 9). As a simplifying hypothesis, it is considered that leeks
are representative of vegetables with respect to human exposure to cadmium through vegetable
consumption. The daily vegetable consumption and the vegetable dry matter content are selected
based on data presented in INERIS (1999). Likely daily vegetable consumption is taken between
100 and 120 g/day, while an upper possible limit is taken as twice the higher value (240 g/day).
The vegetable dry matter content (DMC) and the body weight are considered as constant : 15%
and 70 kg respectively. It is assumed conservatively that the dose absorbed by the target is not
influenced by vegetable preparation or assimilation.

An example calculation performed with the hybrid approach is presented for a median value of
CdsM

* = 7.97 ppm (from Fig. 7), and its corresponding error factor = 1.15. The probability
distribution for Cds is obtained by calculating a normal Gaussian distribution for mean = ln(7.97)
and standard deviation = ln(1.15), and then taking the exponential of the results to return to the
distribution on Cds. The hybrid approach is performed according to Figs. 3 and 4 (which
represent the general case). Note that as there is only one probabilistic variable involved, and
because Equation (10) is very simple (minima and maxima can be identified directly), the
calculation can also be performed without Monte Carlo random sampling. Using the values for
CdsM

* and the error factor above, the maximum value of Cds for a 95 % confidence level is
obtained from Equation (8) for t = 1.65 : Cds max = 10.04 ppm. Likewise, the minimum value of
Cds is obtained for t = -1.65 : Cds min = 6.33 ppm. These values then serve in Equations (9) and
(10) to obtain the Inf and Sup values of the Dose, for each value of � (level of likelihood), using
the relevant Inf and Sup values of the fuzzy numbers involved in Equation (10). The general
hybrid approach, with Monte Carlo sampling, was also performed in order to check that results
were identical. The results of this specific calculation are depicted in Fig. 10. Calculations were
performed for a large number of points using the same grid as the one used to generate Fig. 7. 

The next step consisted in examining the acceptability of the calculated doses. This
acceptability is considered here with respect to a maximum reference dose. According to 



WHO (1994), the kidney is the main target of cadmium toxicity. In order to maintain cadmium
concentrations in the kidney cortex below 50 mg/kg, WHO (1994) recommends that cadmium
absorption via food consumption should not exceed 1 �g per day and per kg body weight. The
calculated fuzzy doses were compared to this daily reference dose (noted Do) using the measure
of possibility (see Dubois and Prade, 1988) for the proposition : calculated fuzzy dose F exceeds
reference dose Do. For a “crisp” reference dose, the measure of possibility is written :

)( )D(
oD

o uSupF F
u

�
�

��� (11)

where )(uF�  = membership function of F for any value u; Sup = the largest value. Fig. 11
provides a graphical illustration of � for such a proposition. As long as the fuzzy dose is entirely
below the reference dose, the possibility of Do being exceeded is considered nil (� = 0 ; Fig.
11a). As the fuzzy dose intersects the reference dose, excess of Do is considered possible with a
possibility measure � = � (Fig. 11b). Once the reference dose intersects the plateau (Fig. 11c), �
becomes equal to 1. Note that the latter case does not imply that the reference dose will be
exceeded with “certainty”. Reasonable certainty occurs when another indicator of the validity of
the proposition, i.e. the measure of necessity (Dubois and Prade, 1988), becomes equal to 1 : 

)( 1)D(
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o uSupF F
u

�
�

���� (12)

Applying the possibility indicator to the calculated fuzzy doses, we obtain the spatial
distribution of the possibility of exceeding the reference dose. This spatial distribution is depicted
in Fig. 12. Possibilities of 0.45 of exceeding the reference dose are found in the close vicinity of
the chimney, and decrease below 0.1 at a certain distance from the chimney. 

DISCUSSION AND CONCLUSIONS

The map of Fig. 12 can serve as an aid in the decision-making process related to the
management of this industrial site. It would be incumbent, however, upon the health authority, to
define the acceptable level of “possibility” of reference dose exceedence. Depending upon the
context, values around 0.1-0.2 may seem consistent with a reasonable application of the
precautionary principle. From Fig. 12, such values would result in an area on the order of 20
square kilometers being ruled out for vegetable growth. To require a possibility of zero may in
many cases be too strict, and result in excessive areas of land being ruled out for certain uses, or
in excessive cleanup costs.  It is reminded that the fuzzy calculus component of the proposed
hybrid approach considers all possible combinations of fuzzy parameter values, and does not
transmit through multiplication the uncertainty of these parameter values onto that of the
calculation result. As illustrated below, it is more conservative than a purely Monte Carlo
calculation, and therefore constraints on acceptance criteria in terms of possibilities need not be
as strict as in terms of probabilities. 

In order to illustrate the potential consequences of assuming probabilities throughout, the
fuzzy numbers in Fig. 9 were converted to probability distribution functions, and hence to PDF’s,
by adjusting the y-axes so that the integrals beneath the curves equalled unity. Note that this
procedure is not the mathematically rigorous manner for establishing a correspondence between



fuzzy numbers and probabilities (see Dubois and Prade, 1993), but mimics the a priori
assumption of attributing probabilities rather than possibilities to the limit values. A high soil
cadmium concentration was selected, i.e. a value from the immediate vicinity of the chimney
(CdsM

* = 25 ppm, standard deviation = 1.2 ppm). The PDF’s and the results of the Monte Carlo
simulation (1 000 iterations) are shown in Fig. 13. In Fig. 14, The relative frequencies from the
Monte Carlo simulation are compared with the reference dose. Based on this figure, the
calculated dose would be considered as “tolerable”, even though the soil concentration value is
located in the immediate vicinity of the chimney. Thus the entire site would be considered
suitable for vegetable growth.

Although the proposed hybrid method may hold some value with respect to a reasonable
application of the precautionary principle, and for promoting consistency between uncertainty
representation and available data, there are at least two important limitations with respect to its
application. Because in the general case (see Figs. 3 and 4), the hybrid approach combines two
computationally-intensive methods (Monte Carlo sampling and fuzzy calculus by the method of
�-cuts), its application would appear to be limited to calculations involving relatively simple
models, such as analytical solutions, rather than numerical models requiring spatial discretisation.
There should be scope, however, for such an approach in a risk-assessment framework, as fate
and exposure models often involve relatively simple equations. 

The second, and probably more serious limitation, relates to the social acceptance of a level of
possibility of risk exceedence (see the beginning of this section). Probabilities of risk exceedence
have only recently gained some degree of acceptance by regulatory authorities. According to
sociologists working in the field of industrial risks (Antoine-Paille, pers. comm.), in terms of
social communication on risks, probabilities are impossible to “sell” to the general public. In
view of these difficulties, it is questionable whether possibilities of risk exceedence will be easily
implemented in a regulatory framework. It is felt in any case that definition of possibility cutoff
levels would require input from the field of social sciences. 

In this paper a hybrid approach was proposed for combining probabilistic and possibilistic
representations of model parameter uncertainty. As stated in Guyonnet et al. (1999), if data are
available which substantiate a statistical representation of parameter value variability, then such a
representation should certainly be preferred. Possibility theory is proposed as an alternative tool
to assist in situations where such data are not available, and it is chosen not to force-fit
probability distribution functions on data without statistical justification. The proposed hybrid
approach presents the double advantage of preserving the strengths of statistical analysis, while
providing the flexibility of the fuzzy approach when such an analysis is not substantiated by the
data. It is proposed as a means to improve consistency between calculation hypotheses and
available information. 

As was stated previously, the hybrid approach is only one alternative among others for
combining different modes of representation of uncertainty in a same calculation. Further
research is needed in order to identify the pros and cons of each alternative. Another interesting
issue which will be investigated in the near future, is the inverse problem. In the application
example presented above, the hybrid approach was applied in a forward mode to evaluate the
possibility of exceeding a tolerable reference dose. The inverse problem is : given a tolerable
reference dose, and considering the uncertainty (probabilistic and possibilistic) affecting model
parameter values, which residual soil concentration is such that the “possibility” of reference
dose exceedence stays below the value fixed by the health authority ? This issue is of particular
relevance to risk-based corrective action.
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APPENDIX II. NOTATION

The following symbols are used in this paper :

As = Asymptote for Equation (9);
BW = body weight;
Cdpl = measured cadmium concentration in the plant;
Cdpl

*
 = estimated cadmium concentration in the plant;

Cds = measured cadmium concentration in the soil;
CdsM

* = median estimator of cadmium concentration in the soil;
Con = leek daily consumption;
d = distance to the chimney;
Do = daily reference dose;
DMC = Leek dry matter content (weight percent);
Inf = smallest value;
F1, …, Fm = m model parameters each represented by a fuzzy number;
k = constant controlling the rate of increase in Equation (9);
ln(Cds) = logarithm of measured cadmium concentration in the soil;
ln(Cds)T = value of ln(Cds) predicted by a regression equation (trend);
M = model;
Or = Cdpl

*
  at the origin in Equation (9);

P1, …, Pn = n model parameters each represented by a PDF;
PDF = probability density function;
R = residual;
Sup = largest value;
� = value of the membership function �;
�-cut = all values of parameter X within shaded area in Fig. 2;

)(uF�  = membership function of F for any value u;
� = random number;
�K = kriging standard deviation for R;
� = number of Monte Carlo iterations;
� = possibility measure.
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FIG. 1. Illustration of : (a) probability functions, and (b) a fuzzy number

FIG. 2. Illustration of an �-cut; i.e., all values comprised between a and b 

FIG. 3. Schematic illustration of the hybrid approach 

FIG. 4. Selection of the final fuzzy result

FIG. 5. Correlation between the logarithm of Cd soil concentrations, and distance between the
chimney and the sampling point

FIG. 6. Variogram of residual R. Fit with a linear variogram model

FIG. 7. Interpolated map of soil cadmium concentrations (Cds
* ; ppm).

Graduation in km; Triangle = chimney location; Points = measurement points.

FIG. 8. Cadmium concentrations measured in leeks versus measured soil concentrations, and
fuzzy correlation

FIG. 9. Fuzzy numbers for several model parameters

FIG. 10. Calculated dose for CdsM
*
 = 7.97 mg/kg, error factor = 1.15 and 95% confidence level on

estimated soil cadmium concentration.

FIG. 11. Comparison between a fuzzy dose and a reference dose (Do)

FIG. 12. Map of the possibility that the absorbed dose should exceed the reference dose (1 �g/d
kg-1). Graduation in km; Triangle = chimney location.
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FIG. 14. Comparison between the dose distribution from the Monte Carlo simulation and the
reference dose
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