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Abstract

This paper presents a justi®cation of two qualitative counterparts of the expected utility criterion for decision under

uncertainty, which only require bounded, linearly ordered, valuation sets for expressing uncertainty and preferences. This

is carried out in the style of Savage, starting with a set of acts equipped with a complete preordering relation. Conditions

on acts are given that imply a possibilistic representation of the decision-maker uncertainty. In this framework, pessi-

mistic (i.e., uncertainty-averse) as well as optimistic attitudes can be explicitly captured. The approach thus proposes an

operationally testable description of possibility theory. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The expected utility criterion for decision under
uncertainty was the ®rst to receive axiomatic jus-
ti®cations both in terms of probabilistic lotteries
[36] and in terms of preference between acts [30].
These axiomatic frameworks have been questioned
later, challenging some of the postulates leading to
the expected utility criterion, on the basis of sys-
tematic violations of these postulates (e.g., [1,17]).
For instance Gilboa [19] and Schmeidler [31] have

advocated lower and upper expectations expressed
by Choquet integrals attached to non-additive
measures, sometimes corresponding to a family of
probability measures (see also [20,29]). In this pa-
per, we propose axiomatic justi®cations for two
qualitative criteria, an optimistic and a pessimistic
one whose de®nitions only require ®nite linearly
ordered scales. The pessimistic criterion can be
viewed as a re®nement of the Wald criterion,
where uncertainty is expressed in a qualitative way
and is captured in the framework of possibility
theory [13,15,44].

2. Background on qualitative possibility theory

A possibility distribution p on a set of possible
worlds or states S is a mapping from S to a
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bounded, linearly ordered valuation set �L; >�.
This ordered set is supposed to be equipped with an
order-reversing map denoted by nL, that is, a bijec-
tion of L on itself such that if a > b 2 L, then
nL�b� > nL�a�. Let 1 and 0 denote the top and the
bottom of L, respectively. Then nL�0� � 1 and
nL�1� � 0. In the numerical setting, L � �0; 1�, and
function nL is generally taken as 1ÿ �. Here, it is only
assumed that L is a ®nite chain, and nL just puts L
upside down. 1 The referential set S represents a set
of ``states of a�airs'' or possible worlds, each state
being an unambiguous description of a cluster of
situations, at a certain level of granularity.

A possibility distribution describes knowledge
about the unknown value taken by one or several
attributes used to describe states of a�airs. For
instance it may refer to the age of a man, the size
of a building, the temperature of a room, etc. Here
it will refer to the ill-known consequence of a de-
cision. A possibility distribution can represent a
state of knowledge (about the state of a�airs)
distinguishing what is plausible from what is less
plausible, what is the normal course of things from
what is not, what is surprising from what is ex-
pected. The function p : S ! L represents a ¯exible
restriction on the actual state of a�airs, with the
following conventions: p�s� � 0 means that state s
is rejected as impossible; p�s� � 1 means that s is
totally possible (plausible). Distinct states may si-
multaneously have a degree of possibility equal to
1. Flexibility in this description is modeled by
letting p�s� vary between 0 and 1 for some states s.
The quantity p�s� thus represents the degree of
possibility of the state s, some states being more
possible than others. Clearly, if S is the complete
range of states, at least one of the elements of S
should be fully possible, so that 9s; p�s� � 1 (nor-
malization). In this paper we consider only nor-
malized possibility distributions. Strictly speaking
a possibility distribution can be viewed as the
generalized characteristic function of a fuzzy set

[44]. The fundamental point made by Zadeh [44] is
the following: as set-characteristic functions can be
used to express equipossibility, fuzzy set member-
ship functions are the basis of gradual possibility.

A possibility distribution p is said to be at least
as speci®c as another p0 if and only if for each state
of a�airs s : p�s�6 p0�s� [43]. Then, p is at least as
restrictive and informative as p0. In the possibilistic
framework extreme forms of partial knowledge
can be captured, namely:

· complete knowledge: for some s0; p�s0� � 1 and
p�s� � 0 8s 6� s0 (only state s0 is possible);

· complete ignorance: p�s� � 1 8s (all states in S
are possible).

In the following, subsets are denoted A;B;C; . . .. A
denotes the complement of A. Given a simple
query of the form ``does the actual state belong to
A?'', where A is a prescribed subset of situations,
the response to the query can be obtained by
computing the partial belief induced on A by the
knowledge encoded by the possibility distribution
p, noticeably to what extent:

· A is consistent with p, with degree

P�A� � sup
s2A

p�s�;
· A is certainly implied by p, with degree

N�A� � nL�P�A�� � inf
s2A

nL�p�s��:
P�A� is called the degree of possibility of A, and is
de®ned by assuming that, if it is only known that A
occurs, then the most plausible situation compat-
ible with A is the one that takes place. It expresses
a level of unsurprisingness. The basic axiom of
possibility measures in the ®nite case is
P�A [ B� � max�P�A�;P�B��. It is justi®ed by the
assumption of jumping to the most plausible sit-
uation. By convention, P�;� � 0. A systematic
assumption in possibility theory is that the actual
situation is normal, i.e., it is any s such that p�s� is
maximal given other known constraints. It justi®es
the evaluation P�A�, and contrasts with the
probabilistic evaluation of the likelihood of events.
N�A� is called degree of necessity of A.

When N�A�P a > 0, it means that the most
plausible situation where A is false is rather im-
possible, i.e., not possible to a level greater than

1 As kindly pointed out by a referee, in the in®nite case, not

any bounded, totally ordered set can be equipped with an order-

reversing map. For instance, L � �0; 0:5� [ f1g cannot. So, L

should be everywhere dense, in order to be on the safe side. For a

similar reason, nL should be continuous. However, since we stick

to a ®nite setting here, these problems do not occur.
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nL�a�. Moreover N�A� > 0 also means that A holds
in all the most normal situations. Since the as-
sumption of normality is always made, N�A� > 0
thus means that A is an accepted belief, i.e., one
may act as if A were true. This assumption is al-
ways a default one and can be revised if further
pieces of evidence contradict it. Necessity mea-
sures satisfy an axiom dual of the one of possibility
measures, namely N�A \ B� � min�N�A�;N�B��.
This decomposability axiom, as well as the above
maxitivity axiom, presupposes a ®nite setting in
order to be characteristic. Otherwise the axiom
must hold for in®nite families of sets.

Set-functions P and N are, respectively, called
possibility and necessity measures [15], and can
provide simple ordinal representations of graded
belief that are fully compatible with preferential
representations of uncertainty very common in
non-monotonic reasoning [18]. Their particular
character lies in their ordinal nature, i.e., the val-
uation set L is used only to rank-order the various
possible situations in S, in terms of their compati-
bility with the normal course of things as encoded
by the possibility distribution p. To each possibility
distribution p, we can associate its comparative
counterpart, a complete preorder denoted by Pp,
de®ned by s Pp s0 if and only if p�s�P p�s0�, which
induces a well-ordered partition [34] fE1; . . . ;Eng of
S, that is, fE1; . . . ;Eng is a partition of S such that
8s 2 Ei 8s0 2 Ej; p�s�P p�s0� i� i6 j (for 16 i;
j6 n). By convention E1 represents the most nor-
mal states of fact. Thus, a possibility distribution
partitions S into classes of equally possible states.
Dubois [5] de®ned comparative possibility as a re-
lation on events, denoted PP, satisfying:

A1. PP is complete and transitive.
A2. S >P ; (non-triviality).
A3. A PP ;.
Pos. 8B;C;D;B PP C implies B [ D PP C [ D.

Qualitative necessity relations are de®ned by
duality, i.e., A PN B if and only if B PP A. Their
characteristic property, on top of A1, A2, and a
dual property of A3,

A30á S PN A;
is

Ná 8B;C;D;B PN C implies B \ D PN C \ D:

In the ®nite case, Dubois [5] has shown that the
only numerical counterparts to comparative ne-
cessity (resp. possibility) relations are necessity
(resp. possibility) measures. Qualitative necessity
relations are closely related to the epistemic en-
trenchment relation underlying any revision of a
belief set in the sense of G�ardenfors [18]. Possi-
bility orderings are an optimistic view on the rel-
ative likelihood of events since they focus on their
most plausible realization. Conversely, necessity
orderings are cautious since they focus on the most
plausible realization of the converse event.

In the above lines, a possibility distribution en-
codes imprecise knowledge about a situation; in
that case, no choice is at stake, that is, the actual
situation is what it is, and p encodes plausible
guesses about it. However, there exists a di�erent
understanding of a possibility distribution: possi-
bility distributions can also express what are the
states in which an agent would like to be, under the
form of a ¯exible constraint on the state space. In
this case possibility is interpreted in terms of graded
preference or subjective feasibility and necessity
degrees are interpreted as priority levels. A possi-
bility distribution is then similar to a utility func-
tion, or, better, a value function, but it may range on
a qualitative valuation set (see also [7] for a detailed
discussion of the preference view of possibility
theory in the setting of constraint satisfaction).
Using the two types of possibility distributions
conjointly leads to qualitative utility theory.

3. Qualitative counterparts of expected utility

Generally, decisions are made in an uncertain
environment. In the Savage framework [30], the
consequence of a decision depends on the state of
the world in which it takes place. If S is a set of
states and X a set of possible consequences, the
decision-maker has some knowledge of the actual
state and some preference on the consequences of
his decision. Here, a belief state about which sit-
uation in S is the actual one, is supposed to be
represented by a normalized possibility distribu-
tion p from S to a plausibility scale L. p�s� 2 L
estimates the plausibility level of being in situation
s. As already said, possibility theory, in its
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qualitative version, represents uncertainty by
means of a complete pre-ordering on S, that can be
mapped to the totally ordered scale L.

3.1. Possibilistic criteria

It makes sense, if information is qualitative, to
represent not only the incomplete knowledge on
the state by a possibility distribution p on S with
values in a plausibility scale L but also the deci-
sion-maker's preference on X by means of another
possibility distribution l with values on a prefer-
ence scale U. Let x� and x� be the best and worst
consequences in X, with l�x�� � 1 and l�x�� � 0.
A decision is represented by a function, called an
act, from S to X. The utility of a decision f whose
consequence in state s is x � f�s� 2 X for all states
s, can be evaluated by combining the plausibilities
p�s� and the utilities l�x� in a suitable way. Two
qualitative criteria that evaluate the worth of de-
cision f have been put forward in the literature of
fuzzy sets, provided that a commensurability as-
sumption between plausibility and preference is
made:

· A pessimistic criterion

v��f� � inf
s2S

max�n�p�s��; l�f�s���;

which generalizes the max±min Wald criterion
in the absence of probabilistic knowledge.
Mapping n is order-reversing from L to U.

· An optimistic criterion

v��f� � sup
s2S

min�m�p�s��; l�f�s���;

which generalizes the maximax optimistic cri-
terion. Mapping m is order-preserving from L
to U.

The optimistic criterion has been ®rst proposed
by Yager [42] and the pessimistic criterion by
Whalen [40], and also used in [24]. These criteria
are clearly based on the possibility and necessity of
the fuzzy event with membership function l�f����.
They are special cases of Sugeno integrals [35,38]
as proved by Dubois and Prade [11] for the opti-
mistic criterion, and Inuiguchi et al. [24] for the
pessimistic criterion; see also [21].

3.2. Axiomatization on possibilistic lotteries

The pessimistic criterion has been axiomatically
justi®ed by Dubois and Prade [14] in the style of
von Neumann and Morgenstern utility theory [36].
Expected utility theory of von Neumann and
Morgenstern relies on the principle that the deci-
sion maker's behavior in the face of risk is entirely
determined by his/her preferences on the proba-
bility distributions about the consequences of his/
her actions. Preferences about probabilistic lotter-
ies should ful®ll a set of axioms describing the at-
titude of a ``rational'' decision maker in the face of
risk. Expected utility provides a simple criterion to
rank-order the lotteries, and thus the acts, since
each lottery is associated with the uncertain con-
sequences of an act. The idea of possibilistic deci-
sion theory is that if the uncertainty on the state is
represented by a possibility distribution p, each
decision induces on the set of consequences X a
possibility distribution such that pf�x� �P�fÿ1�x��.
So ranking decisions comes down to ranking pos-
sibility distributions on X. Assume the decision-
maker supplies an ordering between possibility
distributions on X, thus expressing his attitude in
front of uncertainty, that is, in front of various
possibilities of happy and unhappy consequences
in X.

Let pf�x� be the plausibility of getting x under
decision f. The question is to know what kind of
axioms on the ordering between possibility distri-
butions on X make it representable by the ranking
of decisions according to the above pessimistic or
optimistic criteria. Let x and y be two elements of
X, the possibility distribution pf de®ned by
pf�x� � k; pf�y� � m; pf�z� � 0 for z 6� x; z 6� y with
max�k; m� � 1 (in order to have pf normalized), is
called a qualitative binary lottery and will be
denoted by �k=x; m=y�, which means that we get
either consequence x or consequence y, with the
respective levels of possibility k and m. A subset A �
fx1; . . . ; xkg corresponds to the lottery �1=x1;
. . . ; 1=xk�. Here f is a binary act. More generally,
any possibility distribution p can be viewed as a
multiple consequence lottery �k1=x1; . . . ; km=xm�
where X � fx1; . . . ; xmg and ki � pf�xi�. For sim-
plicity we drop subscript f in the following.
The notation �k=p; m=p0� denotes the higher-order
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qualitative lottery yielding the uncertainty distri-
bution p with possibility k and p0 with possibility m.
Of course, max�k; m� � 1. A singleton fx0g corre-
sponds to the possibility distribution which is zero
everywhere except in x0, where p�x0� � 1.

Let � denote the preference relation between
possibility distributions (``possibilistic lotteries'')
given by the decision maker, which extends the
preference ordering over X, to normalized possi-
bility distributions in LX . Relation � is supposed
to satisfy the following axioms, where p � p0

means that both p � p0 and p0 � p hold:

Axiom 1á � is a complete pre-ordering.

Axiom 2 (independence).

p1 � p2 ) �k=p1; m=p
0� � �k=p2; m=p

0�:
Axiom 3 (continuity).

p � p0 ) 9k 2 L; p0 � �1=p; k=X �:
Axiom 4 (reduction of lotteries).

�k=s; m=�a=s; b=t��
� �max�k;min�m; a��=s;min�m; b�=t�:

Axiom 5 (uncertainty aversion or ``precision is saf-
er'').

p6 p0 ) p � p0:

Axiom 1 makes it possible to represent utility
on a totally ordered scale. Axioms 2±4 are coun-
terparts of axioms proposed by von Neumann and
Morgenstern. Axiom 4 reduces higher-order lot-
teries to standard ones. The resulting possibility
distribution is here the qualitative counterpart of a
probabilistic mixture kp1 � �1ÿ k�p2. Axiom 4 is
motivated by the particular form of mixtures in
possibility theory (see [9]). The risk aversion axiom
states that the less informative p is, the more risky
the situation is: the worst epistemic state is total
ignorance (here represented by X). So this axiom
expresses an aversion for a lack of information.
Continuity says that the utility of p goes down
without jump if the uncertainty about p raises.
Due to continuity and uncertainty aversion, it can
be proved that if the lottery is represented by a
subset A of possible consequences, then 9x 2 A;

x � A (see [10]). This property, violated by ex-
pected utility, suggests that contrary to it, the
pessimistic utility is not based on the idea of av-
erage and repeated decisions, but makes sense for
one-shot decisions. It is based on the idea that
when the decision is made and put to work, then
the consequence will be some x 2 A, and the ben-
e®t of the decision will indeed be the one of con-
sequence x. It comes down to rejecting the notion
of mean value. In fact lottery A is then equivalent
to the worst consequence in A.

The possibilistic pessimistic criterion is thus an
extension of Wald [37] pessimistic criterion, which
evaluates decisions on the basis of their worst
consequences, however unlikely they are. But the
possibilistic criterion is less pessimistic. It focuses
on the idea of usuality and relies on the worst
plausible consequences induced by the decision.
Some unlikely states are neglected by a variable
thresholding and the threshold is determined by
comparing the possibility distributions valued on
L and U via the mapping n. A decision will be
rated low if there is a plausible consequence of the
decision that has low utility.

A dual set of axioms can be devised for the op-
timistic criterion (see [10]). The latter can be used as
a secondary criterion, for breaking ties between
decisions which are equivalent w.r.t. the pessimistic
criterion. Clearly the optimistic criterion is very
optimistic since v��p� is high as soon as there exists a
situation with a high plausibility and a high utility.

This approach sounds realistic in settings where
information about plausible states and preferred
consequences is poor and linguistically expressed,
and where decisions will not be repeated, and also
for repeated decisions whose results do not accu-
mulate. These qualitative counterparts of the ex-
pected utility theory nicely ®t the setting of ¯exible
constraint propagation [7] illustrating the di�er-
ence between a fuzzy set modeling preference (in
terms of fuzzy constraints) and a fuzzy set mod-
eling uncertainty on ill-controlled parameters, for
making decisions. See [6] for an application of the
pessimistic possibilistic utility to scheduling.

Example (The omelette [30, pp. 13±15]). The
problem is about deciding whether or not to add
an egg to a 5-egg omelette. The possible states of

D. Dubois et al. / European Journal of Operational Research 128 (2001) 459±478 463



the world are: The egg is good (denoted by g), and
The egg is rotten (denoted by r). The uncertain part
of the knowledge base consists only in our opinion
about the state of freshness of the egg. The avail-
able acts are: Break the egg in the omelette (BIO),
Break it apart in a cup (BAC), and Throw it away
(TA). The possible consequences are:

· 6e (meaning that we obtain a 6-egg omelette) if g
holds and we choose BIO;

· 6c (we obtain a 6-egg omelette and we have a
cup to wash) if g holds and we choose BAC;

· 5e (we obtain a 5-egg omelette) if r holds and we
choose TA;

· 5c (we obtain a 5-egg omelette and we have a
cup to wash) if r holds and we choose BAC;

· 5w (we obtain a 5-egg omelette and an egg is
wasted) if g holds and we choose TA; and

· wo (the omelette is wasted) if r holds and we
choose BIO.

Concerning the preferences: ®rst of all, we do
not want to waste the omelette, then if possible, we
prefer not to waste an egg. Then, if possible, we
prefer to avoid having a cup to wash if the egg is
rotten (that is, it would have been better to throw
it away directly). Finally, if all these preferences
are satis®ed, then we prefer to have a 6-egg om-
elette, and the best situation would be to have, in
addition, no cup to wash.

Let us use the scale f0; 1; 2; 3; 4; 5g for assessing
the certainty levels and preferences. Just notice that
we could have used linguistic values instead of
numbers: only comparison and order-reversing are
meaningful operations here. The preferences can be
expressed by means of a symbolic utility function l.

According to the above discussion, the utilities
assigned to the consequences are:

l�6e� � 5; l�6c� � 4; l�5e� � 3;

l�5c� � 2; l�5w� � 1; l�wo� � 0:

In this example, the possibility distribution pd

restricting the more or less plausible consequences
of a decision d, depends only on the possibility
distribution on the two possible states g and r,
namely, on P�g� and P�r�. Let N�g� � n�P�r��
and N�r� � n�P�g�� (the certainty or necessity of
an event is the impossibility of the opposite event).

Note that min�N�g�;N�r�� � 0, where 0 is here the
bottom element of our scale (since the possibility
distribution over fg; rg should be normalized
whatever decision d).

The pessimistic utilities of the possible deci-
sions, given by v� are the following, according to
the levels of certainty of g and r:

·

v��BIO�
� min�max�n�P�r��; l�wo��;

max�n�P�g��; l�6e���;
which simpli®es into

v��BIO� � N�g�:
·

v��BAC� �min�max�n�P�r��; l�5c��;
max�n�P�g��; l�6c���:

Thus, v��BAC� � min�max�N�g�; 2�; 4�.
·

v��TA� �min�max�n�P�r��; l�5e��;
max�n�P�g��; l�5w���:

Thus,

v��TA� � 1 if N�g� > 0 and

min�3;max�N�r�; 1�� if not:

The best decisions are therefore:

· BIO if N�g� � 5 (we are sure that the egg is good).
· BIO or BAC if N�g� 2 f2; 3; 4g (we are rather

sure that the egg is good).
· BAC if N�g� < 2 and N�r� < 2 (we are rather ig-

norant on the quality of the egg).
· TA or BAC if N�r� � 2 (we have a little doubt

on its quality).
· TA if N�r� > 2 (we do not think that the egg is

good).

Notice the importance of the commensurability
assumption in the computation of v� where both
degrees of certainty and preferences are involved.
Note also the qualitative nature of the approach,
since the results depend only on the ordering be-
tween the levels in the scale.
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4. The axiomatics of Savage for expected utility

The weak point of the above axiomatic justi®-
cation of qualitative utility theory is that the un-
certainty theory (here possibility theory) is part of
the set of assumptions. While this approach is
natural when uncertainty is captured by objective
probabilities, as done by von Neumann and
Morgenstern, it is more debatable for subjective
uncertainty. On the contrary Savage has proposed
a framework for axiomatizing decision rules under
uncertainty where both the uncertainty function
and the utility function are derived from ®rst
principles on acts. The proposed axioms can be
operationally veri®ed by checking how the deci-
sion-maker ranks acts. This section recalls Sav-
age's setting and his axioms for justifying expected
utility and probability functions. Eventually, we
propose a Savagean justi®cation of the two above
mentioned possibilistic utilities.

In Savage's approach a preference relation �
between acts (or decisions) is assumed to be given
by a decision-maker. Such a preference relation is
observable from the decision-maker's behavior.
Acts are de®ned as functions f from an in®nite
state space S to a set X of consequences. Indeed
the result of an act depends on the state of the
world in which it is performed: the e�ect of brak-
ing a car depends on the state of the brake. Let us
denote F � X S the set of potential acts. The set of
actually feasible acts is generally only a subset of
F.

The ®rst assumption of Savage is that the
preference relation on F is transitive and complete
(g � f or f � g):

Sav 1 (Ranking). (F;�) is a complete preorder.

Two particular families of acts are crucial to
recover the preference information on conse-
quences and the uncertainty information on the
state space S: constant acts and binary acts re-
spectively. A constant act, denoted x for x 2 X is
such that 8s 2 S, x�s� � x. Since � is a complete
preorder on F, the set of acts, it is also a complete
preorder on the set of constant acts (which can be
identi®ed with X). Therefore, we can de®ne the
following complete preorder PP on X:

De®nition 1 (Preference on consequences induced
by the ranking of acts). 8x; y 2 X if f�s� � x 8s 2 S,
and g�s� � y 8s 2 S, then x PP y () f � g.

In order to avoid the trivial case when there is
only one consequence, or all consequences are
equally preferred, Savage has enforced the fol-
lowing condition: 2

Sav 5 (Non-triviality). There exist x; x0 2 X such
that x >P x0, where >P is the strict part of the
complete preordering on X.

The ranking of acts also induces a ranking of
events, i.e. subsets of the state space: this is based
on the use of binary acts. A binary act is an act f

such that there is a set A � S and two conse-
quences x >P x0 2 X , where f�s� � x if s 2 A,
f�s� � x0 if s 2 A and A is the complement of A.
Such a binary act is denoted xAx0. A partial or-
dering PL of events can be de®ned by restricting
the complete preordering on acts to binary acts:

De®nition 2 (Relative likelihood of events). Let
A;B � S. Event A is at least as likely as event B,
denoted A PL B, if and only if 8x; y 2 X ;
x >P y; xAy � xBy.

Of course relation PL is only a partial preor-
dering. In order to turn it into a complete preor-
dering, Savage proposed the following axiom:

Sav 4 (Projection from acts over events). Let
x; y; x0; y 0 2 X ; x >P x0; y >P y0. Let A;B � S. Then
xAx0 � x Bx0 () yAy 0 � y By 0.

This axiom ensures that for any choice of
consequences x >P y, the restriction of the preor-
dering on acts to binary acts xAy de®nes a com-
plete preordering of events in a unique way. The
preference ordering on events expresses the un-
certainty of the decision-maker about the state of
the world, implicit in the way acts are ranked.

The notion of binary act is a particular case of a
compound act:

2 For the sake of clarity we use Savage's original numbering

of axioms.
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De®nition 3 (Compound act). 8A � S; fAg is the
act de®ned by: fAg�s� � f�s� for all s 2 A, and
fAg�s� � g�s� for all s 2 A.

A binary act is thus a compound constant act.
Any act can be viewed as a compound act. Com-
bining acts and events and forming compound acts
enables any act to be generated by a suitable ®nite
sequence of combinations of events and constant
acts, if the state space is ®nite. Savage has intro-
duced a cancelation property, that boils down to
the following assumption: if two acts give the same
results on a subset of states, their relative prefer-
ence does not depend on what these results are.
This is called the sure thing principle and is mod-
eled as follows:

Sav 2 (Sure thing principle). Let f, g, h, h0 2F, let
A � S. fAh � gAh) fAh0 � gAh0.

This principle says that the ordering between
two acts does not depend on their common con-
sequences.

If two acts f and g are such that for any third
act h; fAh � gAh holds, then g is said to be con-
ditionally preferred to act f on event (a set of states)
A, denoted �f � g�A. Clearly, due to the sure thing
principle, conditional preference requires only that
fAh � gAh holds for a single act h, since the
property �f � g�A does not depend on the choice of
act h. Moreover it is a complete preordering of
acts. There is a type of event such that condi-
tioning on them blurs all preferences: null events.
An event A is said to be null if and only if
fAh � gAh for any f, h and g. It can be proved that
null events are impossible in the sense that A �L ;
if and only if A is null.

The restriction of conditional preference to
constant acts must coincide with the preference
ordering on consequences (except for null events).
This is achieved by the following axiom:

Sav 3 (Conditioning over constant acts). Let
x; y 2 X , A � S;A not null. Let x, y be the constant
acts: x�s� � x and y�s� � y 8s 2 S. Then,
�x � y�A () x PP y.

Under the above ®ve conditions the likelihood
relation on events induced by the preference on

acts is a comparative probability relation, namely
it obeys the following characteristic properties:

A1. PL is complete and transitive.
A2. S >L ; (non-triviality).
A3. 8A A PL ; (consistency).
P. If A \ �B [ C� � ; then: B PL C if and only if
A [ B PL A [ C (additivity).

If S is ®nite, the above four axioms are not en-
ough to ensure the existence of a numerical proba-
bility function representing PL (see [25]). The
setting proposed by Savage presupposes that the set
of states is in®nite. This assumption is necessary for
the introduction of the following axiom:

Sav 6 (Quantitative probability). Let f; g 2F,
such that f � g and let x 2 X . There exists a par-
tition fB1; . . . ;Bng of S such that 8i xBif � g and
f � xBig.

This condition which allows to partition S into
tiny parts with arbitrarily low probability values is
necessary in order to obtain a quantitative repre-
sentation of the comparative probability ordering.
Savage proved that a preference relation satisfying
Sav 1±Sav 6 can be represented by a utility func-
tion u from the set of acts to the reals. For any act
f, u�f� is the expected utility of the consequences of
f in the sense of a probability distribution on S.
Lastly Savage introduced an axiom that copes with
in®nite consequence sets:

Sav 7 (Extension to an infinite number of conse-
quences). Let f; g 2F and A � S: ��f � g�s��A
8s 2 A� ) �f � g�A.

Sav 7 expresses that if every possible conse-
quence of g on A is preferred or indi�erent to act f
(conditionally on A) then act g shall be preferred
or indi�erent to act f conditionally on A.

The two axioms Sav 6 and Sav 7 are clearly
technical, not so natural as the other ones, and not
so essential to the framework.

5. Properties of possibilistic utility

One of the key postulates of Savage is the sure
thing principle which expresses, roughly speaking,
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that if f is preferred or is equivalent to g and these
two acts result in identical consequences on a
subset B � S, then if f and g are modi®ed in the
same way on B, the two modi®ed acts remain or-
dered as f and g.

However, two acts may be found equivalent
just because they have identical and extreme (very
good or very bad) likely consequences on B � S,
while one act would be strictly preferred to the
other in case their consequences on B were not so
dramatic. In other words, extreme and likely
consequences may be allowed to blur minor dif-
ferences on B. Of course changing the identical
parts of two acts should not lead to a preference
reversal. This rationale suggests the following
weakening of Savage Sav 2 postulate:

WI (Weak independence). Let f; g; h; h0 2F, let
A � S. fAh � gAh) fAh0 � gAh0.

Proposition 1. The possibilistic utilities v� and v�
introduced in Section 3.1 satisfy the weak indepen-
dence property, but not the sure thing principle.

Proof. v��fAh� � min�inf s2A max�n�p�s��; l�f�s���;
inf s2A max�n�p�s��; l�h�s���. Let us write vA

� f �
inf s2A max�n�p�s��; l�f�s���: Hence if the term vA

�h
in the above term is smaller than both vA

� f and
vA
�g then fAh � gAh. However, changing act h into

the best constant act x�, the preference between
fAx� and gAx� only re¯ects the ordering between
vA
� f and vA

�g since vA
�x
� � 1. The same reasoning

holds for the optimistic utility, with some adapta-
tion. The possibilistic utilities violate the sure thing
principle because min and max fail to be cancela-
tive. �

As a consequence of Proposition 1, the notion
of conditional preference de®ned in Section 4 is no
longer valid for possibilistic utilities. Especially,
fAh � gAh for any h means, for the pessimistic
utility, min�vA

� f; a� > min�vA
�g; a� for any a 2 L,

which is impossible. A similar conclusion holds for
the optimistic utility.

A weaker notion of conditional preference
could be adopted, such that
· �f � g�A i� fAh � gAh 8h;
· �f � g�A i� fAh � gAh 8h and fAh � gAh for

some h.

In the following we avoid the notion of condi-
tional preference and stick to representing prefer-
ence on X S . We use preference between compound
acts instead of conditional preference.

The failure of the sure thing principle also
suggests that axioms Sav 3 and Sav 4 will not hold.
Possibilistic utility only obeys weak versions of
these axioms:

WS3 (Weak coherence with constant acts). If x

and y are constant acts then x PP y ) xAh �
yAh 8A � S and all acts h.

It is obvious that WS3 is satis®ed by both
pessimistic and optimistic utilities. However, these
utilities fail to satisfy Sav 3, for the same reason as
they fail to satisfy Sav 2, namely the blurring e�ect
of act h in compound acts xAh. Fortunately our
possibilistic utilities satisfy a more general prop-
erty of consistency with a dominance relation be-
tween acts that is similar to Pareto-dominance, in
the sense that it is a pointwise preference property.

De®nition 4 (Pointwise preference). An act f is
said to dominate another act g, which is denoted
f PP g if and only if 8s 2 S; f�s�PP g�s� (the or-
dering on X induced by constant acts). We also say
that f is pointwisely preferred to g.

In the terminology of fuzzy sets, pointwise
preference corresponds to fuzzy set inclusion. It is
easy to check that for the pessimistic and opti-
mistic utilities, pointwise preference implies weak
preference. The monotonicity of the pessimistic
and optimistic utility is obvious from their de®ni-
tions: increasing l�f�s�� in

v��f� � inf
s2S

max�n�p�s��; l�f�s��� and

v��f� � sup
s2S

min�m�p�s��; l�f�s���

cannot decrease the utilities.
More speci®cally the pessimistic utility satis®es

the following axiom which Grant et al. [22] claim
to be one form of the genuine sure thing principle.

WSP (Weak sure thing principle). If fAg � f and
gAf � f then g � f.
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This principle means that if by changing act f

into act g one improves the expectations both
when A occurs and when its opposite occurs, then
g should be better than f regardless of event A. The
pessimistic and optimistic utilities satisfy two dif-
ferent principles, respectively:

· PES. Pessimism: 8f; g; 8A � S,

fAg � f ) f � gAf:

· OPS. Optimism: 8f; g; 8A � S;

f � fAg) gAf � f:

PES implies WSP because they state that the ``if''
part of WSP is ever false. OPT violates the ``if'' part
of the following dual expression of Grant's axiom:
WSP0 If f � fAg and f � gAf then f � g. �WSP0 is
equivalent to WSP if Sav 1, Sav 3 and Sav 6 hold
[22]). The pessimism axiom means the following:
given some act f, if by changing act f into act g one
improves the expectations of the act f when A oc-
curs, then there is no way of forming an act better
than f by turning f into g when the opposite event A
occurs. The reason is that the decision-maker con-
siders it as plausible that A occurs as its opposite,
and he pays no attention to good consequences that
may occur if A occurs, due to pessimism.

For instance suppose a game of chance accord-
ing to which a coin is tossed that makes you win
10,000 Euros if head, and lose 10,000 Euros if tail
(Game 1). Usually, you will prefer another game,
whereby you win 10,000 Euros if head, and nothing
otherwise (Game 2). Now, you are proposed yet
another game, whereby you win 20,000 Euros if
head, and lose 10,000 Euros if tail (Game 3). If,
preferring Game 2 to Game 1, you are nevertheless
indi�erent between Games 1 and 3, then you are a
pessimist. Indeed, it holds that fAg � f and f � gAf,
where A� head, f � playing Game 1, g is a game
where you win 20,000 Euros if head and nothing
otherwise, so that fAg�Game 2 and gAf�Game 3.
It indeed reveals that you consider the outcome
``tail'' as not unlikely, and that you focus on the
worst possible consequences. Standard expected
utility cannot model this behavior.

The pessimistic utility satis®es the pessimism
axiom and the optimistic utility satis®es the opti-

mism axiom. To see it let us ®rst introduce a no-
tion of conjunction and disjunction of acts. First
given two acts f and g, de®ne the act f ^ g
�resp: f _ g� which in each state s gives the worst
(resp. the best) of the results f�s� and g�s�, fol-
lowing the ordering on X (induced by the ordering
of constant acts). In terms of fuzzy sets this is the
fuzzy union and intersection of fuzzy sets viewed
as acts. Then, it is easy to check, due to elementary
properties of min and max, that the following
properties, violated by expected utility, hold for
qualitative utility.

Lemma 1.

v��f ^ g� � min�v��f�; v��g��;

and

v��f _ g� � max�v��f�; v��g��:

The two other decomposability properties do
not hold except if we consider disjunctions and
conjunctions of acts f _ g and f ^ g one of f or g
being a constant act. Namely, if x is a constant act

v��f ^ x� � min�v��f�; l�x��;
v��f _ x� � max�v��f�; l�x��:

This is again obvious to check due to properties
of min and max. Let us call the latter property
semi-decomposability. It leads to introduce a
property that is respected by the possibilistic util-
ities and, again, not generally by the expected
utility:

The following lemma holds.

Lemma 2. Under the pointwise preference monoto-
nicity assumption, the two following properties are
equivalent:

(i) g � f and h � f imply g ^ h � f;
(ii) f � f ^ g or g � f ^ g.

Proof. Suppose (i) and both f � f ^ g; g � f ^ g.
Then f ^ g � f ^ g, which is impossible, hence
f � f ^ g or g � f ^ g. However, the pointwise
preference assumption implies both f � f ^ g and
g � f ^ g. Hence (ii) holds.
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Conversely, suppose (ii) and g � f and h � f.
Then, one of g and h can be changed into g ^ h,
which means (i). �

Similarly, and under the same assumptions as
in Lemma 2, f � g and f � h imply f � g _ h if and
only if f � f _ g or g � f _ g.

Due to Lemmas 1 and 2, it is clear that the
pessimistic utility satis®es the following properties:

CD (Conjunctive-dominance).

g � f and h � f ) g ^ h � f:

RDD (Restricted disjunctive-dominance).

f � g and f � x) f � g _ x;

where x is the constant act that always yields
consequence x.

Dually, the optimistic utility satis®es:

DD (Disjunctive-dominance).

f � g and f � h) f � g _ h:

RCD (Restricted conjunctive-dominance).

g � f and x � f ) g ^ x � f:

To see that expected utility violates RCD, for
instance, it is enough to ®nd real values a; b; a0; b0; c
and a number a in the unit interval such that

a � a� b � �1ÿ a� > a0 � a� b0 � �1ÿ a�;
c > a0 � a� b0 � �1ÿ a�; and

min�a;c� �a�min�b;c� � �1ÿa�6a0 �a�b0 � �1ÿa�:
The reader can check that the values a � 1000,

b � 2, a0 � 3, b0 � 100, c � 10, and a � 0:93 yield
such a counterexample.

The decomposability with respect to the dis-
junction of acts, or maxitivity property, of the
optimistic utility, v� is a clear counterpart of the
additivity of expected utility for the sum of acts.
Similarly, the semi-decomposability of v� for the
conjunction of an act and a constant act is the

counterpart of the linearity of expected utility with
respect to the multiplication of an act by a con-
stant. These properties were used by de Campos
and Bola~nos [3] when characterizing the possibility
of a fuzzy event. However, they do not consider
the necessity of fuzzy events. Now we can relate
these decomposability properties to pessimism and
optimism axioms:

Proposition 2. The pessimistic utility v� satisfies
PES and the optimistic utility v� satisfies OPT.

Proof. Now assume v��fAg� > v��f� and v��gAf� >
v��f�. Then, min�v��fAg�; v��gAf�� > v��f�. But us-
ing the above min decomposability of the pessi-
mistic utility, this also reads: v��fAg ^ gAf� > v��f�
and since �fAg� ^ �gAf� � �f ^ g�, we ®nd
v��f ^ g� > v��f� which is impossible since f is
pointwisely better than f^g and the pessimistic
utility respects pointwise preference. The negation
of v��fAg� > v��f� and v��gAf� > v��f� is precisely
the pessimism axiom. A similar proof can be
proposed for showing that the optimistic utility
satis®es the optimism axiom. �

Let us now consider binary acts of the form
xAy �x >P y�. Note that

v��xAy� � max�l�y�; min�N�A�; l�x���
� min�l�x�; max�N�A�; l�y���:

This form of the pessimistic utility is easy to un-
derstand: if the agent is sure enough that A occurs
(N�A� > l�x�) then the utility of the act xAy is l�x�.
If the agent has too little knowledge �max�N�A�;
N�A�� < l�y�� he is cautious and the utility is l�y�,
the worst case. Of course the same happens if the
agent is at least somewhat certain that A occurs. If
the agent's certainty that A occurs is positive but
not extreme, the utility re¯ects the certainty level
and is equal to N�A�. Note that the pessimistic
utility of the binary qualitative lottery is the me-
dian of fl�x�;N�A�; l�y�g, thus contrasting with
expected utility, which is a mean. Similarly, the
optimistic utility of the binary act takes the sim-
pli®ed form

v��xAy� � max�min�P�A�; l�x��; l�y��;

D. Dubois et al. / European Journal of Operational Research 128 (2001) 459±478 469



and can be interpreted similarly as the median of
fl�x�;P�A�; l�y�g, but here the utility is l�x� as
soon as the agent believes that obtaining x is
possible enough (P�A� > l�x�).

Both pessimistic and optimistic utilities violate
axiom Sav 4, because of the blurring e�ects of al-
most sure events with drastic consequences. In-
deed, considering binary acts xAx0, xBx0; yAy 0, and
yBy 0, one may have v��xAx0� � N�A� > v��xBx0� �
N�B� and v��yAy 0� � v��yBy 0� � l�y�, for instance,
when l�y�6 min�N�A�;N�B��.

It is easy to verify that 8x >P y, the set Fxy of
binary acts of the form xAy is isomorphic to P�S�
(the set of all subsets of S). Let Dxy be the total
preorder on events, induced by the possibilistic
utilities, restricted to Fxy : AD xyB() xAy � xBy.

Via Sav 4, Savage [30] required that the induced
weak ordering on events should not depend on the
values of the outcomes x; y. Here, Dxy depends on
the values of x and y. In fact the possibilistic
utilities satisfy a weak version of Sav 4, whereby
the preference ordering of binary acts remains
weakly coherent when changing the consequences
x and y.

WS4. Let x >P x0; y >P y 0; A;B � S:

xAx0 � xBx0 ) yAy 0 � yBy0:

If furthermore, we have: x06 P y0 <P y6 P x, then:

xAx0 � xBx0 ) yAy 0 � yBy0:

This means that if two binary acts with the
same outcomes are equivalent, changing the out-
comes into outcomes that are less extreme keeps
both acts equivalent. However, changing the con-
sequences of binary acts while preserving their
respective preference orderings will not create a
preference reversal: we cannot have v��xAx0� >
v��xBx0� and v��yAy 0� < v��yBy 0�.

Proposition 3. Axiom WS4 holds for the possibi-
listic utilities.

Proof. If v��xAy� > v��xBy� several cases occur:

· v��xAy� � N�A� > v��xBy� � l�y�. Then it
means that l�x�P N�A� > l�y�P N�B�, hence
N�A� > N�B�;

· the same holds if v��xAy� � N�A� and v��xBy� �
N�B� of course,

· v��xAy� � l�x� and v��xBy� � l�y� or N�B�.
Then again N�A� > l�x�P N�B�:

Then v��xAy� > v��xBy� implies N�A� > N�B�
hence v��x0Ay0�P v��x0By 0� since the function
min�a; max�b; c�� is non-decreasing. We may have
that v��x0Ay 0� � v��x0By 0�, if N�A�P N�B� P l�x0�
> l�y0� for instance. But no preference reversal is
possible. Moreover choosing l�x0� > l�x� > l�y�
> l�y0� increases the chance for N�A� and N�B� to
be the values of the utilities v��x0AY 0� and v��x0By 0�
namely checking the above three cases shows that
v��xAy� cannot but increase, and v��xBy� cannot
but decrease. One becomes convinced that
v��xAy� > v��xBy� implies v��x0Ay 0� > v��x0By 0�.
The same reasoning works for the optimistic
utility. �

The above analysis shows that possibilistic
utility functions have properties that noticeably
di�er from those of expected utility. Especially,
axiomatizing possibilistic utilities cannot rely on
the sure-thing principle, nor on Savage de®nition
of the uncertainty relation induced from prefer-
ence on acts via Sav 4.

6. Act-driven axiomatization of possibility theory

and qualitative utility

In this section it is shown that the pessimistic
and optimistic possibilistic utilities can be axio-
matized in the style of Savage, just like expected
utility. The main di�erence is that a ®nite setting
is enough to prove the results. In a ®rst step, we
point out a general framework for describing
many families of monotonic set-functions in
terms of acts, thus providing a practically testable
framework for many non-probabilistic uncer-
tainty theories. Namely, by asking a decision-
maker to rank acts in an uncertain environment,
one may ``guess'' the kind of uncertainty measure
he is implicitly working with. In particular, pos-
sibility theory thus receives some operational
foundations.
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6.1. Various uncertainty measures induced by the
preference on acts

Generally uncertainty is represented by set-
functions r : S ! L which are Sugeno measures
[35,38], that is:

r�;� � 0L; r�S� � 1L; and

A � B) r�A�6r�B�:
This kind of set-function is very general and rep-
resents the minimal requirement for the represen-
tation of partial belief. Especially the last
condition is called monotonicity, and is veri®ed by
probability measures and most other well-known
representations of partial belief.

6.1.1. Representation of monotonic set-functions
In terms of acts Sugeno measures can be re-

covered as follows, if we consider the restrictions
of a preference relation on acts to binary acts of
the form Fxy � fxAy;A � Sg with x; y 2 X whose
corresponding constant acts x and y satisfy x � y.
Only very few axioms are needed. However, we
need the notion of conditional preference on acts
de®ned in Section 4:

Lemma 3. If an act f is conditionally preferred to an
act g both on a set A and its complement then axiom
Sav1 implies that f is preferred to g.

Proof. Assume �f � g�A that is, fAh � gAh holds
for all h, and �f � g�A as well. Then due to the
transitivity of Sav 1, f � gAf (using h � f�; gAf �
fAg � g (using h � g and conditional preference
on A.) Hence f � g. �

Lemma 4 (Monotonicity). If the set of acts
F � X S is equipped with a preference relation �
that satisfies Sav 1, and WS3, then pointwise pref-
erence implies preference: f PP g) f � g.

Proof. We recall that relation PP is a complete
preordering on X obtained by restricting � to
constant acts. Assume f PP g, in such a way that
f�s� � g�s� except for some state s0 where
f�s0� >P g�s0�. Such two acts exist, otherwise X is
an equivalence class for PP and the result trivially

holds. Clearly f is pointwisely preferred to g. In
this particular situation we say that f is simply
pointwisely preferred to g. Now due to WS3,
f�s0� >P g�s0� implies f � g. More generally, if f is
pointwisely preferred to g, then it is possible to
build a ®nite sequence of acts f0; . . . ; fn such that
f0 � f; fn � g where f i is simply pointwisely pre-
ferred to fi�1. Then, by transitivity, f � g. �

Due to the above lemmas the following theo-
rem is obvious.

Theorem 1 (Representation of Sugeno measures).
If the set of acts F � X S is equipped with a pref-
erence relation � that satisfies Sav 1, WS3, Sav 5

then the uncertainty relation induced by restricting
to binary acts with fixed consequences can be rep-
resented by a Sugeno measure.

Proof. Let x >P y, due to Sav 5. Consider the rela-
tionDxy among events de®ned by ADxy B if and only
if xAy � xBy. This relation is a complete preorder-
ing and can be mapped to a ®nite linear scale Lxy

whose elements are the equivalence classes of Fxy .
Let �xAy� denote the equivalence class of xAy. Let r
denote the set function such that r�A� � �xAy�. Note
that 8A � B; xBy PP xAy and due to Sav 1, WS3, via
the preceding monotonicity lemma, we get
xBy � xAy and r�B�P r�A�. Therefore r is mono-
tonic with respect to set inclusion. Sav 5 ensures that
r�X� > r�;�. �

Clearly the problem at this point is to ensure
that the sets Fxy of binary acts remain coherent
with one another in the sense that the orderings of
events induced by Fxy and Fx0y0 for two pairs of
consequences �x; y� and �x0; y0� do not contradict
each other. A minimal coherence is ensured by the
axiom WS4. Then we are sure that the relation Dxy

among events is a re®nement of another one Dx0y0 if
x PP x0 >P y 0PP y. Moreover the case of outright
contradiction xAy � xBy and x0By 0 � x0Ay 0 should
not be observed. It is already ruled out if A � B by
the above theorem. Axiom WS4 ensures that it
does not occur in other cases. Let x� and x� be the
least and greatest elements of �X ; PP �. Clearly the
constant acts x� �resp: x�� they induce are not
preferred to (resp. are better than) any other act,
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due to the pointwise preference theorem, under
Sav 1, WS3, Sav 5. If L denotes a linearly ordered
scale isomorphic to the set of equivalence classes
of �F;�� then x� and x� correspond to the bottom
0 and the top 1 of L. The most re®ned uncertainty
relation on events that can be obtained from
�F;�� is thus via Fx�x� which for simplicity we
shall denote F10 and whose elements will be de-
noted 1A0, binary acts where the best consequence
obtains if A occurs and the worst otherwise. We
shall denote the uncertainty relation between
events ADB if and only if 1A0 � 1B0 as the un-
certainty relation induced from �F;��, repre-
senting the implicit epistemic state of a decision-
maker rank-ordering acts and respecting Sav 1,
WS3, WS4, Sav 5.

6.1.2. Pseudo-additive set functions
It is interesting to see which kind of uncertainty

measures can be captured in terms of acts apart
from Sugeno measures and probability measures.
To see it we shall consider relaxations of the sure-
thing principle (that leads to comparative proba-
bility), and ®rst of all the weak independence axi-
om WI that just prevents preference reversals of
the form fAh � gAh while fAh0 � gAh0, still coping
with a blurring e�ect of strict preferences when
moving from h to h0 when A occurs.

Dubois [5] proposed a relaxation of the com-
parative probability axiom P that, in conjunction
with the other basic axioms A1±A3 subsumes both
qualitative probability and qualitative possibility:

DM. 8A;B;C;A \ �B [ C� � ;;
BDC ) B [ ADC [ A;

and a dual axiom to DM, which is satis®ed by
qualitative probability and qualitative necessity:

DDM. 8A;B;C;A [ �B \ C� � S;

BDC ) B \ ADC \ A:

Chateauneuf [2], improving results in [5], has
proved that any uncertainty ordering that obeys
A1±A3 and DM can be represented by a pseudo-
additive measure, that is, a set-function r mapping

on L � r�2S� such that there exists an operation �
in L that veri®es the following properties:

· 1� k � 1;
· 0� k � k;
· � is commutative and associative;
· moreover r�A [ B� � r�A� � r�B� for any dis-

joint events A and B.

Such pseudo-additive measures have been in-
troduced by Dubois and Prade [12] and Weber [39]
when � is a triangular conorm in the sense of
Schweizer and Sklar [32]. Clearly adequate candi-
dates for � are maximum and the bounded sum (if
L is numerical), so that decomposable measures
include possibility and probability measures. Axi-
om DM can be called decomposable monotonicity.

By duality, any uncertainty ordering that obeys
A1, A2 and A30 and DDM can be represented by a
dual pseudo-additive measure, that is, a set-function
q with range L � q�2S� such that there exists an
operation � in L that veri®es the following prop-
erties:

· 1� k � k;
· 0� k � 0;
· � is commutative and associative;
· moreover q�A \ B� � q�A� � q�B� for any

events A and B such that A [ B � S.

Such dual pseudo-additive measures are of the
form q�A� � nL�r�A�� where nL is an involutive
order-reversing map of L. Operation � can be
taken as a triangular norm in the sense of
Schweizer and Sklar [32]. Clearly adequate candi-
dates for � are minimum and the Lukasiewicz
conjunction (max�0; a� bÿ 1� if L is numerical),
so that dual pseudo-additive measures include
necessity and probability measures.

However, the above relaxation of the probabi-
listic framework is still too restrictive to result from
the weak independence axiom. In order to ®nd the
proper class of set functions that is captured by the
latter, we consider a relaxed version of DM that we
call weak decomposable monotonicity:

WDM. 8A;B;C;A \ �B [ C� � ;;
B . C ) B [ ADC [ A:

It must be pointed out that WDM can be stated
di�erently in an equivalent way:
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8A;B;C;A [ �B \ C� � S;

B . C ) B \ ADC \ A:

To prove this point, just let E � B \ A;
F � C \ A;G � A and consider the contraposed
form of WDM.

The following theorem can be shown.

Theorem 2. Let � be an order relation on acts,
satisfying Sav1;WI;WS3;Sav5. Then the order re-
lation on events D induced by the preference relation
on acts via binary acts 1A0 satisfies A1;A2;A3;A30

and WDM.

Proof. Only WDM needs to be established. Just
write WI�fDh � gDh) fDh0 � gDh0� for f � 1B0
and g � 1C0;D � B [ C h � x�. fDh � gDh then
writes 1B0 � 1C0, i.e. B . C. Now let h0 � 1A0
where A is disjoint from D. Then fDh0 � gDh0

reads B [ ADC [ A. �

Note that WS4 is not used to prove the result,
which holds for all the relations induced from Fxy .

However weak WDM may look, it is satis®ed
neither by belief functions, nor by plausibility
functions of Shafer [33]. To see it, ®rst recall that
a belief function Bel is de®ned from a non-
negative mass function m : 2S ! �0; 1�, such thatP

E�S m�E� � 1 and m�;� � 0, as follows:

Bel�A� �
X
E�A

m�E�:

Then, let A;B;C be such that A \ �B [ C� � ;,
suppose m�B�>m�C�> 0; E1 � �A[B�\C; E1 \B
6� ;; m�E1�> 0, and E2 � �A[C�\B; E2 \C 6� ;;
m�E2�> 0, but m�E� � 0 for E 62 fB;C;E1;E2g (see
Fig. 1).

Then

Bel�B� � m�B� > Bel�C� � m�C� and

Bel�A [ B� � m�E1� � m�B�;

Bel�A [ C� � m�E2� � m�C�:
It is easy to choose m�E1� and m�E2� such
that m�E2� � m�C� > m�E1� � m�B�, and then
Bel�A [ B� < Bel�A [ C�.

Plausibility functions Pl do not satisfy WDM
either. Indeed, Pl�A� � 1ÿ Bel�A� �PE\A6�; m�E�.
Let

m�B \ C� � m1 > 0; m�C \ B� � m2 > 0;

m�A [ �B \ C��� m3 > 0;m�A [ �C \ B��� m4 > 0:

Then, Pl�B� � m1 � m3; Pl�C� � m2 � m4. Now,

Pl�A [ B� � m1 � m3 � m4;

Pl�A [ C� � m2 � m3 � m4:

Clearly it is easy to have Pl�B� > Pl�C� while
Pl�A [ B� < Pl�A [ C�.

In fact belief functions and plausibility func-
tions can represent all orderings that are such that
[41]:

· A � B) BDA (monotonicity);
· if C � B and A \ B � ; then

B . C ) A [ B . A [ C �Bel�;
· if C � B and A [ B � S then

B . C ) A \ B . A \ C �Pl�:
Clearly axiom Bel implies WDM only if C � B,

and the same holds for Pl, considering the alter-
native form of WDM.

If we want the uncertainty relation D to be a
pseudo-additive measure, we may strengthen axi-
om WI in the following way:

Fig. 1. Belief functions do not satisfy WDM.
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PA (Pseudo-additivity). Let f; g; h; h0 2F, let
A � S. If fAh � gAh and h0 is pointwisely better
than h then fAh0 � gAh0.

Theorem 3. Let � be an order relation satisfying
Sav 1, PA, WS3, Sav 5. Then, the uncertainty re-
lation D based on � is a pseudo-additive measure.

Proof. We have to prove DM. Let B;C;D be such
that D \ �B [ C� � ;; f � 1B0; g � 1C0; f 0 � f and
g0 � g on B [ C, and f 0 � g0 � 1D0 on B [ C, so,
f 0 � f on B [ C, and by PA, we get

f � g() f�B [ C�0 � g�B [ C�0
) f�B [ C�f 0 � g�B [ C�g0
() 1�D [ B�0 � 1�D [ C�0

(i.e. BD10 C ) D [ BD10 D [ C). �

If we change PA into its dual axiom DPA, we
now ensure the satisfaction of DDM for D.

DPA (Dual pseudo-additivity). Let f; g; h; h0 2F,
let A � S. If fAh � gAh and h is pointwisely better
than h0 then fAh0 � gAh0.

6.1.3. Qualitative possibility theory
We could base our decision theory on these

axioms, choosing to represent uncertainty by
pseudo-additive measures, or their dual, or even
weaker measures such as Sugeno measures. See
[16,23] for decision-theoretic foundations of Su-
geno integrals in the style of von Neumann and
Morgenstern or Savage, respectively.

In this paper, stronger axioms than PA or DPA

are used so as to recover the ``possibilistic'' qual-
itative utilities. First let us recover possibility and
necessity measures. To do so, we prove that the
characteristic act-based axiom of the former is
the optimism axiom, and the pessimism axiom for
the latter.

Lemma 5. Under Sav 1, WS3 and Sav 5, the pes-
simism Axiom PES implies that if an act f can be
improved by a suitable modification when A occurs,
then there is no way of improving f by any other
modification when its contrary occurs, namely
8f; g; 8A � S; gAf � f ) f � fAh, for any act h.

Proof. The pessimism axiom reads 8f; g; 8A � S;
gAf � f ) f � fAg: Now gAf � f ) 1Af � f using
pointwise preference. Now suppose fAh � f for
some act h. Again, fA1 � f, for the same reason.
However, the pessimism axiom forbids that both
fA1 � f, and 1Af � f hold. �

As recalled above in Section 2, necessity and pos-
sibility measures satisfy, respectively, the two fol-
lowing axioms, also stronger than WDM [5]:

Ná BDC) B \ADC \A.

Posá BDC ) B [ ADC [ A.

Lemma 6. Under Axioms A1;A2;A30, Axiom N is
equivalent to the conjunction of the two following
properties:

Monotonicity: A � B) BDA,
B \ C � C or B \ C � B.

Proof. To see that N implies monotonicity, just use
A30 � SDA and assume B � A [ C. Then, N im-
plies BDA. Now, let A � C in N. It then reads
BDA) B \ ADA. Since D is monotonic,
B \ A � A. Then B \ A � A or B \ A � B follows
from the fact that either BDA or ADB.

Conversely, if B \ C � B or B \ C � C and
monotonicity holds then suppose BDC. By as-
sumption, B \ A � A or B \ A � B, and C \ A � A
or C \ A � C. If B \ A � A and C \ A � A or if
B \ A � B and C \ A � C then B \ ADA \ C triv-
ially. If B \ A � A and C \ A � C then
B \ A � ADA \ C. If B \ A � B and C \ A � C
then B \ A � BDCDA \ C. �

A similar lemma holds for Axiom Pos, which,
under A1±A3, is equivalent to the conjunction of
the two properties: monotonicity and the disjunc-
tion A � A [ B or B � A [ B.

The above lemma makes it clear that a set-
function that satis®es N is a necessity measure
since r�A \ B�6 min�r�A�; r�B�� due to monoto-
nicity and r�A \ B� � r�A� or r�B�. Similarly, a set
function that satis®es Pos is a possibility measure,
since r�A [ B�P max�r�A�; r�B�� due to monot-
onicity and r�A [ B� � r�A� or r�B�. Now, thanks
to the above lemmas we prove:
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Theorem 4 (Representation of necessity mea-
sures). If the set of acts F � X S is equipped with
a preference relation � that satisfies Sav1;
WS3; Sav5 and the pessimism Axiom PES then the
uncertainty relation induced by restricting to binary
acts with fixed consequences is representable by and
only by a necessity measure.

Proof. Let f � 1B0; g � 1C0 and h � 1D0. Then
gAf � f reads �A \ C� [ �A \ B�.B, and f � fAh

for any act h, reads BD �A \ B� [ �A \ D�, for any
event D. In particular, letting C � A and D � A,
the former reads A [ B.B and the latter reads
BDA [ B. Using Lemma 5, the pessimism axiom
induces the following property for the uncertainty
relation:

A [ B.B) BDA [ B:

Let E � A [ B and F � A [ B. Then B � E \ F and
the property reads: E .E \ F implies E \ F DF .
But since D is monotonic, F DE \ F and we ®nd
that either F � E \ F or E \ F � F . But, due to
Lemma 6, this axiom, along with monotonicity, is
equivalent to the one of comparative necessity
measures N which are characteristic of necessity
measures only. �

Of course, a similar theorem holds for repre-
senting possibility measures which are the way
uncertainty on events is captured in terms of
preference between acts, under Sav 1, WS3, Sav 5

and the optimism Axiom OPT.

6.2. A representation theorem for qualitative utility

Finally we can propose representation theorems
for the qualitative possibilistic utilities introduced
in Section 3 of this paper. As shown below the key
axioms to be added now are RDD and RCD,
which ensure the semi-decomposability of the
utilities, and lead to the maxmin or minmax
structure.

Theorem 5 (Representation of the qualitative pes-
simistic utility). Let � be a preference relation over
the set F of all acts f from S to X, satisfying Sav1,

WS3;Sav5;PES and RDD. Then there exists a fi-
nite qualitative scale L, a utility function l from X
to L, a possibility distribution p on S, also taking its
values on L, and a utility function v� with values in L
such that: f � f 0 () v��f�P v��f 0�. Moreover v�
can be chosen of the form

v��f� � min
s2S

max�n�p�s��; l�f�s���

on X, where n is an order-reversing map on L.

In order to prove the theorem more easily we
need the following lemmas, which use the con-
junction f ^ g and the disjunction f _ g of two acts,
introduced in Section 5 before Lemma 1.

Lemma 7. Assume Sav1;WS3;Sav5; and PES. If
h � f ^ g, then h � f or h � g.

Proof. Let f and g be any two acts and h � f ^ g.
Let A � fs; f�s� >P g�s�g. Then f � fAh and g �
hAg. It holds that g PP h and f PP h. Hence f � h

and g � h by Lemma 3. Assume both f � h and
g � h hold. It reads fAh � h and hAg � h, which is
impossible due to PES. �

Lemma 8. Assume Sav1;WS3;Sav5; and RDD. If
h � f _ x, where x is a constant act with value x,
then h � f or h � x.

Proof. Axiom RDD says that f � g and f � x im-
ply f � g _ x. But due to the other axioms,
h � f _ x � f and h � x (pointwise dominance).
Suppose both h � f and h � x hold. Then, by
RDD, h � h, which is impossible. Hence h � f or
h � x. �

Lemma 8 is also a consequence of Lemma 3.
Now we can prove the representation theorem. In
Section 3, we proved that the pessimistic utility
does satisfy the axioms Sav 1, WS3, Sav 5, RDD

and PES. The other direction of the proof, that is,
any preference on acts obeying these axioms can
be represented by a pessimistic qualitative utility,
is done in four steps:
1. Building a utility scale. From Sav 1, we know

that the set of acts �F � X S ;�� is a complete
preorder. Since X and S are ®nite, it can be
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structured into a linearly order set of equiva-
lence classes F= �, that can be bijectively
mapped in a ®nite linearly ordered scale L with
a least element denoted 0 and a greatest one,
denoted 1, called a utility scale. To each act f

the image of the equivalence class �f� in L is
called the utility of f and is denoted v��f�. Con-
sidering a constant act x with value x, we de®ne
the value function l over X by l�x� � v��x�.
Due to pointwise preference l�x�� � 0 and
l�x�� � 1.

2. Building a qualitative possibility distribution on
states. We then consider the uncertainty rela-
tion D induced by the restriction of � on F10

the set of binary acts of the form 1A0. From
Theorem 4 we know that this is a necessity rela-
tion. Hence the utility v��1A0� of such acts
when A varies de®nes a necessity measure N,
such that N�A� � v��1A0�. Let n be the order-re-
versing map in L. Then the function p from S to
L de®ned by p�s� � n�v��1�S n fsg�0�� is the
possibility distribution associated to N (such
that N�A� � inf s2A n�p�s���:

3. Computation of the utilities of binary acts of the
form xAy. Consider an act 1Ax. It can be writ-
ten as a disjunction 1A0 _ x. From Lemma 8,
v��1Ax� � N�A� or l�x�. But pointwise prefer-
ences 1Ax PP x and 1Ax PP 1A0 imply
v��1Ax�P max�N�A�; l�x��. Hence v��1Ax� �
max�N�A�; l�x��. Now any binary act of the
form xAy with x PP y is of the form 1Ay ^ x.
Using Lemma 7, and a similar reasoning as
above, it is obvious that the utility is conjunc-
tively decomposable, and that

v��xAy� � min�v��1Ay�; l�x��
� min�max�N�A�; l�y��; l�x��;

and more generally v��f ^ g� �min�v��f�; v��g��.
4. Computing the utility of any act. We ®nally ex-

tend the computation of the utility function v�
to the whole set of acts X S , and prove that
v��f� � mins2S max�n�p�s��; l�f�s���. Any act
can be written as a conjunction

f � ^s2S1�S n fsg�f�s�:
From the above calculation,

v��1�S n fsg�f�s�� � max�N�S n fsg�;

l�f�s��� � max�n�p�s��; l�f�s���:

Then just apply conjunctive decomposability to
get the result.
In a similar way one can easily prove the dual

result pertaining to the optimistic utility:

Theorem 6 (Representation of the qualitative op-
timistic utility). Let � be a preference relation over
the set F of all acts f from S to X, satisfying
Sav1;WS3;Sav5;OPT and RCD. Then there exists
a finite qualitative scale L, a utility function l from
X to L and a possibility distribution p on S, also
taking its values on L, and a utility function v� with
values in L such that: f � f 0 () v��f�P v��f 0�.
Moreover v� can be chosen of the form v��f� �
maxs2S min�p�s�; l�f�s���.

Proof. The only di�erences with the previous proof
are as follows:
· Building a qualitative possibility distribution on

states. The uncertainty relation D induced by
the restriction of � on F10 the set of binary acts
of the form 1A0 is a possibility relation due to
OPT. Hence the utility v��1A0� of such acts
when A varies de®nes a possibility measure P,
such that P�A� � v��1A0�. Then the function p
from S to L de®ned by p�s� � v��1fsg0� is the
possibility distribution associated to P (such
that P�A� � maxs2A p�s��:

· Computation of the utilities of binary acts of the
form xA0. Consider an act xA0. It can be written
as a conjunction 1A0^ x. From axiom RCD,
v��xA0� � P�A� or l�x�. But pointwise prefer-
ence xA06 P x and xA0 6 P 1A0 implies
v��xA0�6 min�P�A�; l�x��. Hence v��xA0� �
min�P�A�; l�x��. Using the axiom OPT, and a
similar reasoning as above, it is obvious that
the optimistic utility is disjunctively decompos-
able, and that v��f _ g� � max�v��f�; v��g��.

· Any act can be written as a disjunction f �
_s2Sf�s�fsg0. From the above calculation,
v��f�s�fsg0� � min�p�s�; l�f�s���. Then just
apply disjunctive decomposability to get the
result. �

476 D. Dubois et al. / European Journal of Operational Research 128 (2001) 459±478



This theorem appears in a di�erent, not act-
driven form, in [3] with a mathematical justi®ca-
tion of the possibility of a fuzzy event as a special
case of Sugeno integral. The above act-driven
construction can indeed be generalized so as to
show that general Sugeno integrals also qualify as
utility functions [16]. See also [23] for an alterna-
tive construct based on fuzzy lotteries. The results
heavily rely on semi-decomposability of Sugeno
integrals with respect to conjunction and disjunc-
tion of acts one of which being a constant one, or
alternatively on comonotonic acts. Such repre-
sentation results come close to already existing
characterizations of Sugeno integrals [3,4,27] that
they put in a decision-theoretic perspective. They
also have counterparts in the study of aggregation
techniques in multicriteria decision making [28].

7. Concluding remarks

One strong assumption has been made in this
paper, which is that uncertainty levels and utility
levels are commensurate. This is already a conse-
quence of the ®rst axiom of Savage. An attempt to
relax this assumption has been made in [8]. These
authors point out that working without the com-
mensurability assumption leads to a decision
method based on uncertainty representations
connected to non-monotonic reasoning. Unfortu-
nately, that method also proves to be either very
little decisive or to lead to very risky decisions. On
the contrary decisions made on the basis of pos-
sibilistic utilities, especially the pessimistic one,
sound very reasonable. The latter is a mild exten-
sion of the Wald criterion, that recommends cau-
tiousness over the most plausible consequences of
an act. By providing an act-driven axiomatization
of possibility and necessity measures, possibility
theory ceases to be a purely intuitively plausible
construct based on introspection. It becomes an
observable assumption that can be checked from
the actual behavior of a decision-maker choosing
among acts, just like subjective probabilities, after
Savage axiomatics. This is why the result of this
paper is signi®cant from the point of view of Ar-
ti®cial Intelligence, as laying some foundations for
qualitative decision theory.

The failure of the Sure-thing principle in the
possibilistic setting implies that the notion of con-
ditional preference of Savage no longer makes sense
in such a setting. One may distinguish between hy-
pothetical conditioning and preference revision,
which may no longer coincide outside the Savage
approach. Hypothetical conditioning means that
the preference between acts is studied on a subset A
of states, regardless of the plausibilities of non-A
states. Handling such a conditioning at the axiom-
atic level means studying a family of preference re-
lations �A on X A for all A � S, and directly
represent them in terms of conditional utilities [26].
Preference revision means that some states become
impossible, that is P� �A� � 0 is enforced in the
preference patterns. It comes down to de®ne con-
ditional preference �f � g�A as fAx� � gAx� for the
pessimistic criterion. Decision-theoretic justi®ca-
tions of qualitative possibilistic conditioning are a
topic for further research.
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