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Abstract

The bipolar view in preference modeling distinguishes between negative and positive preferences. Negative preferences corre-

spond to what is rejected, considered unacceptable, while positive preferences correspond to what is desired. But what is tolerated

(i.e., not rejected) is not necessarily desired. Both negative and positive preferences can be a matter of degree. Bipolar preferences

can be represented in possibilistic logic by two separate sets of formulas: prioritized constraints, which describe what is more or less

tolerated, and weighted positive preferences, expressing what is particularly desirable.

The problem of merging multiple-agent preferences in this bipolar framework is then discussed. Negative and positive preferences

are handled separately and are combined in distinct ways. Since negative and positive preferences are stated separately, they may be

inconsistent, especially in this context of preference fusion. Consistency can be enforced by restricting what is desirable to what is

tolerated.

After merging, and once the bipolar consistency is restored, the set of preferred solutions can be logically characterized. Preferred

solutions should have the highest possible degree of feasibility, and only constraints with low priority may have to be discarded in

case of inconsistency inside negative preferences. Moreover, preferred solutions should satisfy important positive preferences when

feasible (positive preferences may be also inconsistent). Two types of preferred solutions can be characterized, either in terms of a

disjunctive combination of the weighted positive preferences, or in terms of a cardinality-based evaluation.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of representing preferences has been
considered by various researchers in Artificial Intelli-

gence in the recent past [44,21,14,1,32,6,16]. Indeed this

issue is important when we have to represent require-
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ments or desires expressed by users in information sys-

tems (e.g. in recommender systems), or to reason

about preferences and to solve conflicts in case of incon-
sistency, as e.g. in multiagent systems.

Preferences over a set of possible choices or solutions

are often expressed in two forms: positive and negative

aspirations. Indeed, on the one hand, an agent may

express what he considers (more or less) unacceptable

for him, and on the other hand he may express what

he considers as being really satisfactory. The first form

of preferences will be called negative preferences and
corresponds to constraints that should be respected,

while the second form will be called positive preferences,
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and correspond to appealing states of the world for the

agent. Positive preferences can be viewed as ‘‘weak’’

preferences, in the sense that they do not exclude solu-

tions stricto sensu, but only suggest the best ones. Thus

solutions falsifying positive preferences may remain tol-

erated. Of course, among tolerated solutions pointed out
by negative preferences, those satisfying positive prefer-

ences will be preferred. This distinction does not seem to

be accounted for in the above-cited works.

For example, consider a three days summer school,

for which each invited speaker is asked to express a pre-

ferred time slot for scheduling his talk. We assume that

talks can be given either on Monday, or on Tuesday or

on Wednesday, and for each day the talk can be either
scheduled in the morning, or in the afternoon. The in-

vited speaker may provide two kinds of preferences.

First, he specifies negative preferences, which describe

unacceptable slots with levels of tolerance. For instance,

he may strongly object to working on Monday (e.g.,

because it is the birthday of his daughter), and weakly

refuse to speak on Wednesday. These negative prefer-

ences reject options and induce a first ranking on all fea-
sible solutions. For instance, solutions where the talk is

scheduled on Tuesday (either morning or afternoon) are

the preferred ones, while solutions where the talk is

scheduled on Monday are considered as unacceptable.

Next, the invited speaker specifies positive preferences.

For instance, having a talk in the morning is preferred

to having it in the afternoon, and scheduling it in early

morning will be even better. These positive preferences
will induce a second ranking on all possible solutions.

The principal aim of this paper is to propose a tool to

represent these two types of preference relations con-

jointly and compactly, in the possibility theory frame-

work, how to use them in order to select best solutions

and lastly how to restore consistency in case of conflicts

between them. In our example, if there is no additional

expressed preference, then the best solution is to sche-
dule the talk on Tuesday early morning. Indeed, this

solution does not violate any invited speaker�s con-

straints and satisfies all of his preferred positive prefer-

ences. Now, if for some security reasons, buildings

cannot be opened early morning, then scheduling the

talk on Tuesday late morning is still a tolerated solution,

despite the fact that it does not satisfy one of invited

speaker�s positive preferences. The situation is different,
if for some organisational reasons the talk only can

be scheduled on Monday, in which case the proposed

solution is unfeasible. Negative preferences act as con-

straints discarding unacceptable solutions, while posi-

tive preferences can only lead to support appealing

solutions, and hence can be used to discriminate

between tolerated ones.

This representation of bipolar preferences in separate
sets is motivated by recent studies in cognitive psychol-

ogy showing that the distinction between positive and
negative preferences makes sense. They are processed

separately in the brain, and are felt as different dimen-

sions by people [19,18]. Moreover, referring to [35],

the human mind seems to be expert in the processing

of bipolar information, and it is very likely that a large

part of this expertise is not acquired, but would be the
result of the cognitive evolution of the species. It would

result from the architecture(s) of the mind and affect sys-

tem(s) [18,34,36,13,35]. Note that in general there is no

symmetry between positive and negative preferences in

the sense that positive aspirations do not just mirror

what is not rejected. In the summer school example,

there are some time slots which are neither rejected

nor desired. We suppose that the agent is indifferent
w.r.t. these slots.

Describing the set of preferred solutions to a problem

may be of interest in decision support systems for com-

munication and explanation purposes. This paper also

makes a step towards a machinery capable of computing

logical characterizations (i.e., expressed in syntactic

terms) of sets of preferred solutions, taking into account

bipolar preferences of agents and constraints existing in
the environment where the decision takes place. Indeed,

a logical handling of preferences is natural for express-

ing them compactly and for reasoning about them.

Here, the worth of solutions according to positive pref-

erences is supposed to be only qualitatively assessed, and

priority levels which can be associated with constraints

are also assumed to belong to a qualitative scale. This

is in contrast to approaches based on utility theory,
for instance. This is why the representation framework

of possibilistic logic [24] is used, since it allows for a

stratified handling of classical logical formulas accord-

ing to their priority levels. Logical interpretations are

then rank-ordered.

A bipolar possibilistic logic framework for modeling

preferences was first advocated in [5], where a prelimin-

ary version of Sections 2 and 3 of this paper was pre-
sented. On the one hand, prioritized logical formulas

(weighted in terms of necessity degrees) are used for

expressing constraints whose priority is more or less

high. It thus delimits the fuzzy set of feasible solutions

compatible with the constraints. This corresponds to

negative preferences, which are compulsory at least to

some degree (what is rejected defines, by complementa-

tion, what is tolerated).
On the other hand, other formulas, weighted in terms

of a ‘‘guaranteed possibility’’ function, express the level

of desirability associated with the satisfaction of those

formulas. The second type of formulas corresponds to

a ‘‘positive’’ assessment of feasible solutions. The consis-

tency of the two types of preference requires that the

fuzzy set of solutions that have some guaranteed satis-

faction level be included in the fuzzy set of solutions
compatible with the constraints. When positive prefer-

ences are not consistent with negative ones, consistency
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has to be restored by restricting the former to what is al-

lowed by the latter.

This paper is organised as follows. Section 2 presents

the framework of bipolar representations. It discusses

the possibilistic encoding of positive and negative prefer-

ences, and formulates the principle of consistency resto-
ration when they conflict. Section 3 explains how the

sets of positive (resp. negative) preferences can be

merged at the syntactic level, and how consistency resto-

ration can be syntactically done. Section 4 presents the

problems of defining and computing the best solutions

to a problem posed in terms of negative and positive

preferences. Lastly, Section 5 discusses related works.

Appendix A provides a short background on possibilis-
tic logic (see [24] for more details).
2. Representing positive and negative preferences

Consider a propositional language L over a finite

alphabet P of atoms. S denotes the set of all classical

interpretations. spb denotes the set of models of propo-
sition p. Let s be an element in S. In the following, it will

be referred to as a solution (to the problem described in

terms of positive and negative preferences). The nota-

tion s � p means that s is a model of (a solution to) p,

i.e. s 2 spb. ‘ denotes the classical logic deduction. _
and ^ represent the classical disjunction and conjunc-

tion respectively, � the classical negation, p ) q is short

for �p _ q.

2.1. Syntactic specification of bipolar preferences

In this paper, we propose a bipolar representation of

preferences both at the syntactic and at the semantic lev-

els. We introduce the syntactic specification of these

preferences in this section. Preferences of an agent will

be represented by two different sets of inequality
constraints.

The first set expresses positive preferences. It is of the

form W ¼ fDðwjÞ P bj : j ¼ 1; . . . ;mg, where wj is a

propositional formula, D returns a level of satisfaction,

and bj lies in a finite totally ordered scale L+, by conven-

tion contained in the interval (0,1]. L+ is a positive scale

because its top represents maximal possible satisfaction

while its bottom is neutral and represents mere toler-
ance. Thus wj is supposed to encode a desire or a wish,

bj expresses the minimal level of satisfaction which is

guaranteed for a solution where wj is true. The larger

bj is, the more satisfied is the agent if wj is true.

D(wj) = 1 means that the agent is fully satisfied as soon

as wj is true.

This kind of preferences cannot be directly handled

by the standard possibilistic logic machinery [24], based
on necessity measures. In fact, positive preferences can

be represented using a function of ‘‘guaranteed possibil-
ity’’, denoted by D, in possibility theory [27]. The syntac-

tic representation of graded information using D is dual

in some sense to the one used in standard possibilistic

logic [23,9]. This is recalled in Section 2.3.

The second set of inequality constraints expresses

negative preferences and corresponds to what is not tol-
erated by the agent. By complementation, it induces

what is more or less tolerated, feasible for the agent.

This set is of the form R ¼ fRðriÞ P ai : i ¼ 1; . . . ; ng,
where ri is a propositional formula which must be vio-

lated; we call ri a rejection statement. R stands for rejec-

tion, and ai represents the priority level of rejecting ri for

the agent. ai lies in a finite totally ordered scale L�, by

convention contained in the interval (0,1]. L� is a nega-

tive scale because its top represents full strength of rejec-

tion while its bottom is neutral and represents feasibility.

RðriÞ P ai expresses that all the models of ri are solu-

tions unfeasible at least at level ai. The higher ai is, the

less tolerated are the solutions satisfying ri. RðriÞ ¼ 1

means that the agent gives the highest priority to the

rejection of ri, and no solution where ri is true is toler-

ated by the agent. It is patent that negative preferences
can be easily handled using standard possibilistic logic,

based on any of the two classical functions of possibility

theory: possibility and necessity measures. This will be

developed in Section 2.2.

2.2. Modeling negative preferences in possibilistic logic

Rejection is graded on the scale of dissatisfaction L�.
Let duRðsÞ (du for disutility function) be the level of dis-

satisfaction with solution s. The larger duRðsÞ, the great-
er the dissatisfaction. Clearly, an agent when expressing

his negative preferences does not provide duR, but rather
more compact statements of the form RðriÞ P ai, to be

understood as 8s � ri; duRðsÞ P ai. This parallels the

understanding of positive preferences.

By order-reversing the scale L�, we obtain a feasibil-
ity scale L defining a (negative) possibility distribution

8s; pRðsÞ ¼ 1� duRðsÞ. Then, RðriÞ P ai translates into

8s � ri; pRðsÞ 6 1� ai, i.e. maxs�ripRðsÞ 6 1� ai, where
we recognize the expression of a constraint on the possi-

bility measure (see Appendix A) associated with pR,

namely PRðriÞ 6 1� ai. The latter constraint is itself

equivalent to NRð:riÞ P ai, where NR is the dual mea-

sure of necessity associated with PR (see Appendix A).
We thus recognize the necessity-based constraints that

are underlying possibilistic logic [24]. Thus, rejecting ri
to some extent amounts to enforcing the validity of

�ri to the same extent.

This shows that possibilistic logic provides a natural

framework for modeling negative preferences. Tolerabil-

ity or feasibility can be represented, at the semantic

level, by the total pre-order on the set of all possible
solutions encoded by pR, from what is tolerated for an

agent to what is considered as unacceptable for him.
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pRðsÞ represents the degree of tolerability of a solution s

given agent�s preferences. pRðsÞ ¼ 1 means that s is fully

tolerated, pRðsÞ ¼ 0 means that s is completely unac-

ceptable (rejected), and more generally, pRðsÞ > pRðs0Þ
means that s is more tolerated than s 0.

In practice an agent cannot provide the whole possi-
bility distribution pR, but only the set R of negative pref-

erences, and their level of priority. Let R ¼ fRðriÞ P
ai : i ¼ 1; . . . ; ng. The question is then how to obtain

pR. Let us illustrate the construction of pR when we only

have one strong constraint RðrÞ ¼ 1. Let s be a solution.

Intuitively, if s falsifies r then s is fully tolerated by the

agent, i.e., pRðsÞ ¼ 1, and if s satisfies r then s is fully

unacceptable, i.e. pRðsÞ ¼ 0. Now, assume that r is
weakly prioritized, i.e. RðrÞ P a with a < 1. Again, if s

falsifies r then it is fully tolerated. If s satisfies r then

the higher is a, the less tolerated is s. One way to achieve

this constraint is to assign the value 1 � a to pRðsÞ. More

formally, the possibility distribution associated with

R ¼ fRðrÞ P ag is

pRðsÞ ¼
1 if s 2 r;

1� a if s � r.

8<
:

Now assume that the agent expresses two prioritized

rejection statements r1 and r2 with Rðr1Þ P a and

Rðr2Þ P b respectively. Then, we have three cases:

• s 2 r1 and s 2 r2, then s is fully feasible. Hence

pRðsÞ ¼ 1.
• s � �r1 ^ r2 (resp. s � r1 ^ �r2) then the higher is b

(resp. a), the less tolerated is s. Hence pRðsÞ ¼ 1� b
(resp. 1 � a).

• s � r1 ^ r2 then the higher is a or b, the less tolerated

is s. Hence pRðsÞ ¼ 1�maxða; bÞ.

More generally, we have

Definition 1. The possibility distribution pR associated

with a set of negative preferences R ¼ fRðriÞ P ai : i ¼
1; . . . ; ng is:

pRðsÞ ¼ 1�maxfai : s � ri;RðriÞ P ai 2 Rg;
with max{;} = 0.

Clearly, this definition coincides with the semantics of

a possibilistic logic base in standard possibilistic logic,

for inducing a possibility distribution pR from a possibi-
listic knowledge base R, expressing priority levels of con-
straints in terms of a necessity measure. Thus, a set of

negative preferences R ¼ fRðriÞ P ai : i ¼ 1; . . . ; ng
can be simply encoded as a set of weighted formulas

in possibilistic logic i.e., {(�ri,ai) : i = 1, . . .,n}, where ri
is a rejection statement and ai is now the priority level

associated with the induced constraint of having to sat-

isfy �ri.
This result is important since it means that the classi-

cal possibilistic logic machinery can be used for handling

negative preferences (or negative preferences) and draw-

ing inferences from them. Moreover, the complexity of

possibilistic logic is only slightly higher than the one

of classical logic [24].
In the rest of this paper, we will encode a set of

rejection statements by a possibilistic logic base

R ¼ fð:ri; aiÞ: i ¼ 1; . . . ; ng, where (�ri,ai) represents

the constraint RðriÞ P ai and stands for ‘‘if a solution

s satisfies ri then it is tolerated at most to a degree

1 � ai’’. Mind that we continue to name R the set of

standard possibilistic logic formulas providing an equiv-

alent encoding, in terms of tolerability, of the initial set
of negative preferences.

Moreover, tolerated solutions induced by negative

preferences are not necessarily feasible w.r.t. existing

integrity constraints. Suppose that our aim is to buy a

small apartment. Then the solution ‘‘large and small

apartment’’ may be tolerated, however it is not feasible

since there is an integrity constraint which says that the

surface of the apartment is either small or large but not
both. Feasibility is induced by integrity constraints

which delimit the set of potential solutions of the prob-

lem. We assume that this set is represented in standard

possibilistic logic by a set of completely certain weighted

formulas of the form F ¼ fðfk; 1Þ: k ¼ 1; . . . ; sg, where fk
are propositional formulas. The degree 1 is associated

with the formulas in order to express that the fk�s are

hard (or strict) constraints. A solution s is said to be fea-
sible (or compatible) if it satisfies all formulas fk�s of F.
Thus, tolerated solutions are computed among feasible

ones.

Example 1. Let p1, p2 and p3 be three propositional

symbols representing three categories of price, which

stand respectively for ‘‘cheap’’, ‘‘reasonable’’ and

‘‘expensive’’. Let s, m, l be three kinds of surfaces which
stand respectively for small, medium and large. By

‘‘garden’’ (g for short), we denote the fact that the house

or the apartment has a garden.

Assume that we have the following set of integrity

constraints, including domain exclusion constraints,

regarding a house or an apartment:

F ¼ fðl ) :p1; 1Þ; ðs _ m _ l; 1Þ; ð:s _ :m; 1Þ;
ð:s _ :l; 1Þ; ð:m _ :l; 1Þ; ðp1 _ p2 _ p3; 1Þ;
ð:p1 _ :p2; 1Þ; ð:p2 _ :p3; 1Þ; ð:p1 _ :p3; 1Þ;
ðg ) p3; 1Þg.

Suppose now that the agent expresses one rejection

statement R ¼ fðg; .5Þg, namely having a garden with

a priority .5.
The set F expresses mutual exclusivity constraints

about categories of price, of surface and an integrity

constraint about the existence of gardens.



Table 1

The possibility distribution associated with R

s pRðsÞ
p3 sg 1

p3mg 1

p3 lg 1

p1 s�g .5

p1m�g .5

p2 s�g .5

p2m�g .5

p2 l�g .5

p3 s�g .5

p3m�g .5

p3 l�g .5

Other feasible solutions 0
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Feasible solutions are models of the set F namely

models of (�l _ �p1) ^ (s _ m _ l) ^ (�s _ �m) ^ (�s
_ �l) ^ (�m _ �l) ^ (p1 _ p2 _ p3) ^ (�p1 _ �p2) ^ (�-
p2 _ �p3) ^ (�p1 _ �p3) ^ (�g _ p3).

Table 1 gives the possibility distribution1 associated

with R applying Definition 1.
Table 2

The positive possibility distribution associated with W

s dWðsÞ
m�apart�g 1

m�apartg 1
2.3. Representing positive preferences in the logic of

guaranteed possibility

Positive preferences of an agent can be described, at

the semantical level, in terms of the linearly ordered
positive scale L+, encoding satisfaction levels.

They give birth to a distribution of positive weights,

that we shall call positive possibility distribution, over

the set of the logical interpretations that represent possi-

ble choices or solutions. Let dW be this distribution.

dWðsÞ > dWðs0Þ means that s is more satisfactory than

s 0. Usually an agent is not able to provide such a distri-

bution explicitly.
Rather, the agent provides a set of positive prefer-

ences of the form W ¼ fDðwjÞ P bj : j ¼ 1; . . . ;mg with

the intended meaning that "s � wj, dWðsÞ P bj, which is

indeed a more compact way of expressing sets of solu-

tions that are satisfactory to some extent. When pro-

cessed syntactically as logical expressions, W will be

denoted {[wj,bj] : j = 1, . . .,m}. Thus, [wj,bj] encodes the

information that the solution will be satisfactory for
the agent, at least to a degree bj if wj is satisfied. Clearly,

a solution s, such that s � w1 and s � w2 with ½w1; b1�
2 W and ½w2; b2� 2 W, will be such that dWðsÞ P
maxðb1; b2Þ.

Let us see now how to build the positive possibility

distribution dW, associated with W. We first consider

the case where we only have one formula [w,b]. Then
1 Strictly speaking, solutions given in Table 1 are only partial. In fact

for the sake of simplicity, when we write p3sg, we mean the

interpretation p3�p1�p2s�m�lg. In the rest of the paper, we use this

simplified notation for sake of clarity.
if a given solution s satisfies w, the associated level of

satisfaction will be equal to b. Otherwise, this level will

be equal to 0, since no information is given by [w,b]

for the models of �w. In the general case, given a set

of positive preferences, the level of satisfaction associ-

ated with s is equal to the highest level of a formula
appearing in W satisfied by s:

Definition 2. The positive possibility distribution dW
associated with a set of positive preferences

W ¼ f½wj; bj� : j ¼ 1; . . . ;mg is

dWðsÞ ¼ maxfbj : s � wj and ½wj; bj� 2 Wg;
with max{;} = 0.

Note that the addition of positive preferences in W

can only lead to an increase of the satisfaction level of

solutions.

The meaning of pRðsÞ is different from the one of
dWðsÞ in the previous section. Indeed dWðsÞ evaluates

to what degree s is satisfactory for the agent, while

pRðsÞ evaluates to what degree s is tolerated by the agent.

In particular dWðsÞ ¼ 1 means that the agent is fully sat-

isfied, while dWðsÞ ¼ 0 simply means that the agent is

indifferent, while pRðsÞ ¼ 0 means that s is impossible.

Example 2. Let W be the following set of positive

preferences, concerning the choice of a house or an

apartment

W ¼ f½m; 1�; ½:apart ^ l; 1�; ½:g ^ l; .6�g.
The first expression means that the agent is fully satisfied
when the surface is medium (m). He is also fully satisfied

with a large (l) house (expressed by the second formula).

The last expression means that the agent is fairly satis-

fied if the surface is large and there is no garden (g),

whether it is a house or an apartment.

Table 2 gives the positive possibility distribution

associated with W following Definition 2.

The set of positive preferences cannot be directly han-

dled by standard possibilistic logic. This contrasts with

the handling of negative preferences, in the next section.

This is because a weighted formula like [w,b] cannot be
mapart�g 1

mapartg 1

l�apart�g 1

l�apartg 1

l apart�g .6

Other feasible solutions 0
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directly expressed by means of possibility or necessity

measures. Namely, constraints like [w,b] can be repre-

sented using a third set-function called guaranteed possi-

bility, denoted by D [27], defined by

DðwÞ ¼ min
s�w

dWðsÞ.

The expression D(w) P b means that any solution where

w is true, has a possibility (here: satisfaction) level at

least equal to b. This is exactly what is intended by the

kind of information encoded in W.
See Appendix A for details on the D function and its

logic. See also [23,9] for detailed presentations.

2.4. Coherence between positive and negative preferences

Even if independently specified negative and positive

preferences must nevertheless be in agreement with each

other: a solution cannot be at the same time unaccept-
able and desired by the same agent. Let ðW;RÞ be the

preferences for an agent. Intuitively, if R ¼ fð:ri; 1Þ:
i ¼ 1; . . . ; ng and W ¼ f½wj; 1� : j ¼ 1; . . . ;mg are classi-

cal logic bases (with maximal priority or satisfaction

weights) then W and R are coherent if_
j¼1;...;m

wj ‘
^

i¼1;...;n

:ri;

namely any solution verifying at least one positive pref-

erence of W should also satisfy all formulas in R, which

represent constraints induced by negative preferences.

More generally, any solution satisfactory to degree a

(w.r.t. W) should be at least tolerated to degree a

(w.r.t. R).

Definition 3. Let dW and pR be the two possibility

distributions representing the positive and negative

preferences of an agent respectively. Then, dW and pR
are said to be coherent iff

8s; dWðsÞ 6 pRðsÞ.

Coherence checking can also be done syntactically

using the bases W and R.
Proposition 1. Let W and R be respectively the sets of

positive preferences and rejections of an agent. Then, W
and R are said to be coherent (in the sense of Definition 3)

iff

8a P 0;
_

½wj;aj�2W;ajPa

wj ‘
^

ð:ri;aiÞ2R;ai>1�a

:ri.

The proof can be obtained by noticing that Definition

3 is equivalent to "aP 0, fs: dWðsÞ P ag � fs: pRðsÞ
P ag, and by noticing that s

W
½wj;aj�2W;ajPawjt ¼S

ajPaswjt ¼ fs: dWðsÞ P ag and s
V

ð:ri;aiÞ2R;ai>1�a:rit
¼

T
ai>1�as:rit ¼ fs: pRðsÞ P ag.
3. Merging multiple agents preferences in a bipolar

representation

This section recalls methods for the possibilistic

merging of agents� preferences from the semantic and

the syntactic points of view. The result of the merging
process will also be a pair ðR�R

;W�W
Þ, where R�R

is

the result of merging negative preferences expressed by

several agents, and W�W
is the result of merging the

agents� positive preferences. In the spirit of Cumulative

Prospect Theory [42], merging positive preferences and

negative ones are processed in separate steps, using gen-

erally different merging operators. Then the paper dis-

cusses how to revise the set of positive preferences
when it is not coherent with the negative ones.

3.1. Fusion of negative preferences

Let fR1; . . . ;Rng be a set of negative preference bases

provided by n agents to be merged with some merging

operator �R. �R is a function from [0,1]n to [0,1]. Since

negative preferences have an immediate encoding in
terms of possibilistic knowledge bases, we can apply

the merging procedures of possibilistic knowledge bases

[7] for merging negative preference bases. In particular,

this allows to have the syntactic counterpart of any

semantic merging operator, satisfying minimal proper-

ties (see [7] for details).

In this section,wedefine a class of operatorswhich seem

to be appropriate for merging negative preferences. The
idea is that since negative preferences determine the level

of tolerability of solutions then if some solution s is some-

what rejected by some agent (i.e., pRiðsÞ < 1) then this

solution is somewhat rejected in the result ofmerging.Such

kind of behaviour is captured by conjunctive operators.

Let s be a solution. To see if s is explicitly stated as

tolerated (or not) and with what degree of tolerability

in R�R
(the result of merging), we compute from each

Ri its level of tolerability ai. Then, s will be tolerated

in R�R
with a level �Rða1; . . . ; anÞ.

Natural properties to require for �R are:

(i) �Rð1; . . . ; 1Þ ¼ 1.

If a solution is fully tolerated by all agents then it

should be fully tolerated in the merging result R�R
.

(ii) If "i = 1, . . .,n, ai P bi then �Rða1; . . . ; anÞ
P �Rðb1; . . . ; bnÞ (monotonicity property).

(iii) �Rð1; . . . ; 1; a; 1; . . . ; 1Þ ¼ a.
Namely, if a solution is partially rejected by at

least one agent then its level of tolerability should

not increase in the result of the merging process. In

fact, it will be tolerated to the same level.

Note that (ii) and (iii) imply:

if ai ¼ 0 for some i then �Rða1; . . . ; anÞ ¼ 0;
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which corresponds to say that if a solution is unaccept-

able for at least one agent then it is also unacceptable in

the result obtained after merging.

Let R1 ¼ fð:ri; aiÞ: i ¼ 1; . . . ; ng and R2 ¼ fð:r0j; bjÞ:
j ¼ 1; . . . ;mg be two sets of rejection statements, and

pR1
and pR2

be their associated possibility distributions
respectively. Let �R be a merging operator satisfying

the properties (i) and (ii). Then, the syntactic counter-

part of p�R
¼ �RðpR1

; pR2
Þ is

R� ¼ fð:ri; 1��Rð1� ai; 1ÞÞ:ð:ri; aiÞ 2 R1g
[ fð:r0j; 1��Rð1; 1� bjÞÞ:ð:r0j; bjÞ 2 R2g
[ fð:ri _ :r0j; 1��Rð1� ai; 1� bjÞÞ:
ð:ri; aiÞ 2 R1 and ð:r0j; bjÞ 2 R2g.

If �R also satisfies (iii) then R�R
is of the form:

R�R
¼ R1 [ R2 [ fð:ri _ :r0j; 1��Rð1� ai; 1� bjÞÞ:
ð:ri; aiÞ 2 R1 and ð:r0j; bjÞ 2 R2g.

It is also easy to check that �Rða1; . . . ; anÞ
6 minða1; . . . ; anÞ. Indeed, from (ii) and (iii), we have

�Rða1; . . . ; anÞ 6 �Rð1; . . . ; 1; ai; 1; . . . ; 1Þ ¼ ai. Hence,

�R ¼ min represents the most cautious merging opera-

tor, in the sense that a solution is not tolerated more

than what is stated by the most demanding agent (who

rejects s the most strongly). In this case, we simply have
(for two bases):

Rmin ¼ R1 [ R2.

Another conjunctive operator is the product (then the

toleration scale is numerical). Using this operator, a

solution which is weakly tolerated by different agents

can be strongly unacceptable in the merging result. At
the syntactic level, R�R

is of the form:

R�R
¼ R1 [ R2 [ fð:ri _ :r0j; ai þ bj � aibjÞ:
ð:ri; aiÞ 2 R1 and ð:r0j; bjÞ 2 R2g.

Note that the product operator allows the value

ai + bj � aibj to go beyond max(ai,bj) without reaching

1 if both ai and bj differ from 1. That is if a formula r

is inferred from R1 and R2 with the weights a1 and a2
respectively then it is inferred from R�R

with a weight

greater than max(a1,a2), without reaching the highest

priority namely 1, which expresses a reinforcement on

the priority of r.

Example 3. Let R1 be the base given in Example 1,

namely R1 ¼ fðg; .5Þg. Let R2 ¼ fðp1; .5Þg. Let

�R ¼ min. Then, Rmin ¼ fðp1; .5Þ; ðg; .5Þg.
3.2. Fusion of positive preferences

We now discuss the merging of positive preferences.
We first recall a recent general result on the syntactic
fusion of positive preferences [9], similar to the one in

[7] for standard possibilistic knowledge bases.

Let W1; . . . ;Wm be m bases of positive preferences

and dW1
; . . . ; dWm be their associated positive possibility

distributions given by Definition 2. Let �W be a merging

operator satisfying the following requirements:

• �Wð0; . . . ; 0Þ ¼ 0.

• If "j = 1,. . .,m, aj P bj
then �Wða1; . . . ; amÞ P �Wðb1; . . . ; bmÞ.

The first requirement expresses that if a solution is not

satisfactory for any agent then it should not be satisfac-

tory in the result of the merging. The second property is
simply the monotonicity property.

Let us restrict ourselves, for the sake of simplicity, to

the case of two bases. Then, the following proposition

gives the positive preference base associated with

�WðdW1
; dW2

Þ:

Proposition 2. Let W1 ¼ f½wi; ai� : i ¼ 1; . . . ; ng and

W2 ¼ f½w0
j; bj� : j ¼ 1; . . . ;mg be two bases of positive

preferences. Let dW1
and dW2

be their associated positive

possibility distributions respectively. Let �W be a merging

operator. Then, the base of positive preferences associated

with �WðdW1
; dW2

Þ is:
W�W

¼ f½wi;�ðai; 0Þ� : ½wi; ai� 2 W1g [ f½w0
j;

� ð0; bjÞ� : ½w0
j; bj� 2 W2g [ f½wi ^ w0

j;

� ðai; bjÞ� : ½wi; ai� 2 W1 and ½w0
j; bj� 2 W2g.

The solution of the merging operator for combining

dW1
and dW2

is less constrained since several merging

operators can be considered such as conjunctive, dis-

junctive and also ‘‘intermediary’’ operators which rein-

force what is common and discount the positive

preferences which only concern one agent (see [26] for

a representation of such operators). If the agents are

highly cooperative then we can say that an agent adds
to its positive preferences those of the other agent, pro-

vided that they do not conflict with what is tolerated for

him. In this case �W ¼ max is recommended, and

Wmax ¼ W1 [W2.

Example 4. Let us consider the two following bases of

positive preferences: W1 ¼ f½m; 1�; ½:apart ^ l; 1�;
½:g ^ l; .6�g and W2 ¼ f½:apart; 1�; ½p1 ^ ðapart _ sÞ;
1�; ½:g ^ apart ^ l; .4�g.

Let Wmax be the result of combining W1 and W2 with

�W ¼ max. Then, Wmax ¼ f½m; 1�; ½:apart ^ l; 1�; ½:g ^
l; .6�g [ f½:apart; 1�; ½p1 ^ ðapart _ sÞ; 1�; ½:g ^ apart
^ l; .4�g which is semantically equivalent to

Wmax¼f½m;1�; ½:apart;1�; ½p1 ^ ðapart _ sÞ;1�; ½:g ^ l; .6�g.
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Indeed, the formula [�g ^ apart ^ l,.4] is subsumed by

[�g ^ l,.6] since �g ^ apart ^ l‘�g ^ l.

Note that this mode of merging corresponds to

considering that what is satisfactory for one agent is also

satisfactory for the others.
2 The fact that we assume that each layer is composed of a unique

formula is not a limitation. Indeed, a set of formulas having the same

weight can equivalently be replaced by a unique formula, with the

same weight, and corresponding to the conjunction of these formulas.
3.3. Restoring consistency as characterizing best

solutions

In the merging process, the consistency of each pair

ðWi;RiÞ does not guarantee the coherence of the

pair ðW;RÞ, where W (resp. R) is the result of

merging Wi�s (resp. Ri�s), for most of the operators

ð�W;�RÞ.

Example 5. Let Rmin and Wmax be respectively the sets
of merged negative and merged positive preferences

computed in Examples 3 and 4 respectively. We have

Rmin ¼ fðp1; .5Þ; ðg; .5Þg, and Wmax ¼ f½m; 1�; ½:apart;
1�; ½p1 ^ ðapart _ sÞ; 1�; ½:g ^ l; .6�g.

At the semantic level, consider the solution s0 =

p1m�apart�g. Then, we can check that pRðs0Þ ¼ .5

while dWðs0Þ ¼ 1.

Observe that dWðs0Þ i pRðs0Þ, then dW and pR are
not coherent.

When the coherence condition is not satisfied by the

results of the merging process, it means that the set of
positive preferences resulting from merging the positive

preferences of the agents is not compatible with what is

tolerated by the agents. One way to restore the coher-

ence in the sense of Definition 3 is to revise either the

positive possibility distribution dW or the possibility dis-

tribution pR. We choose to revise dW since in practice it

is more difficult to question pR, as it expresses what re-

mains tolerated, according to agents� negative prefer-
ences. The revision of dW in this case consists in

decreasing the possibility degree of each solution in dW
to the possibility degree of this solution in pR. In other

terms, restoring coherence leads to revise dW into dWrev

as follows:

8s; dWrev
ðsÞ ¼ minðdWðsÞ; pRðsÞÞ.

At the syntactic level, this leads to discounting

positive preferences by decreasing the levels of satisfac-

tion associated with some positive preference statements
in W.

In order to syntactically compute the revised set of

positive preferences Wrev associated with dWrev
, we need

the following proposition which gives an equivalent

translation of a set of negative preferences into a set of

positive preferences [9]:

Proposition 3. Let R ¼ fð:ri; aiÞ: i ¼ 1; . . . ; ng be a

set of negative preferences where each level contains
one formula,2 and such that 1 P a1 > � � � > an > 0 and we

let an+1 = 0. Let WR be a set of positive preferences

defined as follows:

WR ¼ f½:r1 ^ � � � ^ :ri; 1� aiþ1� : i ¼ 1; . . . ; ng
[ f½>; 1� a1�g.

Then, R and WR are semantically equivalent i.e.,

8s; pRðsÞ ¼ dWR
ðsÞ.

The proof of this proposition can be found in [9]. Gi-

ven this proposition the syntactic computation of Wrev

can be achieved in two steps: (i) first compute WR asso-

ciated with R, (ii) then apply Proposition 2 to WR and

W for �W ¼ min. Note that when �W ¼ min, Proposi-

tion 2 becomes:

W�min
¼ f½wi ^ w0

j;minðai; bjÞ� : ½wi; ai�
2 W1 and ½w0

j; bj� 2 W2g.

Example 6. Let us again consider the possibility distri-
butions dW and pR associated with W and R computed

in Examples 3 and 4 respectively. We have R ¼ fðp1; .5Þ;
ðg; .5Þg and W¼ f½m;1�; ½:apart;1�; ½p1 ^ ðapart _ sÞ;1�;
½:g ^ l; .6�g.

Let dWrev
¼ minðdW; pRÞ.

First, we use Proposition 3 to equivalently translate R

into a new set of positive preferences, we get:

WR ¼ f½p1 ^ g; 1�; ½>; .5�g.
Now the application of Proposition 2 between WR and

W using �W ¼ min gives:

Wrev ¼ f½p1 ^ g ^ m; 1�; ½p1 ^ g ^ :apart; 1�;
½p1 ^ g ^ ðapart _ sÞ; 1�;
½p1 ^ g ^ :g ^ l; .6�; ½m; .5�; ½:apart; .5�;
½p1 ^ ðapart _ sÞ; .5�; ½:g ^ l; .5�g.

In Example 5 we have seen that dW and pR are not
coherent, since: dWðs0Þ ¼ 1 > pRðs0Þ ¼ .5 for s0 = p1
m�apart�g.

Now it can be checked that dWrev
and pR are coherent.

In particular, dWrev
ðs0Þ ¼ .5.
4. Finding best solutions according to negative and

positive preferences

Already a long time ago, Bellman and Zadeh [2] pro-
posed a graded view both for criteria and constraints.

This was the starting point for introducing the idea of

flexible (or soft) constraint, which was further developed
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in a constraint satisfaction problem perspective later

(e.g. [37,22,11]). However, Bellman and Zadeh�s
approach tends to somewhat abolish the distinction

between criteria and constraints, by modeling both of

them by means of fuzzy sets and by combining all these

fuzzy sets together. This is debatable, since a constraint
is something which should be satisfied (at least to some

extent for a flexible constraint, or as far as it does not

lead to an empty set of feasible solutions for a constraint

whose priority is not maximal). On the contrary, there is

no idea of (minimal) requirement associated with a

criterion.

Flexible constraints modeled by fuzzy sets can be

approximated by a collection of nested prioritized con-
straints or negative preferences [22]. Each prioritized

constraint corresponds then to a level cut of the fuzzy

set. Such ‘‘fuzzy’’ constraints correspond to ‘‘negative’’

preferences in the sense that their complements define

fuzzy sets of values that are rejected as being non-

acceptable. These constraints should be combined in a

conjunctive manner, thus acknowledging the fact that

they are constraints. However, criteria correspond to
another type of preferences, which can be qualified as

‘‘positive’’ ones. These preferences are not constraints,

but can be expressed in terms of positive preferences,

which are more or less strong (in the sense that it is more

satisfactory to satisfy some positive preferences). If at

least some of these positive preferences are satisfied, it

should give some bonus to the corresponding solutions

(provided that they also satisfy the constraints). Positive
preferences are not compulsory and may be combined

disjunctively. This view has been recently applied in flex-

ible querying systems where the retrieved items are first

rank-ordered w.r.t. the satisfaction degree of the flexible

requirements contained in the request. In case of ties, the

items are further discriminated on the basis of the addi-

tional positive preferences (also included in the request)

that they satisfy [28].
Thus, the problem of computing the best solutions

after merging the negative and the positive preferences

separately can be also viewed as an optimization prob-

lem involving the sets F, R and W. So our aim in this

section is, given the triple ðF;R;WÞ, to compute the log-

ical description of the set of ‘‘preferred’’ solutions which

do not violate integrity constraints, allow to respect all

agent�s negative preferences R, and satisfy as many as
possible agent�s positive preferences W. For this, we will

proceed by steps, first considering the case of flat bases

R and W, and then dealing with the general case of pri-

oritized bases.

4.1. Binary negative and positive preferences

In this section all the negative preferences are sup-
posed to be compulsory (i.e. "i, ai = 1) and the positive

preferences have the same importance (i.e. "j, bj = 1); so
we can omit the weights. Moreover, in the following as

well as in the next section, the aggregation of ðF;R;WÞ
first considers the feasible solutions obtained from F,

then should give priority to R, before refining obtained

solutions with respect to W. We assume that R is

consistent, while the consistency condition is not re-
quired for W. Therefore, the existence of preferred

solutions depends on whether R is consistent or not.

In case of inconsistency, agent�s preferences are declared
to be unfeasible, and no solution is considered as

tolerated.

Now, let us assume that R is consistent, and we

denote by SR the set of all solutions satisfying (i.e.,

models of) R. In this case, they are the solutions satisfy-
ing agent�s constraints induced by negative preferences,

and the ‘‘preferred’’ solutions w.r.t. positive preferences

should be looked for inside SR. One may think of

the three following approaches for selecting preferred

solutions. In all these approaches, the aim is to try to ver-

ify as many agent�s positive preferences as possible.

(i) Conjunctive selection: Satisfying all positive prefer-

ences: A preferred solution s is a preferred solution if
it satisfies all agent�s positive preferences. This ap-

proach is too requiring, would abolish the distinction

between negative and positive preferences, and is

not desirable since it can lead to the absence of solutions

(remind that W is not even required to be consistent),

while as soon as F ^ R is consistent, tolerated solutions

exist w.r.t. agent�s preferences, and thus should be

proposed.
(ii) Disjunctive selection: Verifying at least one positive

preference: A tolerated solution s is preferred as soon as

it satisfies at least one positive preference. More pre-

cisely, let R� ¼
V

ð:ri;aiÞ2R:ri and W� ¼
W
fwj 2 Wg.

Then, solutions to agent�s preferences ðF;R;WÞ are

sF ^ R� ^ W�t if F ^ R� ^ W� is consistent;

sF ^ R�t otherwise:

(

This solution guarantees the existence of solutions (up

to inconsistency) but does not make any distinction

between solutions verifying one positive preference,
with the ones verifying several agent�s positive prefer-

ences (if any). Let us illustrate the approach by again

an example about an agent looking for a house or an

apartment.

Example 7

• Assume that integrity constraints are:

– The price of house or apartment of surface l is

either p2 or p3, but cannot be p1.

– The price of a house or apartment exclusively

belongs to one of the three price categories, and

the surface is exclusively in one of the three surface
categories (s,m, l).
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Formally, F is written as:

F ¼ fl ) :p1; s _ m _ l;:s _ :m;:s _ :l;:m

_ :l; p1 _ p2 _ p3;:p1 _ :p2;:p2 _ :p3;:p1

_ :p3g.

Indeed, feasible solutions satisfy (�l _ �p1) ^ (s _ m

_ l) ^ (�s _ �m) ^ (�s _ � l) ^ (�m _ �l) ^ (p1 _ p2 _
p3) ^ (p1 _ p2) ^ (p1 _ p3) ^ (p2 _ p3).

• Assume now that agent�s negative preferences are:
– (i) he can only accept houses or apartments with a

price p1,

– (ii) he rejects small apartments.

Note that �apart encodes ‘‘having a house’’.

Then the set of negative preferences R is written as:

R ¼ fp1;:apart _ :sg.
• Assume that agent�s positive preferences are:

– (i) he prefers apartments or houses with surface m,
– (ii) he prefers an apartment with a price p1,

– (iii) he prefers a house without garden and to pay

the price p1.

This is formally written as:

W ¼ fm; p1 ^ apart; p1 ^ :apart ^ :gg.

We assume that the agent is indifferent w.r.t. having a
garden or not.
Let us compute the set of preferred solutions.

Feasible solutions should first satisfy R� which is

equivalent to satisfying p1 ^ (�apart _ m) ^ (s _ m) ^
(�s _ �m).

Moreover, preferred solutions should also satisfy at

least one of agent�s positive preferences. Namely they
satisfy p1 ^ (�apart _ m) ^ (s _ m) ^ (�s _ �m) ^ (m _
(p1 ^ apart) _ (p1 ^ �apart ^ �g)) which is equivalent

to p1 ^ (�apart _ m) ^ (m _ �g) ^ (s _ m) ^ (�s _ �m).
Indeed preferred solutions are: s1: p1�apartm�g, s2:

p1�apartmg, s3: p1�apart s�g, s4: p1apartm�g and s5:

p1apartmg i.e., (p1 ^ m) _ (p1 ^ �apart ^ s ^ �g).

(iii) Cardinality-based selection: Satisfying as many

positive preferences as possible: A third approach is to

consider that the more positive preferences a solution

satisfies, the better it is. More precisely, s is preferred

to s 0 if j sjW >j s0jW, where j sjW is the number of positive

preferences satisfied by s. A solution s is said to be a
‘‘cardinality-based preferred’’ solution, if there is no s 0

such that j s0jW >j sjW. The cardinality-based approach

can be seen as a weakening of the conjunctive approach

when there is no tolerated solution which satisfies

R� ^ W�, where W� ¼ fwj : ½wj; bj� 2 Wg.

Example 7 (continued). Let us consider again the above

example. We observe that s1, s4 and s5 satisfy two

positive preferences: w1 and w3 for s1 and w1, w2 for s4
and s5 while s2 and s3 satisfy only one positive

preference: w1 and w3 respectively. Hence, using the
cardinality-based selection mode, only s1, s4 and s5 are

preferred.

Note that the set of preferred solutions w.r.t. the car-

dinality-based selection can be computed syntactically

using results in [10]. The main idea behind the algorithm

is to replace lexicographic entailment from the original

base by classical entailment from a new ‘‘compiled’’

base, which contains either formulas from the original

base or formulas subsumed by the original ones,

obtained from the disjunction of some original formu-
las. More precisely, when there is a conflict in a knowl-

edge base, then pieces of information are weakened

instead of being removed. So instead of removing all

formulas involved in conflicts, we take their disjunctions

pairwise. If the result is consistent, then the algorithm

stops. If the result is still inconsistent, then we replace

the formulas in conflict by all possible disjunctions

involving three formulas in the conflict sets and so on:
if the result is still inconsistent we successively consider

disjunctions of size 4, 5, etc. (see [10] for more details).

More precisely, when F ^ R ^ W is inconsistent, we

compute the set F ^ R ^ d2ðWÞ, where d2ðWÞ is the set

of all possible disjunctions of size 2 between formulas

of W. If this set is consistent then its models are the pre-

ferred solutions w.r.t. the cardinality-based selection.

Otherwise, we compute F ^ R ^ diðWÞ (i P 3) until
reaching consistency. If the disjunction of all formulas

in W is still inconsistent with R then the set of preferred

solutions is simply the set of feasible tolerated solutions

i.e. models of F ^ R.

Example 7 (continued). Recall that tolerated solutions

are models of T ¼ p1 ^ ð:apart _ mÞ ^ ðs _ mÞ ^
ð:s _ :mÞ. Let W ¼ fm; p1 ^ apart; p1 ^ :apart ^
:gg. T ^ W is inconsistent so we compute d2ðWÞ,
the set of all possible disjunctions pairwise between

different formulas of W. We have d2ðWÞ ¼
fm _ ðp1 ^ :apartÞ;m _ ðp1 ^ :apart ^ :gÞ; ðp1 ^
apartÞ _ ðp1 ^ :apart ^ :gÞg. T ^ d2ðWÞ is consis-
tent and equivalent to p1 ^ m ^ (apart _ �g). Then the

preferred solutions are indeed s1, s4 and s5.
4.2. Prioritized negative and positive preferences

This section extends results of the previous section to

the case where both negative and positive preferences

are prioritized. Recall that negative preferences are the

agent�s constraints, which provide additional restrictions

on the set of feasible solutions. Any tolerated solution

satisfying all agent�s negative preferences (i.e., satisfying
no rejection statement) is entirely tolerated. Solutions

not respecting hard negative preferences are completely

unacceptable. Any solution verifying at least one agent�s
rejection statement is unacceptable to some degree. The

higher the priority of a verified rejection statement, the
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less tolerated is the solution. On the contrary, positive

preferences represent agent�s desires. If a solution satis-

fies them, then it increases the degree of satisfaction of

the agent. However if a solution does not satisfy the

agent�s positive preferences, then it does not mean that

such a solution should be excluded.

4.2.1. Finding preferred solutions among best tolerated

ones

The selected tolerated solutions are the feasible ones

which maximize pR. Namely,

TR ¼ s: s � F and pRðsÞ ¼ max
s0�F

pRðs0Þ
� �

.

At the syntactic level, TR is the set of models of

F ^ R>a, where a ¼ maxfai : F ^ RPai is inconsistent},

with max{;} = 0, and where R>a ¼ f:ri : ð:ri; aiÞ
2 R and ai > ag and RPa ¼ f:ri : ð:ri; aiÞ 2 R and ai
P ag (see Appendix A for more details).

Now, we apply a selection mode to positive prefer-

ences. A disjunctive selection mode could be used where

preferred solutions are those which belong to TR and

satisfy at least one important positive preference, i.e.,

a positive preference having the highest degree in R. If

such a solution does not exist, the preferred solutions
are those which belong toTR and satisfy a positive pref-

erence with the second highest degree (if any) in W. And

if such a solution does not exist, we consider positive

preferences having the third highest degree (if any),

and so on. More formally, the preferred solutions are

defined as follows:

s: s 2 TR and dWðsÞ ¼ max
s02TR

dWðs0Þ
� �

.

At the syntactic level, preferred solutions can be easily

defined. Let W�a ¼
W
fwj : ½wj; bj� 2 W and bj ¼ ag.

Then, preferred solutions are:

sF ^ R>at if 9=a;F ^ R>a ^W�a is consistent;

sF ^ R>a ^W�at if F ^ R>a ^W�a is consistent and

9=b>a;F ^ R>a ^W�b is consistent.

8><
>:

Example 8. We consider the set F given in Example 7

and the following bases R and W : R ¼ fðp1; 1Þ;
ð:apart _ :s; 1Þ; ðl; .7Þ; ð:p1 _ s; .4Þg and W¼ f½m;1�;
½p1 ^ apart; 1�; ½p1 ^ :apart ^ :g; .8�g.

First, the set of tolerated solutions is the set of

feasible solutions which satisfy R>.7 which is equivalent

to satisfying p1 ^ (�apart _ m) ^ (s _ m) ^ (�s _ �m).
Now preferred solutions having the highest degree in

dW are those which satisfy m _ (p1 ^ apart) which corre-

sponds to the disjunction of the highest positive prefer-
ences in W. Indeed preferred solutions are models of

p1 ^ (�apart _ m) ^ (s _ m) ^ (�s _ �m) ^ (m _ apart),

which is equivalent to p1 ^ m, namely: s1: p1�apartm�g,
s2: p1�apartmg, s3: p1apart m�g and s4: p1apartmg.
4.2.2. Cardinality-based selection mode

Let us now consider the more refined selection mode

based on cardinality selection. The idea is to apply the

cardinality-based selection mode by both maximizing

the number of falsified rejection statements and maxi-

mizing the number of satisfied positive preferences.
Namely, the procedure for selecting preferred solutions

follows two steps:

(i) First, select solutions falsifying as many prioritary

constraints as possible. Namely, let s and s 0 be two

feasible solutions. Then [3]:
Definition 4. s>leximin;Rs0 iff:

if 9a1; dcea1R > dc0ea1R then 8a2 > a1; dcea2R ¼ dc0ea2R ;
where dceaiR is the number of constraints in R satisfied by

s to a degree ai.

And s¼leximin;Rs0 8ai; dseaiR ¼ ds0eaiR .
(ii) Then, among solutions selected at the first step,

choose those satisfying a maximal number of posi-

tive preferences (in the leximax style).

More precisely, let s and s 0 be two feasible solutions.

Then, s is preferred to s 0 if:

(i) s>leximin;Rs0 (Definition 4), or

(ii) s¼leximin;Rs0 and c>leximax;Ws0, where s>leximax;Ws0 iff
9b1; j cjb1W >j s0jb1W and 8b2 > b1; j cjb2W ¼j s0jb2W.

Example 8 (continued). Solutions induced by leximin

ordering are feasible solutions which satisfy

R>.7 ^ ð:p1 _ sÞ which is equivalent to satisfying
p1 ^ �apart ^ s. Indeed, there are two tolerated solu-

tions s1: p1�apart s�g and s2: p1�apart sg. Let

W = p1 ^ �apart ^ s and Wa ¼ fwj : ½wj; bj� 2 W and

bj ¼ ag. W is inconsistent with both W1 and d2ðW1Þ
so we move to W.8. Now, W ^ W.8 is consistent and

equivalent to p1 ^ �apart ^ s ^ �g which is the pre-

ferred solution.

Example 9. Let us consider the invited speaker�s exam-

ple provided in the introduction section. Let M, T, W,

Mo, Af, E be literals which stand respectively for �Mon-

day�, �Tuesday�, �Wednesday�, �morning�, �afternoon� and
�early�. We have:

F ¼ f:M _ :T ;:M _ :W ;:T _ :W ;M _ T _ W ;

:Mo _ Af ;Mo _ Af ;:E _ :L;E _ Lg;

R ¼ fð:M ; .9Þ; ð:W ; .7Þg and

W ¼ f½Mo; .5�; ½E ^ Mo; .8�g.

Applying the cardinality-based selection mode leads

to select E Mo T.
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Remarks

(1) Note that even if the sets F and R are both mod-

elled in possibilistic logic, we must keep them sep-

arate in the scope of the last procedure. Suppose

that F is inconsistent then in this case, the set of
preferred solutions is empty. Suppose now that

we build a single set F [ R and apply the lexico-

graphic-based selection mode to compute tolerated

solutions. Then possible solutions will be ranked

w.r.t. R even if F is inconsistent.

(2) Positive preferences are not equivalent to a low

priority constraint from negative preferences. Con-

sider for instance R ¼ fð:p; 1Þ; ð:q; aÞ; ð:r; bÞg
and W ¼ f½w; d�g with 1 > a > b > d, where p, q,

r, w are propositions. A solution which satisfies

�p and violates �q has a possibility degree equal

to 1 � a even if it fulfils �r. A solution which sat-

isfies �p and w but not �q will be preferred to a

solution which satisfies �p and �r, but satisfies q

and violates w. This indicates that positive prefer-

ences are used to discriminate among solutions
having the same level of tolerability (computed

on the basis of the rejections that they falsify). In

case [w,d] would be a constraint (i.e., (w,d)), a

solution satisfying �p�q�r but notw would be pre-

ferred to a solution satisfying �p�qw and r, for

instance. Thus the use of the positive preference

[w,d] enables us to discriminate between solutions

satisfying only important constraints, while con-
sidering (w,d) as a constraint only provides a

way for choosing between solutions satisfying all

the other constraints.
5. Related works

The idea of bipolar representations of preferences

was considered in different frameworks, such as Cumu-

lative Prospect Theory [42] multicriteria decision mak-

ing [29], or in Artificial Intelligence works oriented

towards qualitative decision [43,31]. However these

works usually assume that the positive and negative

parts of the preferences, once they have been specified
and represented, can be combined and processed

together, rather than separately as it is done in this

paper. However classical theories of decision, like mul-

tiattribute utility theory of Keeney and Raiffa, or Si-

mon�s satisficing approach, do not account for

separate treatment of positive and negative preferences.

It is handled in a very special way in operations research

where it is usual to optimise a criterion or a set of crite-
ria under rigid constraints. Constraints express negative

preferences and the criterion embodies the positive pref-

erences of the decision-maker. The usual averaging of

several ratings according to various criteria is clearly
in the spirit of positive preferences. However constraint

satisfaction problems envisage decisions from a pure

negative preference point of view. Nevertheless our neg-

ative preferences exactly corresponds to what is known

in the literature as soft (prioritized) constraints [12];

hence our framework is an extension of the soft con-
straint approach to positive preferences.

In [32,33,43], the authors propose to view conditional

desires as constraints on utility functions. Intuitively,

D(pjq) stands for: the q-worlds with highest utility sat-

isfy p. Contrary to Boutilier�s approach, Lang et al.

[33] use numerical utilities, where the expression D(pjq)
induces a loss of utility if it is falsified, and/or a gain

of utility if it is satisfied. Then an additive utility func-
tion is used to aggregate (sum up) losses and gains in-

duced by each conditional desire. There are at least

three differences between Lang et al. [33]�s approach

and the one proposed in this paper. First, we start with

two different sets of preferences, while in Lang et al.

[33]�s approach only one set of preference is used, which

corresponds to our negative preference. Second, even if

Lang et al. [33]�s approach to preferences are expressed
by means of two parameters: utility gain and utility loss,

there is no separate treatment of positive and negative

preferences since the two parameters are aggregated into

one value called polarity parameter which is used to

rank-order the set of solutions contrary to our

approach. Lastly, Lang et al. [33]�s approach is based

on some additive aggregation mode (basically, the sum

operator), while most of the methods proposed in this
paper are qualitative, in the sense that only the ordering

between negative (respectively positive) preferences is

important.

In [14] (see also [41]), a logic for expressing qualitative

preferences was proposed. More precisely, some of the

expressed preferences are the following: a conditional

preference expressing that in the most preferred worlds

where p holds, q holds also, a toleration expressing that
the agent is permitted to do q if p is true, a relative pref-

erence of two propositions expressing that the best mod-

els of p are at least as good as the best models of q, and a

strict preference expressing that every model of t is pre-

ferred to any of its countermodels. It turns out that all

these preferences can be expressed in the possibility the-

ory setting by means of constraints on D and P mea-

sures. More precisely, a conditional preference is
expressed in possibility theory by means of a constraint

on P of the form P(p ^ q) > P(p ^ �q) which means

that in the best models when p is true, it is better to sat-

isfy q than to falsify it. The toleration and the relative

preference are modelled by the following constraints

D(p ^ q) > 0 and P(p) P P(q) respectively. Lastly the

strict preference is modelled by the constraint

D(t) > P(�t) which means that any model of t is pre-
ferred to all its countermodels. Note that these con-

straints on D and P may also be expressed by means
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of prioritized bases as given in this paper. Similar condi-

tional preferences (also called conditional desires) based

on D andP constraints were also proposed in [43]. More

details on the possibilistic handling of this representa-

tion format and their bridges with logical representation

of preferences can be found in [6,8].
In [16,17,15] a graphic representation, directly remi-

niscent of Bayes nets, for conditional preferences among

feature values under the ceteris paribus [21,45] principle

is proposed, together with corresponding algorithms.

Basically, the authors use a directed acyclic graph to

express conditional preferences: for each variable p,

and for each instance of variables that are parents of

p, an agent should express preferences between different
instances of p. From these conditional preferences, and

with help of ‘‘ceteris paribus’’ principle, a partial order-

ing between possible solutions is defined, and algorithms

are provided for computing optimal solutions. In our

framework a total ordering between solutions is induced

instead of a partial ordering as in [16,17,15]. Moreover

the use of minimum and maximum operations make

the representation of preference fail with respect to
ceteris paribus constraints. However the use of lexico-

graphic selection modes restore preferential indepen-

dence between partial possibility distributions induced

by each weighted preference statement.
6. Concluding remarks

This paper advocates the handling of bipolar prefer-

ences bases with a separate treatment of positive and neg-

ative information under the form of two sets of weighted

logical formulas having different semantics, both of them

being encoded in the framework of possibility theory.

The representation framework remains simple (although

each of the two sets could be equivalently represented in a

graphical form, or as a set of conditionals [4]). The possi-
bilistic logic approach enables us to compute a syntactic

description of the set of preferred solutions, in agreement

with the semantics. Besides, the proposed model remains

qualitative, since only the ordering between the satisfac-

tion levels or the rejection levels is meaningful, but pre-

supposes the existence of two ordinal value scales for

positive and negative preferences.

This kind of representation of bipolarity could
accommodate more quantitative frameworks, like pen-

alty logic [20], when the weights are thought of as viola-

tion fines to be paid (see also [43,25]). In the penalty

logic framework, one could also distinguish between

two bases: one representing constraints whose valuation

has a cost, and one representing desires whose satisfac-

tion produces a reward.

Another quantitative framework is evidence theory
[38,40]. Belief functions have already been used for rep-

resenting negative preferences. Here we could use the so-
called ‘‘commonality’’ function Q for representing posi-

tive preferences. Indeed, a commonality function gener-

alizes the guaranteed possibility measure D. Particularly
when focal elements are nested, then the commonality

function simply coincides with a guaranteed possibility

measure.
Our bipolar representation is also of interest when

representing knowledge rather than preferences, as dis-

cussed in [23], where the negative parts correspond to

what is known as being (more or less impossible), while

the positive parts gather solutions which are guaranteed

to be feasible because they have been observed or

reported or are supported by empirical evidence. This

is why integrity constraints which are pieces of knowl-
edge of the first kind, can be considered here, when nec-

essary, on top of negative preferences, leading to the

specification of what is tolerated because it respects

integrity constraints or reflects the requirements of a

user.
Appendix A. A brief refresher on possibilistic logic

The basic concept in possibilistic theory is the notion

of possibility distribution, denoted by p, which is simply

a function from the set of interpretations to the unit

interval [0, 1] viewed as an ordinal scale, or to any

bounded totally ordered scale L, finite or not. Thus we

can use only a finite, totally ordered set of qualitative

levels if necessary. In the usual acception, the top 1 of
L stands for fully possible, plausible, normal, preferred

according to the context. The bottom value 0 means

fully impossible, abnormal, rejected likewise. Function

p may encodes an agent�s epistemic state, or a qualita-

tive counterpart of a utility function, according to the

context.

Given a possibility distribution p, two standard mea-

sures are defined for formulas:

• the possibility (or consistency) measure of a formula

u:

PðuÞ ¼ maxfpðsÞ: s 2 S and s � ug;
it evaluates the extent to which u is consistent with

the available information expressed by p, and
• the necessity (or certainty) measure of a formula u:

NðuÞ ¼ 1�Pð:uÞ;
which evaluates the extent to which u is entailed by

the information expressed by p.

A third set function D can be defined:

DðuÞ ¼ minfpðsÞ: s 2 S and s � ug;
it evaluates the extent to which all models of u are pos-

sible according to p.



14 S. Benferhat et al. / Information Fusion xxx (2005) xxx–xxx

ARTICLE IN PRESS
The two first set-functions satisfy the following prop-

erties: P(w1 _ w2) = max(P(w1),P(w2)), N(w1 ^ w2) =

min(N(w1),N(w2)), and are monotonic increasing with

entailment. On the contrary, D(w1 _ w2) = min

(D(w1),D(w2)), so D is decreasing with respect to entail-

ment. Given a possibility distribution p, we define the
core of p as the set of interpretations having the highest

possibility degree in p. Formally,

Definition 5. The core of a possibility distribution p,
denoted by core(p), is defined by:

coreðpÞ ¼ fs: s 2 S; 9= s0 2 S; pðs0Þ > pðsÞg.

We now define the contextual core as follows:

Definition 6. The contextual core of a possibility distri-

bution p given a formula u (u represents the context),

denoted by coreu(p), is defined by:

coreuðpÞ¼ fs: s2 S;s�u; 9=s0 2 S;s0 �u and pðs0Þ> pðsÞg.

Two kinds of semantic inference relations can be defined

from p, in the same spirit as [39]:

Definition 7. Plausible and preferential inferences.

Let p be a possibility distribution. The formula w is

said to be a plausible consequence of p, denoted by
p �P w, iff

coreðpÞ � swt.

w is said to be a preferential consequence of p given the

formula u, denoted by p �u w, iff

coreuðpÞ � swt.

The syntactic representation of prioritized informa-

tion in the possibilistic logic framework is given by

means of a set of weighted formulas, called a possibilistic

logic base, of the form R = {(ui,ai) : i = 1, . . .,n}, where
ui is a propositional formula and ai, called the certainty

degree of ui and belongs to a totally ordered scale such

as [0,1]. (ui,ai) means that the necessity degree of ui is at
least equal to ai, i.e., N(ui) P ai.

The fuzzy set of models of a possibilistic logic base is

a possibility distribution induced by the weighted
formulas:

pRðsÞ ¼ minf1� ai : s � :ui; ðui; aiÞ 2 Rg
with min{;} = 1.

Definition 8. Let R be a possibilistic knowledge base,
and a 2 [0,1]. We call the a-cut (resp. strict a-cut) of R,
denoted by RPa (resp. R>a), the set of classical formulas

in R having a certainty degree at least equal to a (resp.

strictly greater than a).
IncðRÞ ¼ maxfai : RPai is inconsistentg denotes the

inconsistency degree of R. When R is consistent, we have

Inc(R) = 0, which is equivalent to pR(s) = 1 for some s. It

is also equivalent to the consistency of the classical base

associated with R when the weights are ignored. The

knowledge base {(u1,b), (u2,b)} is semantically equiva-
lent to the formula [u1 ^ u2,b]. [u,a] 2 R is said to be

subsumed if there exists [u 0,b] 2 R such that a P b and

u 0 ‘ u. Adding or removing a subsumed formula

preserves semantic equivalence i.e. does not change the

induced possibility distribution. Full details on possibi-

listic logic are in [24].

The set-function D gives birth to a different form of

possibilistic logic where the semantic entailment goes
opposite to the classical logic one [23]. Namely, if all

the models of w1 are possible, we can conclude from this

piece of information that all the models of w2 are possi-

ble only if the entailment w2 � w1 holds, and nothing is

said about the interpretations violating w1. This dual

possibilistic logic handles weighted formulas R =

{[ui,ai] : i = 1, . . .,n}, but here [ui,ai] is interpreted as

D(ui)P ai, and the corresponding possibility distribu-
tion is

dRðsÞ ¼ maxfai : s � ui; ½ui; ai� 2 Rg.
The knowledge base {[u1,b], [u2,b]} is semantically

equivalent to the formula [u1 _ u2,b]. [u,a] 2 R is said

to be subsumed if there exists [u 0,b] 2 R such that

b P a and u ‘ u 0. Adding or removing a subsumed for-
mula preserves semantic equivalence i.e. does not

change the induced possibility distribution. The logical

machinery of the D-weighted formulas is governed by

a cut rule of the form [23]:

Dðw1 ^ w2Þ P a;

Dð:w1 ^ w3Þ P b ‘ Dðw2 ^ w3Þ P minða; bÞ;

which is the counterpart to possibilistic resolution [24]

changing a necessity measure into a guaranteed possibil-

ity measure and the disjunctions into conjunctions.

A complete presentation of the syntactic inference

machinery underlying the logic of D-weighted formulas

can be found in [9].
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